任垚嘉,劉世鋒,李香君,張光曦,王慶娟
(西安建筑科技大學(xué)冶金工程學(xué)院,陜西 西安 710055)
結(jié)構(gòu)功能材料的研究與應(yīng)用推動(dòng)了社會(huì)的經(jīng)濟(jì)進(jìn)步和工業(yè)發(fā)展。金屬纖維多孔材料是一種復(fù)合結(jié)構(gòu)功能材料,其內(nèi)部結(jié)構(gòu)由金屬纖維交錯(cuò)搭接相連,形成三維網(wǎng)狀多孔結(jié)構(gòu),具有高精度、全連通的孔徑,孔隙直徑低至10 μm,孔隙率高達(dá)98%,比表面積大;且金屬纖維自身具有良好的導(dǎo)電性、導(dǎo)熱性、耐磨性及高彈性模量等特點(diǎn)[1, 2]。金屬纖維多孔材料結(jié)合了金屬纖維和多孔材料各自的特性,受到廣泛關(guān)注并逐漸成為研究熱點(diǎn)。隨著結(jié)構(gòu)功能一體化材料的發(fā)展,金屬纖維多孔材料具有了高比強(qiáng)度、高比剛度、高強(qiáng)韌性、高能量吸收等性能,可廣泛用于耐熱、減震、吸聲、高溫過濾器和醫(yī)用植入物等材料的制備,在過濾分離、吸聲降噪、生物醫(yī)學(xué)、高效換熱及阻尼減震等領(lǐng)域得到了長足發(fā)展[3-5]。
金屬纖維多孔材料是隨著材料制備和機(jī)械加工技術(shù)發(fā)展而出現(xiàn)的新型輕質(zhì)多孔金屬材料[6]。目前,金屬纖維多孔材料的制備方法分為傳統(tǒng)制備和增材制造兩大類。傳統(tǒng)制備過程主要包含成形和燒結(jié)兩大部分,即將金屬制備成具有一定長度、直徑及長徑比的金屬纖維,再將其均勻混合、分散后置于真空或氣氛保護(hù)下燒結(jié)。增材制造技術(shù)即三維纖維沉積法,則是把傳統(tǒng)工藝中纖維的制備和燒結(jié)合并,直接將熔融的金屬粉末通過噴嘴定向沉積,得到預(yù)先設(shè)計(jì)的多孔纖維結(jié)構(gòu)。
2.1.1 金屬纖維的制備
美國Memtec公司率先研發(fā)了不銹鋼和合金纖維,然而比利時(shí)Bekaert公司在20世紀(jì)70年代引進(jìn)美國金屬纖維制備技術(shù)和設(shè)備后,隨后超越美國成為了世界上最大的金屬纖維供應(yīng)商。同期,我國也展開了對金屬纖維的研制,以中國紡織研究所、西北有色金屬研究院、長沙礦冶研究院等機(jī)構(gòu)為代表,成功研發(fā)了直徑為2~40 μm的不銹鋼纖維、鐵鉻鋁纖維、鎳?yán)w維及哈氏合金纖維等產(chǎn)品。此外,西北有色金屬研究院分別于2002、2006年制訂了《燒結(jié)不銹鋼纖維氈》和《不銹鋼纖維燒結(jié)濾氈》標(biāo)準(zhǔn),填補(bǔ)了國內(nèi)空白。
金屬纖維的常用制備方法可分為熔抽法、切削法、線材拉拔法3類。前兩種方法成本較低、工藝簡單,但生產(chǎn)出的纖維表面粗糙、絲徑不均、抗拉強(qiáng)度低,其中切削法制備的纖維表面粗糙,可增大表面能、比表面積等,從而提高金屬纖維的換熱系數(shù)[7]。線材拉拔法可分為單絲拉拔與集束拉拔,單絲拉拔使用多模具連續(xù)拉拔生產(chǎn)纖維,絲徑均勻連續(xù)、表面光滑、尺寸精確,但工序冗長、生產(chǎn)成本高、無法生產(chǎn)10 μm以下的纖維;集束拉拔的出現(xiàn)解決了熔抽法和切削法生產(chǎn)纖維絲徑不均且不連續(xù)的問題,克服了單絲拉拔成本高、效率低、難以集中生產(chǎn)的問題,成為目前制備金屬纖維的主要方法[8]。
隨著金屬纖維應(yīng)用需求的擴(kuò)大,人們對其質(zhì)量特性提出了新要求,新的制造方法如無模拉拔法、有機(jī)凝膠-熱還原法、靜電紡絲法等正在不斷地創(chuàng)新和研發(fā)以滿足金屬纖維使用性能多樣化及應(yīng)用環(huán)境復(fù)雜化的需求。無模拉拔法的基本原理是利用微波對材料局部進(jìn)行加熱,同時(shí)對金屬絲施加縱向拉力引起局部區(qū)域變形、橫截面面積減小,隨后冷卻成型。該方法不使用模具,僅靠金屬變形抗力隨溫度變化的性質(zhì)實(shí)現(xiàn)塑性變形,是一種高精度、高效率、低能耗、無污染的新型金屬纖維制備技術(shù)。You等[9]采用無模拉拔法制備了直徑縮減高達(dá)21%、長徑比高達(dá)1.6的不銹鋼纖維,并建立了不銹鋼纖維拉拔的理論模型。有機(jī)凝膠-熱還原法是將可溶性金屬鹽溶于溶劑中并與羧酸絡(luò)合形成透明玻璃狀凝膠,再經(jīng)熱處理還原得到金屬纖維。此方法可制備出長徑比較大的金屬纖維,但紡絲性較好的凝膠會(huì)受到成膠體系pH值、化學(xué)計(jì)量比等復(fù)雜工藝條件的影響。曹凱等[10]以檸檬酸和金屬鹽為原料,采用有機(jī)凝膠-熱還原法制備了長徑比大、飽和磁化強(qiáng)度為130.17 A·m2·kg-1、矯頑力為4129 A·m-1的FeNiCo合金纖維。靜電紡絲法是借助高壓靜電場使帶電溶液或熔體在噴頭處形成Taylor錐并克服表面張力形成噴射細(xì)流,在電場力作用下被拉伸并沉積到接收裝置上,形成長徑比大、孔隙率高的連續(xù)微納米纖維。該方法因其操作簡便、成本低、產(chǎn)量高等特點(diǎn)成為目前制備連續(xù)微納米纖維最有效的方法之一[11]。Wu等[12]采用靜電紡絲結(jié)合熱處理的方法分別制備了直徑為25 nm、長度大于100 μm的Fe,Co和Ni金屬纖維。
2.1.2 金屬纖維多孔材料的燒結(jié)
目前金屬纖維的燒結(jié)方法主要有固相燒結(jié)和液相燒結(jié)兩種。固相燒結(jié)技術(shù)是將金屬纖維制成一定形狀和尺寸的壓坯后,在真空或還原性氣氛保護(hù)、處于熔點(diǎn)以下的條件下直接燒結(jié)成形,該方法具有易操作、成本低、技術(shù)成熟等特點(diǎn),廣泛應(yīng)用于制備金屬纖維多孔材料。Pan等[13]為研究燒結(jié)溫度和燒結(jié)時(shí)間對燒結(jié)成形的影響,使用多齒工具定向切割銅纖維,經(jīng)模壓成型后,采用固相燒結(jié)技術(shù)得到孔隙率為80%的銅纖維氈。研究表明,銅纖維在800 ℃下燒結(jié)60 min可以產(chǎn)生燒結(jié)頸,使纖維緊密連接在一起,并保持纖維表面的粗糙微結(jié)構(gòu),獲得最佳拉伸性能。由于高溫固相燒結(jié)制備的金屬纖維多孔材料比表面積較低,Tang等[14]采用低溫固相燒結(jié)技術(shù)制備了一種具有復(fù)雜表面形貌及高比表面積(>0.2 m2·g-1)的新型金屬纖維多孔材料。
液相燒結(jié)技術(shù)是向金屬纖維中添加一種或多種低熔點(diǎn)組分,壓坯后進(jìn)行燒結(jié),此時(shí)燒結(jié)溫度介于低熔點(diǎn)和高熔點(diǎn)成分的燒結(jié)溫度之間,燒結(jié)過程中通過產(chǎn)生液相實(shí)現(xiàn)纖維間的冶金結(jié)合。該方法尤其適用于制備高熔點(diǎn)金屬纖維多孔材料,其結(jié)合強(qiáng)度更高,結(jié)構(gòu)更穩(wěn)定,但受到材料熔點(diǎn)、表面能和潤濕性的限制。Yu等[15]將Fe3P和Cu粉末按一定比例與短鑄鐵纖維混合并在氨氣氣氛下燒結(jié),發(fā)現(xiàn)在燒結(jié)過程中磷液相可以很好地潤濕短鑄鐵纖維,液相通過毛細(xì)管作用迅速分布在短鑄鐵纖維之間,增強(qiáng)燒結(jié)過程中短鑄鐵纖維的致密化過程,提高燒結(jié)體的徑向抗壓強(qiáng)度和硬度。Markaki等[16]在不銹鋼短纖維上添加銅涂層,利用高溫使銅液化,通過毛細(xì)作用將其驅(qū)動(dòng)到纖維之間的接合處,液相燒結(jié)形成孔隙率高達(dá)85%、斷裂能高于1 kJ·m-2的不銹鋼燒結(jié)氈。
組織工程因其有望實(shí)現(xiàn)組織再生、器官恢復(fù)或增強(qiáng)其功能等特點(diǎn),在過去的幾十年中受到了廣泛關(guān)注,纖維多孔結(jié)構(gòu)可以提供組織支撐及細(xì)胞附著增殖模板,并刺激體內(nèi)新組織形成[17]。新型增材制造技術(shù)即3D纖維沉積法,是Landers和Mülhaup在熔融沉積成型法的基礎(chǔ)上開發(fā)而來的,其原理是將計(jì)算機(jī)輔助設(shè)計(jì)(CAD)與計(jì)算機(jī)輔助制造(CAM)結(jié)合,在氮?dú)鈿夥毡Wo(hù)下將熔融金屬粉末從噴嘴擠出,通過逐層定向沉積形成金屬纖維多孔材料,如圖1所示[18]。熔融粉末在噴嘴的流速可以用Hagen-Poiseuille公式[19]表示:
(1)
上式表明流速(Q)與壓力梯度(Δp)成正比,與細(xì)管長度(l)、熔融粉末粘度(η)成反比。流速過快會(huì)導(dǎo)致纖維過度沉積,孔隙率降低;流速過慢則會(huì)使纖維直徑減小,影響纖維多孔結(jié)構(gòu)的力學(xué)性能。該技術(shù)可以制造出纖維直徑、厚度、孔結(jié)構(gòu)和纖維取向不同的多孔材料,且生產(chǎn)成本低、效率高,表面精度高,不需要支撐材料,但其定向沉積過程易導(dǎo)致金屬纖維多孔材料具有各向異性。
圖1 3D纖維沉積法裝置示意圖[16]Fig.1 Schematic of 3D fiber deposition device[16]
通過改變?nèi)炌紫督Y(jié)構(gòu)和比表面積可以控制骨細(xì)胞和礦物質(zhì)的代謝交換速率,Li等[20, 21]利用3D纖維沉積法改變纖維間距和纖維取向,制備出具有不同結(jié)構(gòu)的鈦合金支架,并將其植入山羊腰椎。研究表明,纖維間距對鈦合金支架的孔隙率、孔徑、抗壓強(qiáng)度及彈性模量有顯著影響,鈦合金支架孔隙率、孔徑及滲透性的增加會(huì)對骨傳導(dǎo)性能產(chǎn)生積極影響,3D纖維沉積法生產(chǎn)的鈦合金支架可以更好地模擬天然骨的結(jié)構(gòu)和性質(zhì),滿足骨移植替代品、骨科和牙科植入物的需求。
隨著國家對環(huán)境污染控制的重視,過濾理論和過濾材料在不斷的研究和發(fā)展中。金屬纖維多孔材料的孔隙率可達(dá)90%以上,孔徑貫通,便于捕捉和阻礙流體介質(zhì)中的固體顆粒和懸浮物,起到過濾作用。相比于傳統(tǒng)粉末和絲網(wǎng)過濾材料,金屬纖維多孔材料具有強(qiáng)度高、孔道均勻穩(wěn)固、比表面積和容塵量大、流通能力大、過濾精度高、使用壽命長、透氣性好和毛細(xì)管功能等特點(diǎn),適用于高溫、腐蝕等惡劣環(huán)境,主要應(yīng)用于潔凈煤、高溫煤氣除塵、生物能源、焦質(zhì)催化轉(zhuǎn)化和柴油車尾氣粒物捕集等領(lǐng)域[22, 23]。
Klouda等[24]研究了高速氣流下金屬纖維過濾器的過濾效率,結(jié)果表明:氣溶膠粒子會(huì)被吸附到金屬纖維上(如圖2),不同性質(zhì)的氣溶膠粒子沉積效率不同,其中粒徑大于1 μm的酸性氣溶膠粒子沉積效率接近100%。Seok等[25]研究了干燥粉塵顆粒在金屬纖維過濾器中的過濾特性,指出孔徑減小會(huì)使過濾效率顯著增加,而纖維直徑的增加會(huì)導(dǎo)致粉塵顆粒沉積面積增大,從而改善過濾效率。侯力強(qiáng)等[26]研究了316L不銹鋼纖維氈在高溫除塵中的應(yīng)用,確定絲徑為5 μm的金屬纖維氈在高溫除塵過程中服役時(shí)間最長,其對粒徑大于5 μm的粉塵過濾效率可達(dá)100%。
圖2 金屬纖維上沉積的氣溶膠粒子的SEM照片[24]Fig.2 SEM image of the aerosol particles deposited on metal fibers[24]
金屬纖維多孔材料是一種新型吸聲材料,主要通過粘性和熱效應(yīng)吸聲。其具有低密度、高比剛度、高強(qiáng)度、耐高溫性能和優(yōu)異的機(jī)械性能,尤其適用于高溫、強(qiáng)烈振動(dòng)和高濕度等惡劣環(huán)境[27]。鋁纖維吸聲板已經(jīng)用于游泳館、演播廳、高速公路、機(jī)場道路、軌道交通和其他潮濕地下區(qū)域的吸聲。
敖慶波等[28]通過不同燒結(jié)方式制備了厚度為1~30 μm的不銹鋼纖維多孔材料,研究表明,采用相對壓制、定位燒結(jié),松裝燒結(jié)法制備的材料具有梯度孔結(jié)構(gòu),吸聲性能最好;對于不同厚度的不銹鋼纖維多孔材料,均存在一個(gè)使得吸聲性能最好的最佳孔隙率。張俊等[29]研究了在高溫環(huán)境下具有梯度結(jié)構(gòu)的多孔金屬纖維的吸聲性能,將Johnson-Allard吸聲理論模型拓展到高溫條件下并建立了梯度多孔金屬纖維的高溫吸聲理論模型。通常,基于聲吸附原理,高頻多孔材料的吸聲性能遠(yuǎn)高于低頻多孔材料。提高材料厚度是提高吸音率的有效方法之一,但由于成本和安裝空間的限制,多孔材料的厚度在實(shí)際應(yīng)用中不能無限增加。為了改善低頻吸聲,Chen等[30]提出了一種適用于多層金屬纖維多孔材料的分析模型,通過優(yōu)化孔分布幾何參數(shù),研究了表面孔隙率分別為69.1%,81.4%,91.1%和 93.3%的金屬纖維多孔材料的平均吸聲系數(shù),發(fā)現(xiàn)表面孔隙率會(huì)對纖維材料的吸聲性能產(chǎn)生顯著影響(表1)。
表1 不同孔隙率的金屬纖維多孔材料的平均吸聲系數(shù)[30]
人體硬組織發(fā)生病變或損傷時(shí),為了恢復(fù)原有功能,需要用承力的骨植入材料替換病變或損傷部位,以修復(fù)原有組織。傳統(tǒng)的生物相容性最好的骨植入金屬材料為鈦及鈦合金,但致密鈦和鈦合金的強(qiáng)度和模量與實(shí)際骨骼不匹配,載荷不能很好地由植入體傳至骨組織,產(chǎn)生應(yīng)力屏蔽現(xiàn)象,造成植入體周圍出現(xiàn)骨吸收,最終導(dǎo)致植入體松動(dòng)或斷裂[31]。生物用多孔鈦可通過控制孔隙率來調(diào)節(jié)自身強(qiáng)度和彈性模量以匹配人體骨組織,相比于纖維制備的多孔鈦,粉末制備的多孔鈦由于粉末自身的孔洞缺陷,如圖3所示,孔壁上大量的微孔誘發(fā)裂紋,使骨組織不能長滿孔隙。
圖3 具有典型缺陷的TC4粉末的SEM照片F(xiàn)ig.3 SEM image of TC4 powder with typical defects
鄒鶉鳴等[32]制備了孔隙率為29%~84%的螺旋結(jié)構(gòu)鈦纖維多孔材料,如圖4所示,經(jīng)表面仿生處理后鈦纖維表面均被類骨磷灰石所覆蓋,其中孔隙率為55%和60%的多孔鈦力學(xué)性能與自然骨的最為相近。王南翔等[33]在自體微小顆粒骨中添加不同比例鈦纖維多孔材料以修復(fù)兔橈骨骨缺損。研究表明,自體微小顆粒骨中加入一定量的鈦纖維多孔材料可以修復(fù)骨缺損,且可以減少自體微小顆粒骨用量,其中鈦纖維多孔材料與自體微小顆粒骨復(fù)合質(zhì)量比為1∶20時(shí),在體內(nèi)成骨的愈合情況良好,力學(xué)性能最佳。李寶權(quán)等[34]研究了兔骨髓間充質(zhì)干細(xì)胞在不同直徑的鈦纖維多孔材料上的粘附及增殖現(xiàn)象,研究表明,鈦纖維多孔材料具有較好的生物相容性,有利于組織細(xì)胞的粘附,可以觀察到細(xì)胞在直徑為90 μm的鈦纖維多孔材料上生長良好、連接緊密。金屬纖維多孔材料作為人工生物材料植入人體后,蛋白質(zhì)分子立刻吸附到其表面,該行為決定和影響了材料的生物相容性和靶分子的吸附效率。沈湘黔[35]采用有機(jī)凝膠-熱還原法制備了多孔α-Fe微米纖維,發(fā)現(xiàn)其具有良好的牛血清白蛋白吸附性能,可將其用于蛋白質(zhì)的分離純化。
圖4 多孔鈦纖維材料的SEM照片[32]Fig.4 SEM image of the porous titanium fiber materials[32]
換熱設(shè)備是能源轉(zhuǎn)換、傳遞、存儲(chǔ)和利用的關(guān)鍵,金屬纖維多孔材料不僅能滿足基本的換熱性能要求,而且因孔隙內(nèi)強(qiáng)制對流換熱,具有高熱傳導(dǎo)系數(shù)、高比表面積、體積微型化以及降低成本等優(yōu)點(diǎn),被應(yīng)用于熱交換器、微電子、表面燃燒器等領(lǐng)域[36]。目前市場上換熱元件多為紫銅和不銹鋼多孔材料。
為揭示金屬纖維多孔材料結(jié)構(gòu)參數(shù)對傳熱性能的影響,黃金印等[37]研究了不同孔隙率的紫銅纖維氈在去離子水中的池沸騰換熱性能,發(fā)現(xiàn)隨著孔隙率的增加,氣泡從纖維氈表面脫離更容易, 相同熱通量下的汽化核心密度降低。支浩等[38]采用燒結(jié)法制備沸騰換熱用不銹鋼纖維多孔表面換熱管,實(shí)現(xiàn)了孔隙率的精準(zhǔn)控制,發(fā)現(xiàn)當(dāng)過熱度小于20 ℃時(shí),孔隙率小于90%的金屬纖維多孔表面換熱管的換熱性能比光管好。鈦也被用于換熱元件,雖然鈦的導(dǎo)熱系數(shù)比銅和不銹鋼低,但由于鈦耐腐蝕且材料表面與蒸汽的換熱方式為滴狀冷凝,所以在減薄零件壁厚的同時(shí)降低了熱阻,使其換熱性能顯著提高。Liu等[39]研究發(fā)現(xiàn)孔隙率是影響鈦纖維多孔材料傳熱性能的重要因素,其中孔隙率為50%的鈦纖維多孔材料的傳熱性能最佳。
大功率推進(jìn)裝置、離心機(jī)、渦輪機(jī)等裝備由于工作過程中劇烈的流體摩擦,會(huì)引起運(yùn)行精度下降、效能降低以及結(jié)構(gòu)疲勞損傷等一系列問題。金屬纖維多孔材料由于其本身具有貫通的孔隙結(jié)構(gòu),在發(fā)生變形時(shí)能起到緩沖吸能的作用,從而使裝置內(nèi)部的破壞程度減小。喬吉超等[40]通過研究不同孔隙率不銹鋼纖維多孔材料的壓縮性能,發(fā)現(xiàn)隨著孔隙率的降低,多孔材料的能量吸收能力越來越強(qiáng)。為了表征金屬纖維多孔材料無序孔結(jié)構(gòu)和壓縮性能的關(guān)系,劉世鋒等[41]借助ABAQUS軟件建立了多種三維模型,對鈦纖維多孔材料的壓縮性能進(jìn)行了有限元模擬,確定了不同結(jié)構(gòu)參數(shù)的影響,并發(fā)現(xiàn)孔數(shù)量最多處會(huì)優(yōu)先發(fā)生塑性變形。
金屬纖維多孔材料除了在上述領(lǐng)域應(yīng)用外,還因其具有良好的導(dǎo)電性、特有的微波信號、可調(diào)的彈性模量、低熱容和高熱導(dǎo)率等優(yōu)點(diǎn),在電磁屏蔽、防偽材料、電極材料、催化劑載體及發(fā)汗材料等領(lǐng)域具有廣闊的應(yīng)用前景。
金屬纖維多孔材料既有金屬纖維的導(dǎo)電、導(dǎo)熱、耐蝕及高強(qiáng)等優(yōu)點(diǎn),也有多孔材料孔隙率高(>70%)、孔徑自由度高、孔隙結(jié)構(gòu)可設(shè)計(jì)等優(yōu)點(diǎn),是一種兼具功能和結(jié)構(gòu)雙重屬性的新型輕質(zhì)材料。以往的研究方向都聚焦在金屬纖維的制備、金屬纖維多孔材料的燒結(jié)以及其在過濾分離、吸聲降噪等領(lǐng)域中的應(yīng)用問題。隨著工業(yè)的進(jìn)步和科技的發(fā)展,增材制造因無模具、直接快速及近凈成型等特點(diǎn)被廣泛應(yīng)用于生物用金屬纖維多孔材料的研發(fā)中。但在金屬纖維多孔材料在工業(yè)化生產(chǎn)過程中如何控制產(chǎn)品缺陷并及時(shí)反饋卻被忽視,如何在滿足金屬纖維多孔材料特殊孔結(jié)構(gòu)的同時(shí),建立優(yōu)化理論模型和實(shí)際數(shù)據(jù)的關(guān)聯(lián)關(guān)系是目前需要關(guān)注的方向。