• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      食品質(zhì)量安全非靶向篩查技術(shù)研究進展

      2019-12-09 01:53:17王磊董燕婕范麗霞梁京蕓苑學霞趙善倉
      山東農(nóng)業(yè)科學 2019年10期
      關(guān)鍵詞:核磁共振質(zhì)量安全質(zhì)譜

      王磊 董燕婕 范麗霞 梁京蕓 苑學霞 趙善倉

      摘要:食品中存在的污染物部分是已知的,部分是未知的。為確保食品質(zhì)量安全,非針對性的篩查技術(shù)是必要的。非靶向篩查主要有兩種分析策略,包括非靶向代謝組學和可以用于篩選食品基質(zhì)中未知污染物的化學數(shù)據(jù)庫。本文概述了當前樣品制備、基于分析化學的技術(shù)和數(shù)據(jù)分析以及采用非靶向檢測方法分析復雜食品基質(zhì)的局限性和挑戰(zhàn)。

      關(guān)鍵詞:食品;非靶向篩查;質(zhì)量安全;質(zhì)譜;核磁共振

      中圖分類號:TS201.6-1文獻標識號:A文章編號:1001-4942(2019)10-0167-06

      Research Development of Non-Targeted Screening Techniques

      for Food Quality Safety

      Wang Lei, Dong Yanjie, Fan Lixia, Liang Jingyun, Yuan Xuexia,

      Zhao Shancang

      (Institute of Quality Standards and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences/

      Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China)

      Abstract Some of the contaminants in food were known, while some were unknown, so non-targeted work flows for chemical hazard analyses were highly desirable in food safety and integrity fields to ensure human health. Two different analytical strategies, non-targeted metabolomics and chemical database filtering, could be used to screen unknown contaminants in food matrices. In this paper, an overview was provided in the current sample preparation, analytical chemistry-based techniques and data analysis, as well as the limitations and challenges of non-targeted detection methods for analyzing complex food matrices.

      Keywords Food; Non-targeted screening; Quality safety; Mass spectrometry; Nuclear magnetic resonance

      食品生產(chǎn)過程中違規(guī)違法使用的農(nóng)獸藥和非法添加物非常復雜,可能是確切的一種或一類化學物質(zhì),也可能是尚未被監(jiān)測到的、不在食品質(zhì)量安全監(jiān)管范圍內(nèi)的組分或其他化學物質(zhì)。目前常用的食品質(zhì)量安全檢測技術(shù)往往側(cè)重于已知的污染物,但對未知的污染物無法進行有效篩查及鑒別[1-3]。隨著現(xiàn)代化學工業(yè)的發(fā)展,越來越多的合成化學物質(zhì)應運而生。食品安全標準所涵蓋的目標化學物質(zhì)不到1 000個,這只是現(xiàn)有化學物質(zhì)的冰山一角。因此,未來的食品安全控制必須實施非靶向篩查的方法以實現(xiàn)食品成分和未知化合物的無偏差檢測。

      非靶向篩查旨在識別食品基質(zhì)中未知的化學物質(zhì)。廣義的非靶向篩查是指根據(jù)組學方法(如代謝組學、蛋白質(zhì)組學等)篩選未知的化學危害物并識別食品中化學成分的差異[2,4]。狹義的非靶向篩查則指利用已建立的化學危害物數(shù)據(jù)庫鑒別污染物[5]。雖然狹義的非靶向篩查數(shù)據(jù)庫中的化學物質(zhì)是已知的,但篩查的污染物是未知的,其實用性取決于數(shù)據(jù)庫的大小。廣義的非靶向篩查可以使用先進的分析技術(shù)篩選可能的化學危害物。高分辨率質(zhì)譜(HRMS)技術(shù)的進步使代謝組學能夠?qū)崿F(xiàn)非靶向篩查的目的,從而能夠以無偏差的方式檢測危害物[6,7]。非靶向檢測方法結(jié)合相應的化學計量學工具,增加了傳統(tǒng)靶向分析的廣度,加速了其應用的新前景[8,9]。針對當前食品的真實性、質(zhì)量和安全性問題,非靶向篩查正逐漸成為促進食品安全監(jiān)測從被動檢測到主動預防、識別新出現(xiàn)風險的有效手段。

      本研究對目前使用的食品質(zhì)量安全污染物的非靶向篩查技術(shù)進行梳理,分析樣品制備和基于分析化學的技術(shù)以及復雜食品基質(zhì)的非靶向檢測方法的局限性和挑戰(zhàn)性,并展望當前的研究和作為食品安全和完整性可靠工具的非靶向檢測的前景。

      1 前處理方法

      非靶向篩查需要從復雜的食品基質(zhì)中提取大量的化學物質(zhì)[10-12]。食品中非靶向篩查的樣品制備與傳統(tǒng)的靶向分析方法基本一致,主要區(qū)別在于樣品或提取物的分離純化程度。常見的提取方法包括固-液萃取[6,13]、液-液萃取[2,14]、固相微萃?。⊿PME)[15,16]以及QuEChERS[17,18]。上述方法各有優(yōu)點,但也存在著分析時間長、操作困難、使用有毒有機溶劑、選擇性低、萃取裝置昂貴和儀器性能壽命短等局限性。

      非靶向篩查中使用的分析方法在減少復雜基質(zhì)效應方面具有高度選擇性,同時還需要同時檢測食品中不同濃度的各種污染物,因此,減少基質(zhì)效應是非靶向篩查的重要指標。基于新型吸附材料的樣品純化可以減少樣品處理,成為無靶向篩查的趨勢。目前,分子印跡聚合物(如碳納米管和金屬-有機骨架)已成功應用于食品分析中[19,20]。由金屬-有機骨架(MOF)衍生的空心碳納米管組成的新型涂層材料由于其獨特的組成和結(jié)構(gòu)類型、可調(diào)的孔徑和大的表面積等特點,常被用于固相微萃取的樣品制備中[21,22]。Lin等[23]采用MOF-5(鐵)涂層攪拌棒吸附萃取結(jié)合氣相色譜-質(zhì)譜(GC-MS)測定魚樣品中的多氯聯(lián)苯。Liu等[24]獲得了兩種由鋁基MOF制成的免疫傳感器,對嘔吐毒素和沙丁胺醇的檢測限分別為0.70、0.40 pg/mL,靈敏度高?;贛OF的樣品制備方法靈敏度高、選擇性好、操作簡單,具有快速、簡便檢測食品化學危害的潛力。但MOF也存在相應的缺點,一些MOF的水穩(wěn)定性較差,結(jié)構(gòu)在溶液中容易坍塌。MOF中存在的結(jié)構(gòu)缺陷限制了MOF作為吸附劑的應用[25,26]。

      2 儀器分析方法

      用于非靶向檢測的分析技術(shù)主要包括氣相色譜串聯(lián)質(zhì)譜(GC-MS)、液相色譜-質(zhì)譜(LC-MS)、核磁共振(NMR)、毛細管電泳-質(zhì)譜(CE-MS)和其他基于光譜的技術(shù)[27]。每一種分析技術(shù)都有其優(yōu)點和局限性[28](表1),可根據(jù)檢測目的和樣品性質(zhì)確定首選方法。如今,由于質(zhì)譜技術(shù)的高選擇性和高通量,基于質(zhì)譜的篩查技術(shù)占主導地位。非靶向檢測的數(shù)據(jù)分析包括構(gòu)建不同的識別數(shù)據(jù)庫、開發(fā)數(shù)據(jù)搜索工具、利用統(tǒng)計模型和數(shù)據(jù)挖掘以及復合識別?;瘜W計量學方法已經(jīng)應用于食品分析,使用了如主成分分析(PCA)和多元統(tǒng)計分析等多種方法。

      2.1 氣相色譜-質(zhì)譜法

      GC-MS已廣泛應用于分析食品中揮發(fā)物質(zhì)和非揮發(fā)物質(zhì)衍生物的檢測,是一種強大的非靶向篩選工具[5,7,29-31]。氣相色譜-飛行時間質(zhì)譜法(GC-TOF-MS)具有檢測速度快、全掃描采集靈敏度高、反褶積和識別效率高的優(yōu)點,可以通過非靶向和靶向篩查獲得大量的分析信息。在GC-MS色譜分離中,食品中的化學危害物或代謝物特征大多需要衍生化以提高其在色譜柱中的保留能力。電子離子化技術(shù)(EI)幾乎可分離任何有機化合物,且具有穩(wěn)定性和可重復性,是迄今為止最廣泛使用的基于GC-MS的篩查方法。二維氣相飛行時間質(zhì)譜(GC×GC-TOF-MS)是目前檢測復雜環(huán)境混合物中有機物的通用工具。與GC-MS相比,GC×GC-TOF-MS具有更高的峰容量、靈敏度和選擇性,可以縮小或者識別感興趣的分析物。然而,GC×GC-TOF-MS產(chǎn)生的分析數(shù)據(jù)量大是其主要瓶頸[32,33]。

      高分辨率數(shù)據(jù)庫是非靶向篩選的基礎[34,35]。在非靶向農(nóng)藥檢測中,Li等[36]建立了439種農(nóng)藥的GC-TOF-MS內(nèi)部精確質(zhì)量數(shù)據(jù)庫和質(zhì)譜光譜庫。Zhang等[37]利用GC-TOF-MS建立了187種不同化學成分農(nóng)藥的數(shù)據(jù)庫,以快速篩選蔬菜中的農(nóng)藥殘留。該數(shù)據(jù)庫包含了每種農(nóng)藥的MS和MS-MS光譜中離子的保留時間和有效質(zhì)量。通過化學式匹配對可能的農(nóng)藥進行MS篩選,利用MS-MS光譜可以通過準確的質(zhì)量測定對產(chǎn)物離子進行結(jié)構(gòu)確認。

      2.2 液相色譜-質(zhì)譜法

      由于高分辨率和高質(zhì)量精度,HRMS是一種有效的非靶向篩查分析技術(shù)[38]。典型的HRMS技術(shù)利用飛行時間質(zhì)譜(TOF)和軌道阱質(zhì)譜技術(shù)。TOF/MS和代謝組學方法被用來篩查食品樣品中的有害化合物并確證其可能存在的污染物[13,39]。基于精確質(zhì)量測量的食品中植物毒素和農(nóng)藥殘留篩選的軌道阱質(zhì)譜新技術(shù)已見報道[40,41]。軌道阱質(zhì)譜技術(shù)在分析食品中的生物活性物質(zhì)和新型污染物,尤其是酚類化合物方面,具有巨大優(yōu)勢[42]。廣義的非靶向篩查通常需要兩次補充色譜運行,以達到最大的化合物覆蓋率。串聯(lián)相互作用液相色譜(HILIC LC)可增加不同類型復雜食品樣品非靶向篩選的極性覆蓋率[43]。

      代謝組學方法已被證明是提供有價值的食品質(zhì)量和安全應用的重要工具。在靶向篩查中,代謝組學數(shù)據(jù)被掃描以尋找通常在數(shù)據(jù)庫中識別的特定化合物。但是,在非靶向篩查中,沒有可以識別的代謝產(chǎn)物潛在化合物的光譜數(shù)據(jù)。因此非靶向篩查中需借用相應處理工具進行數(shù)據(jù)處理,目前較常用的免費軟件工具有XCMS和MZmine2等[44]。

      通過從HRMS數(shù)據(jù)中生成分子式來識別化合物需要龐大的數(shù)據(jù)庫,現(xiàn)有數(shù)據(jù)庫有兩種類型:MS掃描數(shù)據(jù)庫和MS-MS掃描數(shù)據(jù)庫[45-47]。MS掃描數(shù)據(jù)庫包含化合物的準確質(zhì)量和含量,其優(yōu)點是建立過程方便快捷,缺點是誤報概率高。MS-MS掃描數(shù)據(jù)庫是目前主流的數(shù)據(jù)庫形式。通過比較未知化合物和純標準化合物的MS-MS光譜,可以獲得化合物的同一性,并通過使用預測的液相色譜-質(zhì)譜梯度運行的保留時間進行進一步確認。Pang等[48]開發(fā)了485種農(nóng)藥的LC-TOF-MS精確質(zhì)量數(shù)據(jù)庫和光譜庫。Wang等[49]使用Q-Orbitrap全MS和MS-MS掃描模式構(gòu)建了11類獸藥的化合物數(shù)據(jù)庫和質(zhì)譜庫。

      2.3 核磁共振

      作為一種多用途的食品分析工具,核磁共振能夠快速同時檢測大量化合物,提供定性和可重復的定量信息,并避免過度的樣品預處理。核磁共振與多變量統(tǒng)計分析技術(shù)相結(jié)合被認為是確定食品質(zhì)量和溯源的有力工具[50,51]。盡管核磁共振技術(shù)的靈敏度很低,但具有分析時間短、結(jié)果可重復、無損分析和高通量特性等優(yōu)點,尤其是當沒有公開的數(shù)據(jù)庫可以鑒定時,核磁共振可以提供分析物的結(jié)構(gòu)信息。在非靶向篩查中,核磁共振可以通過獨特的化學位移與數(shù)據(jù)庫的比對進行化合物的鑒定;同時可以通過分子的立體化學來識別化合物的結(jié)構(gòu)。

      2.4 毛細管電泳-質(zhì)譜

      毛細管電泳為食品中混合物提供了一個高效的分離平臺,尤其是樣品量較小的情況下。毛細管電泳-質(zhì)譜可提高單個分析中可同時評估的分析物數(shù)量[52]。CE-MS是代謝組學研究的理想工具,由于其無需過多的樣品制備,具有高效率和分辨率、低樣品消耗的優(yōu)點。許多綜述討論了CE-MS技術(shù)在食品非靶向篩查中的應用[53,54],包括檢測轉(zhuǎn)基因生物[55]和食品中的核苷和核酸[56],以及新出現(xiàn)的食品安全問題和食品可追溯性方面的污染物分析。

      2.5 基于光譜學的其他技術(shù)

      拉曼光譜法、傅立葉變換紅外光譜法(FT-IR)和近紅外光譜法(FT-NIR)也被應用于食品真實性和故意摻假的非靶向篩查中[57,58]。與其他技術(shù)相比,F(xiàn)T-NIR光譜法具有樣品處理簡單、成本低、樣品量大、分析方法快速、可靠等優(yōu)點。表面增強拉曼光譜(SERS)是一種基于拉曼散射和表面增強機制的高靈敏度分析技術(shù)。SERS可以提供分析物的指紋信息,同時也被認為是一種超靈敏的無標簽檢測方法[59]。更重要的是,SERS的發(fā)射帶較窄,在復雜樣品中具有很大的優(yōu)勢。Wu等[60]采用溶劑驅(qū)動自組裝金納米粒子(AuNPs),快速、靈敏地檢測具有SER的不同商業(yè)產(chǎn)品中的食品添加劑。目前,食品樣品非靶向篩選的SER尚處于探索的初始階段。最近在光學設計、熱電制冷和化學計量學軟件方面的突破可能會加速其在非靶向篩查中的應用。

      3 結(jié)論和展望

      本研究對食品安全非靶向篩查中的樣品制備、樣品分析和數(shù)據(jù)處理進行了梳理。非靶向篩查的最大優(yōu)點是檢測異常樣本而不識別所有峰值。食品安全的非靶向篩查技術(shù)還需要進一步降低檢出限、提高其靈敏度和特異性,尤其是便攜式儀器的小型化以及樣品制備步驟的簡單化。使用昂貴儀器的高分辨質(zhì)譜對于縮小未知化合物的可能識別列表至關(guān)重要。代謝組學方面,急需不需樣品制備即可利用質(zhì)譜界面獲取特定分子空間分布信息的技術(shù),基質(zhì)輔助激光解吸電離成像質(zhì)譜(MALDI-MS)可用來分析組織和單細胞水平的代謝物或蛋白質(zhì)。MALDI-MS為非靶向篩查中污染物的早期檢測提供可能。樣品前處理技術(shù)和分析平臺將提高食品質(zhì)量和安全研究的相關(guān)性。數(shù)據(jù)分析和復合識別是食品基質(zhì)非目標篩選分析的瓶頸,可以通過開發(fā)先進的數(shù)據(jù)處理工具和綜合的MS或MS數(shù)據(jù)庫加以改進。

      參 考 文 獻:

      [1]Abbas O, Zadravec M, Baeten V, et al. Analytical methods used for the authentication of food of animal origin[J]. Food Chem., 2018, 246:6-17.

      [2]Kunzelmann M, Winter M, Aberg M, et al. Non-targeted analysis of unexpected food contaminants using LC-HRMS[J]. Anal. Bioanal. Chem., 2018, 410:5593-5602.

      [3]Ortiz X, Korenkova E, Jobst K J, et al. A high throughput targeted and nontargeted method for the analysis of microcystins and anatoxin-A using online solid phase extraction coupled to liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry[J]. Anal. Bioanal. Chem., 2017, 409:4959-4969.

      [4]Shepherd L V,F(xiàn)raser P,Stewart D.Metabolomics:a second-generation platform for crop and food analysis[J].Bioanalysis, 2011,3:1143-1159.

      [5]Hakme E, Lozano A, Gomez-Ramos M M,et al. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry[J]. Chemosphere, 2017, 184:1310-1319.

      [6]Bueno M J M, Diaz-Galiano F J, Rajski L, et al. A non-targeted metabolomics approach to identify food markers to support discrimination between organic and conventional tomato crops[J]. J. Chromatogr. A, 2018, 1546: 66-76.

      [7]Johanningsmeier S D, Harris G K, Klevorn C M. Metabolomic technologies for improving the quality of food: practice and promise[J]. Annu. Rev. Food Sci. Technol.,2016,7:413-438.

      [8]García-Caas V, Simó C, Herrero M, et al. Present and future challenges in food analysis: foodomics[J]. Anal. Chem., 2012, 84: 10150-10159.

      [9]Ibáez C, Simó C, García-Caas V, et al. The role of direct high-resolution mass spectrometry in foodomics[J]. Anal. Bioanal. Chem., 2015, 407: 6275-6287.

      [10]Fu Y Q, Zhou Z H, Kong H W, et al. Nontargeted screening method for illegal additives based on ultrahigh-performance liquid chromatography-high-resolution mass spectrometry[J]. Anal. Chem., 2016, 88: 8870-8877.

      [11]Knolhoff A M, Croley T R. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry[J]. J. Chromatogr. A, 2016, 1428:86-96.

      [12]Rmisch-Margl W, Prehn C, Bogumil R, et al. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics[J]. Metabolomics, 2011,8:133-142.

      [13]Tengstrand E, Rosen J, Hellenas K E, et al. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach[J]. Anal. Bioanal. Chem., 2013, 405:1237-1243.

      [14]Kalogiouri N P, Aalizadeh R, Thomaidis N S. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classifcation of the Greek olive oil varieties[J]. Food Chem., 2018, 256:53-61.

      [15]Hu X R,Wang C H,Li J S,et al.Metal-organic framework-derived hollow carbon nanocubes for fast solid-phase microextraction of polycyclic aromatic hydrocarbons[J]. ACS Appl. Mater. Interfaces, 2018, 10: 15051-15057.

      [16]Celeiro M, Facorro R, Dagnac T, et al. Simultaneous determination of trace levels of multiclass fungicides in natural waters by solid-phase microextraction-gas chromatography-tandem mass spectrometry[J]. Anal. Chim. Acta, 2018, 1020: 51-61.

      [17]Baduel C, Mueller J F, Tsai H, et al. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices[J]. J. Chromatogr.A,2015,1426(24):33-47.

      [18]Lei H Y,Guo J B,Lv Z,et al. Simultaneous determination of nitroimidazoles and quinolones in honey by modifed QuEChERS and LC-MS/MS analysis[J]. Int. J. Anal. Chem., 2018: 4271385.

      [19]Garcia R, Cabrita M J, Costa Freitas A M. Application of molecularly imprinted polymers for the analysis of pesticide residues in food—a highly selective and innovative approach[J]. Am. J. Anal. Chem,2011,2:16-25.

      [20]Maier N M, Buttinger G, Welhartizki S, et al. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations[J]. J. Chromatogr. B, 2004, 804:103-111.

      [21]Shi X R, Chen X L, Hao Y L, et al. Magnetic metal-organic frameworks for fast and effcient solid-phase extraction of six Sudan dyes in tomato sauce[J]. J. Chromatogr. B, 2018, 1086: 146-152.

      [22]Vikrant K, Tsang D C W, Raza N, et al. Potential utility of metal-organic framework-based platform for sensing pesticides[J]. ACS Appl. Mater. Interfaces, 2018, 10: 8797-8817.

      [23]Lin S C, Gan N, Qiao L, et al, Magnetic metal-organic frameworks coated stir bar sorptive extraction coupled with GC-MS for determination of polychlorinated biphenyls in fish samples[J]. Talanta, 2015, 144:1139-1145.

      [36]Li J X, Li X Y, Chang Q Y, et al. Screening of 439 pesticide residues in fruits and vegetables by gas chromatography–quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and Q-TOF spectrum library[J]. J. AOAC Int., 2018, 101: 1631-1638.

      [37]Zhang F, Yu CT, Wang WW, et al. Rapid simultaneous screening and identifcation of multiple pesticide residues in vegetables[J]. Anal. Chim. Acta, 2012, 757: 39-47.

      [38]Knolhoff A M, Zweigenbaum J A, Croley T R. Nontargeted screening of food matrices: development of a chemometric software strategy to identify unknowns in liquid chromatography-mass spectrometry data[J]. Anal. Chem., 2016, 88: 3617-3623.

      [39]Inoue K, Tanada C, Hosoya T, et al. Principal component analysis of molecularly based signals from infant formula contaminations using LC-MS and NMR in foodomics[J]. J. Sci. Food Agric., 2016, 96: 3876-3881.

      [40]Hayward D G, Wong J W, Zhang K, et al. Multiresidue pesticide analysis in ginseng and spinach by nontargeted and targeted screening procedures[J]. J. AOAC Int., 2011, 94: 1741-1751.

      [41]Mol H G, Van Dam R C, Zomer P, et al. Screening of plant toxins in food, feed and botanicals using full-scan high-resolution (Orbitrap) mass spectrometry[J]. Food Addit. Contam. Part A, 2011, 28: 1405-1423.

      [42]Senyuva H Z, Gokmen V, Sarikaya E A. Future perspectives in Orbitrap-high-resolution mass spectrometry in food analysis: a review[J]. Food Addit. Contam. Part A, 2015, 32: 1568-1606.

      [43]Hemmler D,Heinzmann S S,Wohr K,et al.Tandem HILIC-RP liquid chromatography for increased polarity coverage in food analysis[J]. Electrophoresis, 2018, 39: 1645-1653.

      [44]Myers O D, Sumner S J, Li S, et al. Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data[J]. Anal. Chem., 2017, 89: 8689-8695.

      [45]Jia W, Chu X G, Chang J, et al. High-throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution Orbitrap mass spectrometry[J]. Anal. Chim. Acta, 2017, 957: 29-39.

      [46]Wang Z F, Jablonski J E. Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics[J]. Food Addit. Contam. Part A, 2016, 33: 560-573.

      [47]Zendong Z, McCarron P, Herrenknecht C, et al. High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers[J]. J. Chromatogr. A, 2015, 1416: 10-21.

      [48]Pang G F, Fan C L, Chang Q Y, et al. Screening of 485 pesticide residues in fruits and vegetables by liquid chromatography-quadrupole-time-of-flight mass spectrometry based on TOF accurate mass database and QTOF spectrum library[J]. J. AOAC Int., 2018, 101: 1156-1182.

      [49]Wang J, Leung D, Chow W, et al. Target screening of 105 veterinary drug residues in milk using UHPLC/ESI Q-Orbitrap multiplexing data independent acquisition[J]. Anal. Bioanal. Chem., 2018, 410: 5373-5389.

      [50]Maulidiani M, Mediani A, Abas F, et al. 1H NMR and antioxidant profles of polar and non-polar extracts of persimmon (Diospyros kaki L.): metabolomics study based on cultivars and origins[J]. Talanta, 2018, 184: 277-286.

      [51]Fan K, Zhang M. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology[J]. Crit. Rev. Food Sci. Nutr., 2018, 16: 1-12.

      [52]Acunha T, Ibáez C, Garcia-Caas V, et al. Recent advances in the application of capillary electromigration methods for food analysis and foodomics[J]. Electrophoresis, 2016, 37: 111-141.

      [53]Ibáez C, Acunha T, Valdes A, et al. Capillary electrophoresis in food and foodomics[J]. Methods Mol. Biol., 2016, 1483: 471-507.

      [54]Simó C, Cifuentes A, Kasicka V. Capillary electrophoresis-mass spectrometry for peptide analysis: target-based approaches and proteomics/peptidomics strategies[J]. Methods Mol. Biol., 2013, 984:139-151.

      [55]García-Villalba R, León C, Dinelli G, et al. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry[J].? J. Chromatogr. A, 2008, 1195: 164-173.

      [56]Mateos-Vivas M, Domínguez-lvarez J, Rodríguez-Gonzalo E, et al. Capillary electrophoresis coupled to mass spectrometry employing hexafluoro-2-propanol for the determination of nucleosides and nucleotide mono-, di- and tri-phosphates in baby foods[J]. Food Chem., 2017, 233: 38-44.

      [57]Karunathilaka S R, Kia A F, Srigley C, et al. Nontargeted, rapid screening of extra virgin olive oil products for authenticity using near-infrared spectroscopy in combination with conformity index and multivariate statistical analyses[J]. J. Food Sci., 2016, 81(10):C2390-C2397.

      [58]Botros L L, Jablonski J, Chang C, et al. Exploring authentic skim and nonfat dry milk powder variance for the development of nontargeted adulterant detection methods using nearinfrared spectroscopy and chemometrics[J]. J. Agric. Food Chem., 2013, 61: 9810-9818.

      [59]Liao W, Lu X N. Determination of chemical hazards in foods using surface-enhanced Raman spectroscopy coupled with advanced separation techniques[J]. Trends Food Sci. Technol., 2016, 54: 103-113.

      [60]Wu Y P, Yu W F, Yang B H, et al. Self-assembled two-dimensional gold nanoparticle film for sensitive nontargeted analysis of food additives with surface-enhanced Raman spectroscopy[J]. Analyst, 2018, 143: 2363-2368.

      收稿日期:2019-07-01;修回日期:2019-09-02

      基金項目:山東省農(nóng)業(yè)科學院農(nóng)業(yè)科技創(chuàng)新工程項目“山東主要農(nóng)產(chǎn)品質(zhì)量安全風險評估與控制技術(shù)”(CXGC2016B17)

      作者簡介:王磊(1977—),男,助理研究員,主要從事農(nóng)產(chǎn)品風險預警與控制技術(shù)研究。

      通訊作者:趙善倉(1972—),男,研究員,博士,主要從事農(nóng)產(chǎn)品質(zhì)量安全及營養(yǎng)研究工作。E-mail:shancangzhao@126.com

      猜你喜歡
      核磁共振質(zhì)量安全質(zhì)譜
      氣相色譜質(zhì)譜聯(lián)用儀在農(nóng)殘檢測中的應用及維護
      DSP在磁共振數(shù)據(jù)接收系統(tǒng)中的應用分析
      東方教育(2016年8期)2017-01-17 00:05:19
      陳舊性前交叉韌帶斷裂膝關(guān)節(jié)退變影像學研究
      農(nóng)產(chǎn)品質(zhì)量安全追溯系統(tǒng)的混合模式研究
      超聲檢查在類風濕關(guān)節(jié)炎診療中的研究進展
      農(nóng)產(chǎn)品質(zhì)量安全檢驗檢測體系建設的創(chuàng)新策略分析
      科技資訊(2016年18期)2016-11-15 20:45:23
      醫(yī)院核磁共振電子電子設備的日常維護
      我國農(nóng)產(chǎn)品農(nóng)藥殘留的困境
      吹掃捕集-氣相色譜質(zhì)譜聯(lián)用測定水中18種揮發(fā)性有機物
      棗霜化學成分的色譜質(zhì)譜分析
      邹平县| 读书| 睢宁县| 兖州市| 玉溪市| 旬邑县| 洪泽县| 荥经县| 沿河| 九寨沟县| 轮台县| 岗巴县| 屯门区| 嘉义县| 新和县| 苗栗县| 民乐县| 灵武市| 南皮县| 台山市| 铁力市| 裕民县| 平度市| 永泰县| 长宁区| 平定县| 江阴市| 边坝县| 房产| 浦江县| 四会市| 昭觉县| 海林市| 吉水县| 宁南县| 巴东县| 海淀区| 甘德县| 连南| 望谟县| 长泰县|