渠琛玲,汪紫薇,王雪珂,王殿軒
基于低場核磁共振的熱風(fēng)干燥過程花生仁含水率預(yù)測模型
渠琛玲,汪紫薇,王雪珂,王殿軒※
(河南工業(yè)大學(xué)糧油食品學(xué)院,鄭州 450001)
為研究熱風(fēng)干燥過程中花生仁內(nèi)部水分的變化規(guī)律,該文采用熱空氣對開農(nóng)71、開農(nóng)8834-9、天府3號3個品種的濕花生進行干燥,監(jiān)測干燥過程中花生果、花生仁與花生殼含水率的變化;并利用低場核磁共振技術(shù)(LF-NMR)研究干燥過程中花生仁內(nèi)部自由水、弱結(jié)合水和結(jié)合水的變化情況;建立花生仁水分弛豫峰占比與其含水率之間的數(shù)學(xué)關(guān)系,提出了一種花生含水率的快速檢測方法。結(jié)果表明,由于花生仁和花生殼化學(xué)組成不同,仁和殼干燥曲線呈現(xiàn)不同的變化趨勢。LF-NMR弛豫圖譜顯示干燥過程中,自由水弛豫峰逐漸消失,結(jié)合水和弱結(jié)合水弛豫峰面積無明顯變化規(guī)律,油脂峰峰面積基本不變,說明花生仁在干燥過程中油脂的含量無明顯變化。建立的花生仁國標法實測含水率與核磁共振弛豫譜圖得到的總水分峰占比(21+22+23)的擬合方程2為0.888 4。經(jīng)驗證,該方程能較好地對未知含水率的花生仁樣品進行預(yù)測。因此,低場核磁共振技術(shù)可以用于花生仁含水率的快速檢測。
含水率;干燥;核磁共振;花生;熱風(fēng);弛豫峰
花生是中國主要油料經(jīng)濟作物之一,具有較高的經(jīng)濟價值[1]。花生品種繁多,有記錄依據(jù)的大約有540種,其中優(yōu)良品種有30種,如果按莢果大小劃分,一般將花生分為大花生和小花生[2],如果按油酸含量劃分,可以分為高油酸花生與普通花生[3-5]。剛收獲的花生含水量很高,約為40%~60%,且花生收獲季節(jié)極易遇到陰雨天氣,若不及時干燥極易發(fā)熱霉變,嚴重時還會產(chǎn)生黃曲霉毒素[6]。因此,收獲后的濕花生要及時干燥,以利于后期儲存和加工[7-10]。一般將花生果水分降到10%以下或花生仁水分降至8%左右可安全儲存不霉變(NY/T 2390—2013)。
目前中國花生干燥仍以自然晾曬為主,但這種方法耗時長,并需要足夠的曬場,而且依賴天氣。而花生收獲后采用熱風(fēng)干燥,可以不受環(huán)境、場地等外界條件的限制,現(xiàn)逐漸得到應(yīng)用推廣[11-13]。
目前花生含水率的測定方法以GB 5009.3—2016中的烘箱法為標準方法,但這種含水率測定方法的主要缺點為耗時較長。1H-低場核磁共振技術(shù)是近年來興起的一種用于快速測定樣品中結(jié)合水、半結(jié)合水、自由水的新技術(shù)[14-17]。1H-低場核磁共振主要通過測量質(zhì)子縱向弛豫時間(1)和橫向弛豫時間(2)來揭示質(zhì)子(1H)的運動[18-20]?;ㄉ?H-核磁共振吸收的物理基礎(chǔ)是其所含的脂肪、蛋白質(zhì)、碳水化合物及水的-H基產(chǎn)生,由于各種組分原子的局域場及其內(nèi)部相互作用機制不同[21-23],它們所產(chǎn)生的共振吸收頻率化學(xué)位移及對應(yīng)的壽命(弛豫時間)也不相同[24-25],在干燥的過程中,花生仁中水分子與大分子之間的相互作用一直在變化[26-28]。
本文針對花生品種的多樣性,從果型和油酸含量的角度出發(fā),以開農(nóng)71(大果、高油酸)、開農(nóng)8834-9(大果、普通型)、天府3號(小果、普通型)3個品種的濕花生為研究對象,對不同品種的花生果、花生仁和花生殼干燥過程中水分的變化規(guī)律進行研究。并通過標識干燥過程中花生仁的核磁共振橫向弛豫譜,分析干燥過程中不同品種的花生仁內(nèi)自由水、弱結(jié)合水和結(jié)合水的變化情況,找出不同品種花生干燥內(nèi)部水分變化是否存在共性規(guī)律。根據(jù)花生干燥數(shù)據(jù),建立花生仁含水率與弛豫譜峰之間的數(shù)學(xué)關(guān)系式,用于預(yù)測其它品種花生仁的含水率,以期為花生干燥過程中水分的快速檢測提供一種可行的方法。
本試驗選用了3個花生品種,原料性質(zhì)如表1所示。
干燥設(shè)備由本單位設(shè)計,委托鄭州萬谷機械有限公司制作,干燥設(shè)備示意圖如圖1所示。設(shè)備核心部件為高660 mm,直徑285 mm的烘干筒,裝料量約15 kg濕花生果。流量計:UGB-2306-B,上海求精流量儀表有限公司。變頻調(diào)速三相異步電動機:WF2-90S-2,安徽皖南電機股份有限公司。
表1 花生原料
1.電腦 2.溫濕度傳感器 3.沖孔鋼板 4.空氣分配室 5.濕花生 6.烘干筒 7.流量計 8.閥門 9.離心風(fēng)機 10.加熱箱
變溫型核磁共振食品農(nóng)業(yè)成像分析儀:Micro MR-CL-I,上海紐邁電子科技有限公司;電子天平:ML204,梅特勒-托利多儀器上海有限公司;電熱鼓風(fēng)恒溫干燥箱:101A-1,上海市崇明實驗儀器廠。
將3個品種的濕花生分別在風(fēng)溫35℃、風(fēng)速0.6 m/s的條件下(參考NY/T 2390—2013)通風(fēng)干燥,當花生果含水率降到10%以下且花生仁水分降至8%以下時停止干燥。在干燥過程中每2 h測一次花生果、花生仁和花生殼的含水率;以干基含量為基準,定時(時間間隔2~6 h)取樣0.3 g(3次平行試驗),使用變溫型核磁共振食品農(nóng)業(yè)成像分析儀對花生仁進行掃描測定。
花生果、花生殼和花生仁的濕基含水率參照GB/T 5497—1985與GB/T 5009.3—2016進行測定。
試驗條件:主磁場強度0.51 T,其對應(yīng)共振頻率為20 MHz,樣品室溫度為(35.00±0.01)℃,采用CPMG(18-10-18-101619-0)脈沖序列測定樣品的橫向弛豫時間(2)。CPMG序列采用的參數(shù):采樣點數(shù)TD為333 332,回波個數(shù)NECH設(shè)置為10 000,回波時間TE為0.100 ms,采樣率為333.333 kHz,重復(fù)采樣時間間隔為3 000 ms,根據(jù)樣品實際情況,重復(fù)采樣次數(shù)為16。選用變溫型核磁共振食品農(nóng)業(yè)成像分析儀配套的反演軟件進行連續(xù)譜迭代分析擬合得到各樣品的波譜圖和2值,運算參數(shù):開始時間0.01 ms,截止時間1 000 ms,參與反演點數(shù)199。
使用Orgin 9.0和SPSS 22.0進行數(shù)據(jù)處理和分析。
開農(nóng)71、天府3號與開農(nóng)8834-9 3個品種濕花生熱風(fēng)干燥過程中花生果、花生殼與花生仁水分變化如圖2所示。隨著干燥時間的延長,花生殼含水率干燥初始階段下降最快,下降趨勢為先快速下降后緩慢下降,這是因為花生殼的結(jié)構(gòu)為孔隙較大的纖維組織,殼內(nèi)水分容易散失。而花生仁的含水率下降較慢,這是由于花生仁富含蛋白質(zhì),蛋白質(zhì)為親水物質(zhì),所以花生仁較花生殼難干燥,且干燥過程中,花生仁與花生殼逐漸分開形成空氣層,對花生仁的傳熱和傳質(zhì)形成阻礙[29-30]。
圖2 開農(nóng)71、天府3號和開農(nóng)8834-9花生果、花生仁和花生殼干燥曲線
綜合以上數(shù)據(jù)和分析可知,3個品種的花生在干燥過程中,花生果、花生殼和花生仁都分別表現(xiàn)出了相似的降水規(guī)律。
圖3為花生仁核磁共振信號強度與弛豫時間關(guān)系圖,本試驗中濕花生的2弛豫圖譜的主要弛豫峰有4個,0.1、1、10、100 ms弛豫時間位置21、22、23、24分別對應(yīng)結(jié)合水、弱結(jié)合水、自由水、油脂的弛豫峰[17,19,23]。
注:T21、T22、T23、T24分別對應(yīng)結(jié)合水、弱結(jié)合水、自由水、油脂的弛豫峰。下同。
圖4為開農(nóng)71高油酸花生(初始含水率35.9%)在干燥過程的橫向弛豫譜圖(天府3號和開農(nóng)8834-9 2個品種的花生仁干燥過程譜圖與開農(nóng)71相似)。在整個干燥過程中,觀察到21、22、23和244個主要峰,其中在干燥前(0 h),花生的23和24峰是有重疊的,這是由于自由水與油脂弛豫時間較為接近,且二者含量都很高。隨著干燥時間的延長,23峰面積明顯減少,24峰面積基本不變,23和24處的峰逐漸分開,干燥至40 h,23峰完全消失。21在干燥過程中基本不變說明花生在干燥過程中,結(jié)合水的量基本不變。
表2為開農(nóng)71高油酸花生仁各質(zhì)子峰峰比例、油脂峰峰面積及含水率隨干燥過程的變化情況。在干燥過程中,23峰比例在逐漸減小,說明自由水含量逐漸下降;22峰比例為先升高,但在34~40 h時22峰比例有所下降,說明弱結(jié)合水含量在干燥末期也有所降低。由此可知,花生在干燥過程中散失的水分主要為自由水及部分弱結(jié)合水。根據(jù)顯著性分析,干燥過程中的油脂峰峰面積沒有顯著性差異,說明在干燥過程中油脂的含量無明顯變化。
a. 0 hb. 10 hc. 22 hd. 40 h
表2 各峰峰面積占比、油脂峰峰面積、花生仁含水率隨時間的變化(開農(nóng)71)
注:表中同列數(shù)據(jù)后小寫字母分別表示0.05水平差異顯著,下同。
Note: The lowercase letters of the same column data in the table showed significant difference at 0.05 level, the same below.
表3為天府3號小果普通型花生仁在不同干燥時間4個質(zhì)子峰的峰比例、油脂峰峰面積及含水率。與開農(nóng)71高油酸花生相似,21與24峰比例在逐漸上升,23峰比例在逐漸下降,22峰比例先升高在末期下降??芍旄?號花生仁干燥過程中失去的也主要為自由水和部分弱結(jié)合水。由顯著性分析可知天府3號花生仁在干燥過程中油脂的含量也無明顯變化。
表4為開農(nóng)8834-9花生仁在不同干燥時間4個質(zhì)子峰的峰比例、油脂峰峰面積及含水率。開農(nóng)8834-9與開農(nóng)71和天府3號花生類似,在干燥過程中23峰比例大致呈逐漸減小的趨勢,21與24峰比例大致為逐漸增大趨勢,22峰比例為先增大,后面在36~42 h之間有所下降,說明開農(nóng)8834-9花生在干燥過程中散失水分也主要為自由水和部分弱結(jié)合水。油脂峰峰面積在干燥過程中無顯著性差異,說明開農(nóng)8834-9花生仁在干燥過程中油脂的含量也無明顯變化。
表3 各峰峰面積占比、油脂峰峰面積、花生仁含水率隨時間的變化(天府3號)
表4 各峰峰面積占比、油脂峰峰面積、花生仁含水率隨時間的變化(開農(nóng)8834-9)
3.5.1 總水分峰比例與含水率數(shù)學(xué)關(guān)系式的擬合
如表2、表3和表4所示,以上述3個品種花生仁核磁共振弛豫譜圖得到的總水分峰占比(21+22+23)為,花生仁國標法實測含水率為,建立擬合方程(1)。
=0.677 6-4.190 2 (2=0.888 4) (1)
3.5.2 花生仁水分擬合方程的驗證
另取3個花生品種的濕花生樣品再進行干燥試驗,取干燥過程的花生仁樣品進行低場核磁共振掃描,所得結(jié)合水、弱結(jié)合水和自由水的峰面積占比和總水分峰面積占比如表5所示。將3個品種花生仁總水分的峰面積占比分別代入方程(1)中,計算出花生仁含水率的預(yù)測值。同時取樣采用國標方法測定花生仁的水分,得到花生仁含水率的實測值,并計算預(yù)測值和實測值之間的相對誤差,結(jié)果如表5所示。
表5 花生仁含水率預(yù)測值與實測值比較
國標GB 5009.3—2016中傳統(tǒng)的水分測定方法要求相對誤差不超過10%。由表5可知,擬合方程所得預(yù)測值與實測值之間的相對誤差在2.9%~22.3%之間,這主要是由于花生的品種與個體差異較大,但總的來說能較好地預(yù)測花生含水率。因此,利用低場核磁共振技術(shù)建立的預(yù)測方程可以用于快速測定花生仁的含水率。
1)本文對開農(nóng)71、天府3號與開農(nóng)8834-9 3個品種的濕花生采用35℃、0.6 m/s的熱風(fēng)進行干燥。不論花生的油酸含量及果型的大小,3個品種的花生干燥過程中表現(xiàn)出了相似的干燥特性,其花生果和花生仁的含水率都均勻下降,花生仁的含水率均先快速下降再緩慢下降。
2)3個品種的花生仁的低場核磁共振弛豫譜圖均有4個主要的峰,分別為自由水峰、弱結(jié)合水峰、結(jié)合水峰和油脂峰。3個品種的花生仁在干燥過程中,自由水峰都逐漸下降,至干燥結(jié)束后幾近消失;結(jié)合水峰和弱結(jié)合水峰的峰面積變化無明顯規(guī)律;油脂峰峰面積無顯著變化,說明在干燥過程中花生仁中油脂含量不變。
3)3個品種的花生仁低場核磁共振弛豫譜圖中各弛豫峰峰比例隨干燥進行,也呈相似的變化趨勢。結(jié)合水峰和油脂峰峰比例均呈現(xiàn)上升趨勢;自由水峰峰比例呈下降趨勢,干燥結(jié)束時,已經(jīng)很低,說明干燥結(jié)束時自由水幾乎完全失去;弱結(jié)合水峰峰比例呈上升趨勢,至干燥結(jié)束前呈現(xiàn)下降趨勢,說明在干燥結(jié)束時,失去了部分弱結(jié)合水。由此可知,在干燥過程中,主要散失水分為自由水與弱結(jié)合水。
4)以花生仁的核磁共振弛豫譜圖得到的總水分峰占比(21+22+23),花生仁國標法實測含水率建立的線性方程的2為0.888 4。用3個品種不同含水率的花生仁進行方程的驗證,結(jié)果較好。因此,低場核磁共振可作為花生仁含水率快速檢測的參考方法。
[1] 周瑞寶. 花生加工技術(shù)[M]. 北京:化學(xué)工業(yè)出版社,2003.
[2] 布衣. 花生的種類[J]. 農(nóng)村實用技術(shù),2013(10):50.
[3] Toborek M, Lee Y W, Garrido R, et al. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells[J]. American Journal of Clinical Nutrition, 2002, 75(1): 119-125.
[4] 陳靜. 高油酸花生遺傳育種研究進展[J]. 植物遺傳資源學(xué)報,2011,12(2):190-196. Chen Jing. Advances in genetics and breeding of high oleic acid peanut[J]. Journal of Plant Genetic Resources, 2011, 12(2): 190-196. (in Chinese with English abstract)
[5] 曲奕威,任春玲,姜玉忠. 河南省高油酸花生的發(fā)展情況與展望[J]. 河南農(nóng)業(yè),2018(31):12.
[6] 李建輝. 花生中黃曲霉毒素的影響因子及脫毒技術(shù)研究[D].北京:中國農(nóng)業(yè)科學(xué)院,2009. Li Jianhui. Impact Factor and Detoxification of Aflatoxins in Peanuts[D]. Chinese Academy of Agricultural Sciences, 2009. (in Chinese with English abstract)
[7] 尹慧敏,吳文福,竇建鵬,等. 熱風(fēng)干燥條件對馬鈴薯全粉糊化品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(12):293-300. Yin Huimin, Wu Wenfu, Dou Jianpeng, et al. Influence of hot-air drying condition on dehydrated potato flour gelatinization quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 293-300. (in Chinese with English abstract)
[8] 陳良元,韓李鋒,李旭,等. 茄子片熱風(fēng)干燥收縮特性及其修正的濕分擴散動力學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(15):275-281.Chen Liangyuan, Han Lifeng, Li Xu, et al. Structural shrinkage characteristics and modified moisture diffusion kinetics model of sliced eggplant dried by hot air[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 275-281. (in Chinese with English abstract)
[9] 白竣文,田瀟瑜,劉宇婧,等. 大野芋薄層干燥特性及收縮動力學(xué)模型研究[J]. 中國食品學(xué)報,2018,18(4):124-131. Bai Junwen, Tian Xiaoyu, Liu Yujing, et al. Studies on drying characteristics and shrinkage kinetics modelling of colocasia gigantea slices during thin layer drying[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(4): 124-131. (in Chinese with English abstract)
[10] 張賽,陳君若,劉顯茜. 水果在熱風(fēng)干燥中的水分擴散分形模型[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(4):286-292. Zhang Sai, Chen Junruo, Liu Xianqian. Diffusion fractal model of fruit moisture in hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 286-292. (in Chinese with English abstract)
[11] Fernandes F A N, Rodrigues S, Law C L, et al. Drying of exotic tropical fruits: A comprehensive review[J]. Food & Bioprocess Technology, 2011, 4(2): 163-185.
[12] 王安建,高帥平,田廣瑞,等. 花生熱泵干燥特性及動力學(xué)模型[J]. 農(nóng)產(chǎn)品加工,2015(9):57-60. Wang Anjian, Gao Shuaiping, Tian Guangrui, et al. Heat pump drying characteristics and dynamics model of peanut[J]. Farm Products Processing, 2015(9): 57-60. (in Chinese with English abstract)
[13] 顏建春,胡志超,謝煥雄,等. 花生莢果薄層干燥特性及模型研究[J].中國農(nóng)機化學(xué)報,2013,34(6):205-210. Yan Jianchun, Hu Zhichao, Xie Huanxiong, et al. Studies of thin-layer drying characteristics and model for peanut pods[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 205-210. (in Chinese with English abstract)
[14] 王新兵,李麗云,丁廣良,等. 獼猴桃的磁共振成象及核磁共振定域波譜研究[J]. 波譜學(xué)雜志,1998(3):261-266. Wang Xinbing, Li Liyun, Ding Guangliang, et al. The study of kiwi using magnetic resonance imaging and localized NMR spectroscopy[J]. Chinese Journal of Magnetic Resonance, 1998(3): 261-266. (in Chinese with English abstract)
[15] 張建鋒,吳迪,龔向陽,等. 基于核磁共振成像技術(shù)的作物根系無損檢測[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(8):181-185. Zhang Jianfeng, Wu Di, Gong Xiangyang, et al. Non-destructive detection of plant roots based on magnetic resonance imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 181-185. (in Chinese with English abstract)
[16] 李然,李振川,陳珊珊,等. 應(yīng)用低場核磁共振研究綠豆浸泡過程[J]. 食品科學(xué),2009,30(15):137-141. Li Ran, Li Zhenchuan, Chen Shanshan, et al. Study of water absorption of mung beans based on low-field nuclear magnetic resonance technology[J]. Food Science, 2009, 30(15): 137-141. (in Chinese with English abstract)
[17] 付曉記,唐愛清,閔華,等. 花生浸種過程中水分相態(tài)和水分遷移動態(tài)研究[J]. 中國油料作物學(xué)報,2018,40(4):552-557.
[18] 孫炳新,趙宏俠,馮敘橋,等. 基于低場核磁和成像技術(shù)的鮮棗貯藏過程水分狀態(tài)的變化研究[J]. 中國食品學(xué)報,2016,16(5):252-257. Sun Bingxin, Zhao Hongxia, Feng Xuqiao, et al. Studies on the change of moisture state of fresh jujube during storage base on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(5): 252-257. (in Chinese with English abstract)
[19] 馬彥寧,錢建強,回朝陽,等. 油料種子含油含水率的CPMG序列核磁共振測量[J]. 大學(xué)物理,2018,37(7):78-81. Ma Yanning, Qian Jianqiang, Hui Zhaoyang, et al. The NMR measuring of oil and moisture content of oil seeds based on the CPMG sequence[J]. College Physics, 2018, 37(7): 78-81. (in Chinese with English abstract)
[20] Rnm P, Gamr L. Nuclear magnetic resonance and water activity in measuring the water mobility in Pintadocorruscans) fish[J]. Journal of Food Engineering, 2003, 58(1): 59-66.
[21] Mcentyre E, Ruan R, Fulcher R G. Comparison of water absorption patterns in two barley cultivars, using magnetic resonance imaging[J]. Cereal Chemistry, 1998, 75(6): 792-795.
[22] Li L, Zhang M, Bhandari B, et al. LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying[J]. Drying Technology, 2018, 36(16): 77568-77577.
[23] 李潮銳,劉青,楊培強. 鮮花生的低場核磁共振橫向弛豫分析[J]. 中山大學(xué)學(xué)報:自然科學(xué)版,2014,53(2):1-5.
[24] 李娜,李瑜. 利用低場核磁共振技術(shù)分析冬瓜真空干燥過程中的內(nèi)部水分變化[J]. 食品科學(xué),2016,37(23):84-88. Li Na, Li Yu. Analysis of internal moisture changes of benincasa hispida during vacuum drying using low-field NMR[J]. Food Science, 2016, 37(23): 84-88. (in Chinese with English abstract)
[25] 張楠,莊昕波,黃子信,等. 低場核磁共振技術(shù)研究豬肉冷卻過程中水分遷移規(guī)律[J]. 食品科學(xué),2017,38(11):103-109.
[26] Zang X, Lin Z, Zhang T, et al. Non-destructive measurement of water and fat contents, water dynamics during drying and adulteration detection of intact small yellow croaker by low field NMR[J]. Journal of Food Measurement & Characterization, 2017,11(4): 1550-1558.
[27] 蔡健榮,盧越,白竣文,等. 馬鈴薯薄片干燥過程形態(tài)變化三維成像[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(1):278-284. Cai Jianrong, Lu Yue, Bai Junwen, et al. Three-dimensional imaging of morphological changes of potato slices during drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 278-284. (in Chinese with English abstract)
[28] 李曉斌,郭玉明,崔清亮,等. 用圖像法分析茄子在凍干過程中的水分動態(tài)運移規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(1):304-311. Li Xiaobin, Guo Yuming, Cui Qingliang, et al. Moisture diffusion and transfer dynamic analysis of eggplant during vacuum freeze-drying based on image processing technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016,32(1): 304-311. (in Chinese with English abstract)
[29] 劉宗博,張鐘元,李大婧,等. 雙孢菇遠紅外干燥過程中內(nèi)部水分的變化規(guī)律[J]. 食品科學(xué),2016,37(9):82-86. Liu Zongbo, Zhang Zhongyuan, Li Dajing , et al. Analysis of moisture change during far-infrared drying of agaricus bisporus[J]. Food Science, 2016, 37(9): 82-86. (in Chinese with English abstract)
[30] 朱丹實,王立娜,吳曉菲,等. 冰溫及冷藏對鯉魚水分遷移及質(zhì)構(gòu)的影響[J]. 中國食品學(xué)報,2017,17(10):152-159. Zhu Danshi, Wang Lina, Wu Xiaofei, et al. Effects of the ice storage and cold storage on migration of moisture and texture changes of carp[J]. Journal of Chinese Institute of Food Science and Technology 2017, 17(10): 152-159. (in Chinese with English abstract)
Prediction model of moisture in peanut kernel during hot air drying based on LF-NMR technology
Qu Chenling, Wang Ziwei, Wang Xueke, Wang Dianxuan※
(,,450001,)
Peanut, which has high economic value, is one of the main oil crops in China. Freshly harvested peanuts usually had high moisture contents, which were about 40%-60%. If peanuts with high moisture content did not dry in time, it was easy to fever and mildew. So it is very important for peanuts drying in time. In this paper, three varieties of wet peanuts, Kainong 71, Kainong 8834-9 and Tianfu 3, were dried by hot air, which temperature was 35 ℃ and air velocity was 0.6 m/s. And the moisture contents of peanuts, peanut kernels and peanut shells were monitored during the drying process. The changes of free water, weak-bound water and bound water in peanut kernels during drying were studied by low-field nuclear magnetic resonance (LF-NMR) technology. The common law of internal moisture changes in peanut kernels during drying process was obtained. The mathematical relationship between the total percentage of moisture relaxation peaks in peanut kernels and their moisture contents determined by the national standard method was established. A rapid detection method of peanut moisture contents was proposed in this paper, which had a practical significance for peanut storage and processing. The results showed that regardless of the amount of oleic acid in peanuts and the size of the peanuts, the drying characteristics of the three varieties of peanuts were similar. The moisture contents of the three varieties of peanut and peanut kernel showed different downward trend compared to the peanut shell. The moisture contents of peanut shell first declined rapidly in the early stage (2-4 h), then slowly due to their fiber structure. The LF-NMR relaxation spectra of peanut kernels of the three varieties all had four main peaks, namely, free water peak, weak-bound water peak, bound water peak and oil peak. During the drying process, the free water peak areas of peanut kernels of the three varieties decreased gradually, and almost disappeared at the end of drying. The changing trends of the weak-bound water and bound water peak areas were obvious. The peak areas of oil peaks did not change significantly, indicating that the oil content in peanut kernels remained unchanged during drying process. The relaxation peak area ratios of peanut kernels of the three varieties in low-field NMR relaxation spectra also showed similar trends during drying. The percentages of bound water peak area and oil peak area showed an upward trend. The percentage of free water peak area showed a downward trend, which was very low at the end of drying, indicating that free water almost completely lost at the end of drying. The percentage of weak-bound water peak area firstly rose, then declined at the end of drying, indicating that some weak-bound water was lost. Therefore, free water and weak-bound water were the main kind lost water in the drying process. In addition, it could be judged that if the relaxation peak of free water disappeared or the peak was very small, the moisture contents of peanut kernels were below the safe storage moisture content. The2of equation established to predict the moisture content of peanut kernel is 0.888 4. The equation has been validated and the fitting results were good. Therefore, the LF-NMR technology can be used for rapid detection of moisture content in peanut kernels.
moisture; drying; nuclear magnetic resonance; peanut; hot air; relaxation peak
2019-01-24
2019-05-11
國家花生產(chǎn)業(yè)技術(shù)體系(CARS-13)
渠琛玲,博士,副教授,主要從事糧食干燥與儲藏研究。Email:quchenling@163.com
王殿軒,博士,教授,博士生導(dǎo)師,主要從事儲藏物害蟲綜合治理研究。Email:wangdianxuan62@126.com
10.11975/j.issn.1002-6819.2019.12.035
TS210.2
A
1002-6819(2019)-12-0290-07
渠琛玲,汪紫薇,王雪珂,王殿軒. 基于低場核磁共振的熱風(fēng)干燥過程花生仁含水率預(yù)測模型[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(12):290-296. doi:10.11975/j.issn.1002-6819.2019.12.035 http://www.tcsae.org
Qu Chenling, Wang Ziwei, Wang Xueke, Wang Dianxuan. Prediction model of moisture in peanut kernel during hot air drying based on LF-NMR technology[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 290-296. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.035 http://www.tcsae.org