車選強 宗琦 趙冉 趙淑淼
【摘要】 目的 研究不同濃度二甲雙胍對3T3-L1脂肪前體細(xì)胞的增殖和分化的影響。方法 將體外培養(yǎng)的3T3-L1脂肪前體細(xì)胞用不同濃度的二甲雙胍處理。分別采用倒置顯微鏡觀察細(xì)胞形態(tài)、MTT法、油紅0染色法、酶標(biāo)儀測量光密度值等方法研究不同濃度二甲雙胍對3T3-L1脂肪前體細(xì)胞增殖、分化的影響。結(jié)果 在鏡下觀察3T3-L1脂肪前體細(xì)胞細(xì)胞貼壁后呈成纖維細(xì)胞樣, 當(dāng)二甲雙胍組濃度較低(≤0.5 mmol/L)時, 其細(xì)胞的形態(tài)、密度、各組光密度值無明顯差異, 當(dāng)二甲雙胍組濃度較高(≥5 mmol/L)時, 細(xì)胞出現(xiàn)變形、破壞, 甚至形成凋亡小體, 細(xì)胞數(shù)量也減少, 各組光密度值存在統(tǒng)計學(xué)差異。油紅0染色后顯微鏡下觀察細(xì)胞的形態(tài), 陰性對照組細(xì)胞呈成橢圓形或梭形;陽性對照組、二甲雙胍濃度較低(≤0.5 mmol/L)組可見80%~90%的細(xì)胞向脂肪細(xì)胞分化, 細(xì)胞內(nèi)見大量脂滴聚積, 油紅0染色明顯著色, 其光密度值與陰性對照組比較, 差異均有統(tǒng)計學(xué)意義(P<0.05), 與陽性對照組比較, 差異均無統(tǒng)計學(xué)意義(P>0.05)。二甲雙胍濃度為5 mmol/L組脂肪細(xì)胞表型數(shù)量、油紅0染色著色較對照組顯著減少, 其光密度值與陽性對照組比較, 差異有統(tǒng)計學(xué)意義(P<0.05)。結(jié)論 二甲雙胍濃度較低(≤0.5 mmol/L)時對3T3-L1脂肪前體細(xì)胞增殖無影響;二甲雙胍濃度較高(≥5 mmol/L)時3T3-L1脂肪前體細(xì)胞的增殖可明顯被抑制, 且隨著藥物的濃度增加抑制作用增強;二甲雙胍濃度較高(≥5 mmol/L)可能促進3T3-L1脂肪前體細(xì)胞的凋亡。低濃度的二甲雙胍(≤0.5 mmol/L)對3T3-L1脂肪前體細(xì)胞的分化無影響;3T3-L1脂肪前體細(xì)胞的分化可被5 mmol/L的二甲雙胍抑制。
【關(guān)鍵詞】 二甲雙胍;3T3-L1脂肪前體細(xì)胞;細(xì)胞增殖;細(xì)胞分化
DOI:10.14163/j.cnki.11-5547/r.2019.31.104
The effect of metformin on the proliferation and differentiation of preadipocyte ? CHE Xuan-qiang, ZONG Qi, ZHAO Ran, et al. Department of Endocrinology, Jinan 5th Peoples Hospital, Jinan 250022, China
【Abstract】 Objective ? To study the effect of metformin at different concentrations on the proliferation and differentiation of 3T3-L1 preadipocyte. Methods ? 3T3-L1 preadipocyte cultured in vitro were processed with metformin at different concentrations. Cell morphology was observed by inverted microscope. The effects of metformin at different concentrations on the proliferation and differentiation of 3T3-L1 preadipocyte was observed by MTT method, oil red O staining method, microplate reader measuring optical density value method. Results ? Microscopic observation of 3T3-L1 adipose precursor cells showed fibroblast-like appearance after adherence. When the concentration of metformin group was lower (≤0.5 mmol/L), there was no significant difference in cell morphology, density and optical density between groups. When the concentration of metformin group was higher (≥5 mmol/L), the cells were deformed, destroyed, even formed apoptotic bodies, and the number of cells decreased, and the optical density of each group had statistical difference. After oil red 0 staining, the cells in negative control group were oval or spindle-shaped. In positive control group and metformin group with lower concentration (≤0.5 mmol/L), 80%~90% of the cells differentiated into adipocytes, and a large number of lipid droplets accumulated in the cells. Oil red 0 staining was obvious colored. Compared with the negative control group, the difference of optical density was statistically significant (P<0.05), and there was no significant difference in optical density between the positive control group and the negative control group (P>0.05). In metformin?5 mmol/L concentration group, the number of phenotypes and oil red 0 staining of adipocytes were significantly less than those of the control group. The optical density was statistically significant with the positive control group (P<0.05). Conclusion ? Low metformin concentration (≤ 0.5 mmol/L) had no effect on the proliferation of 3T3-L1 preadipocyte. The proliferation of 3T3-L1 preadipocyte was significantly inhibited when metformin concentration was higher (≥ 5 mmol/L), and the inhibition increased with the increase of metformin concentration. Higher concentration of metformin (≥ 5 mmol/L) may promote apoptosis of 3T3-L1 preadipocyte. Low concentration of metformin (≤0.5 mmol/L) had no effect on the differentiation of 3T3-L1 preadipocyte. The differentiation of 3T3-L1 preadipocyte could be inhibited by 5 mmol/L metformin.
【Key words】 Metformin; 3T3-L1 preadipocyte; Cell proliferation; Cell differentiation
近年來隨著人類生活水平的提高及生活方式的轉(zhuǎn)變, 肥胖的發(fā)病率逐年增高, 并可引起嚴(yán)重的并發(fā)癥, 如2型糖尿病、高血壓病、呼吸睡眠暫停綜合征等[1], 已經(jīng)被世界衛(wèi)生組織評定為危害人類健康的第5大因素[2]。在肥胖癥的發(fā)生、發(fā)展過程中脂肪組織起著重要的作用。研究證實, 脂肪前體細(xì)胞的增殖和分化與肥胖密切相關(guān) [3]。脂肪前體細(xì)胞過多的分化及脂肪細(xì)胞的肥大均可誘導(dǎo)肥胖的發(fā)生[4]。脂肪前體細(xì)胞除分化外, 還可能面臨凋亡。二甲雙胍一直作為治療2型糖尿病的一線用藥, 除了具有降血糖作用以外, 還體現(xiàn)在心血管保護和減輕體重[5], 改善胰島素抵抗方面。但是二甲雙胍能減輕體重的機制目前尚不明確。通過改變脂肪前體細(xì)胞的分化、凋亡而調(diào)節(jié)脂肪重新分配可能會改善腹型肥胖的問題[6]。二甲雙胍對脂肪前體細(xì)胞增殖、分化、凋亡有無影響, 目前報道較少。因此本實驗主要研究二甲雙胍對3T3-L1脂肪前體細(xì)胞增殖和分化的影響。
1 材料與方法
1. 1 材料來源 二甲雙胍購于中美上海施貴寶制藥有限公司;3T3-L1脂肪前體細(xì)胞購自于美國模式培養(yǎng)物集存庫;二甲基亞砜購于Amresco公司;DMEM(Dulbeccos Modified Eagle Medium, DMEM)培養(yǎng)基、胎牛血清購于Hycolone公司;0.25%胰酶-EDTA(Ethylene Diaminetetraacetic Acid, EDTA)、雙抗、PBS(Phosphate Buffered Saline, PBS)緩沖液購于Gibco公司;牛胰島素、3-異丁基-1甲基黃嘌呤、地塞米松、油紅0、噻唑藍(lán)購于Sigma公司。
1. 2 方法
1. 2. 1 細(xì)胞培養(yǎng) 第3代美國模式培養(yǎng)物集存庫的3T3-L1脂肪前體細(xì)胞(用25 cm培養(yǎng)瓶裝;高糖DMEM中含10%的胎牛血清、1%的雙抗)在溫度為37℃、飽和濕度5% CO2體積分?jǐn)?shù)的培養(yǎng)箱中進行體外靜置培養(yǎng), 當(dāng)細(xì)胞生長至大約70%~80%融合時進行細(xì)胞傳代。
1. 2. 2 MTT法檢測細(xì)胞增殖 打開超凈工作臺, 將3T3-L1脂肪前體細(xì)胞鋪到96孔培養(yǎng)板中, 每孔加100 μl培養(yǎng)液, 細(xì)胞密度為5000個/孔。將接種細(xì)胞的42個孔共分為7組(每組6個副孔)。培養(yǎng)24 h當(dāng)細(xì)胞融合約70%時, 實驗組加入0.05、0.5、5、10、20、50 mmol/L濃度的二甲雙胍, 實驗組換上含不同二甲雙胍濃度的基礎(chǔ)培養(yǎng)液, 對照組換上所加藥物等體積的PBS(二甲雙胍濃度為0 mmol/L)的基礎(chǔ)培養(yǎng)液, 培養(yǎng)48 h, 倒置顯微鏡下觀察細(xì)胞形態(tài)和數(shù)量。每孔加入20 μl MTT溶液(5 mg/ml, 即為0.5%MTT), 繼續(xù)培養(yǎng)4 h后, 吸去孔內(nèi)的培養(yǎng)液, 并在每孔中分別加入200 μl 的DMSO, 放置在恒溫振蕩器上振蕩10 min, 當(dāng)看到結(jié)晶物質(zhì)充分溶解。酶標(biāo)儀測定在570 nm處的吸光度。
1. 2. 3 油紅O染色法檢測細(xì)胞分化 打開超凈工作臺, 把3T3-L1脂肪前體細(xì)胞鋪到24孔培養(yǎng)板中, 分別在每孔中加1 ml基礎(chǔ)培養(yǎng)液, 細(xì)胞密度為50000個/孔;設(shè)4個副孔;并設(shè)立陰性對照組(基礎(chǔ)培養(yǎng)液1 ml, 不加誘導(dǎo)液, PBS 50 μl, 無二甲雙胍), 陽性對照組(誘導(dǎo)分化液Ⅰ1 ml, PBS 50 μl, 無二甲雙胍), 實驗組(誘導(dǎo)分化液Ⅰ1 ml, 0.05、0.5、5 mmol/L濃度的二甲雙胍), 當(dāng)3T3-L1脂肪前體細(xì)胞誘導(dǎo)分化至第10~12天, 可見80%~90%的細(xì)胞分化成為脂肪細(xì)胞, 在顯微鏡下可觀察到明顯脂滴形成。吸去孔內(nèi)的培養(yǎng)液, 用PBS清洗一次殘余培養(yǎng)液, 每孔加1 ml新鮮配制的油紅O工作液, 室溫作用10 min后棄去油紅0染料, 然后再用60%異丙醇漂洗1 min, 去除背景著色后放置在顯微鏡下仔細(xì)觀察脂滴形成。每孔分別加入200 μl 異丙醇, 放置于37℃作用10 min, 吸取脫色后的液體, 然后移入96孔板中, 酶標(biāo)儀測定在510 nm處的吸光度。
1. 3 統(tǒng)計學(xué)方法 采用SPSS18.0統(tǒng)計學(xué)軟件進行統(tǒng)計分析。計量資料以均數(shù)±標(biāo)準(zhǔn)差( x-±s)表示, 采用單因素方差分析進行組間均數(shù)比較, 兩兩進行比較采用LSD-t檢驗。P<0.05表示差異具有統(tǒng)計學(xué)意義。
2 結(jié)果
2. 1 二甲雙胍以濃度依賴性抑制3T3-L1脂肪前體細(xì)胞的增殖 顯微鏡下觀察3T3-L1脂肪前體細(xì)胞貼壁后呈成纖維細(xì)胞樣, 在體外進行培養(yǎng)24 h后, 對照組, 0.05 mmol/L和0.5 mmol/L三組在顯微鏡下觀察, 細(xì)胞形態(tài)和細(xì)胞密度無明顯差異, 而5、10、20和50 mmol/L的二甲雙胍組和對照組相比, 顯微鏡下細(xì)胞形態(tài)明顯發(fā)生了改變(包括變形、破壞, 甚至形成凋亡小體), 細(xì)胞的數(shù)量也顯著減少, 且破壞的程度隨著二甲雙胍濃度的增加而增加, 細(xì)胞數(shù)量也隨二甲雙胍濃度的增加而越少。繼續(xù)進行培養(yǎng)至72 h時, 亦呈上述結(jié)果。見圖1。用不同濃度的二甲雙胍對3T3-L1脂肪前體細(xì)胞的增殖過程干預(yù)72 h, 用MTT法在酶標(biāo)儀570 nm處并測定各組的光密度值。結(jié)果發(fā)現(xiàn)對照組和0.05、0.5、5、10、20、50 mmol/L各組OD570的值分別為(2.13±0.14)、 (2.00±0.09)、(1.98±0.09)、(1.53±0.20)、(1.29±0.14)、(1.03±0.12)、(0.71±0.15)。3T3-L1脂肪前體細(xì)胞增殖受到明顯抑制, 且抑制效應(yīng)呈濃度依賴性(P<0.01);5、10、20和50 mmol/L不同濃度的二甲雙胍各組之間比較, 差異均具有統(tǒng)計學(xué)意義(P<0.05), 二甲雙胍藥物濃度越增加, 其光密度值越小。見表1。
2. 2 二甲雙胍以濃度依賴性抑制3T3-L1脂肪前體細(xì)胞的分化 3T3-L1脂肪前體細(xì)胞接種到24孔培養(yǎng)板中誘導(dǎo)分化12 d, 并設(shè)立三組:陰性對照組、陽性對照組和實驗組, 在實驗組開始加誘導(dǎo)液時, 用不同濃度的二甲雙胍進行干預(yù)。結(jié)果①陰性對照組細(xì)胞未向脂肪細(xì)胞分化, 呈梭形或橢圓形, 用油紅0染色后著色不明顯。②陽性對照組中見80%~90%的向脂肪細(xì)胞分化, 可見脂滴, 用油紅0染色后著色明顯。③0.05 mmol/L二甲雙胍組和0.5 mmol/L二甲雙胍組亦可見80%~90%的細(xì)胞向脂肪細(xì)胞分化, 可見脂滴聚積, 用油紅0染色后著色明顯, 和陽性對照組無差別。④5 mmol/L的二甲雙胍組中向脂肪細(xì)胞分化的細(xì)胞數(shù)量和對照組相比明顯減少, 油紅0染色后著色也明顯減少。見圖2。當(dāng)3T3-L1脂肪前體細(xì)胞被誘導(dǎo)分化12 d后, 應(yīng)用油紅0染色法在酶標(biāo)儀510 nm處測定各組光密度值。結(jié)果發(fā)現(xiàn)陰性對照組、陽性對照組及0.05、0.5、5 mmol/L各組OD510的值分別為(0.34±0.02)、(0.61±0.06)、(0.59±0.05)、(0.59±0.05)、(0.42±0.03)。發(fā)現(xiàn)與陰性對照組相比, 陽性對照組、含不同濃度二甲雙胍組的3T3-L1脂肪前體細(xì)胞分化受到明顯抑制, 且抑制效應(yīng)呈濃度依賴性(P<0.01)。0.05、0.5 mmol/L二甲雙胍組和陽性對照組相比較, 差異均無統(tǒng)計學(xué)意義(P>0.05), 而5 mmol/L二甲雙胍組和陽性對照組比較, 差異有統(tǒng)計學(xué)意義(P<0.01);5 mmol/L二甲雙胍和0.05、0.5 mmol/L二甲雙胍組比較, 差異有統(tǒng)計學(xué)意義(P<0.01)。見表2。
3 討論
美國內(nèi)分泌醫(yī)師協(xié)會將肥胖癥定性為一種疾病[7], 肥胖癥已成為人們必須積極干預(yù)的健康問題。它會增加糖尿病、代謝綜合癥、心腦血管疾病的發(fā)生風(fēng)險[8]。脂肪細(xì)胞的數(shù)量是由具有多向分化潛能的間充質(zhì)干細(xì)胞在適當(dāng)刺激下分化而成[9]。脂肪細(xì)胞的體積是由脂肪前體細(xì)胞向成熟脂肪細(xì)胞分化的程度所決定的[10]。分化程度越高, 體積越大。因此脂肪細(xì)胞的異常增殖分化可引起肥胖。
二甲雙胍是目前臨床上應(yīng)用最廣的降糖藥物, 其降糖的主要機制包括抑制肝臟葡萄糖的異生、促進糖原分解, 減少肝臟糖原的輸出, 抑制葡萄糖的吸收, 促進外周組織充分利用葡萄糖;改善組織對胰島素的敏感性并增加胰島素與外周組織中胰島素受體親和力[11]。抑制二肽基肽酶IV(DPP4), 從而提高胰高血糖素樣肽(GLP-1)濃度[12], 減少脂肪合成, 改善胰島素抵抗[13]。二甲雙胍對肥胖患者(無論其是否合并2型糖尿病)均有顯著的降低體重的作用[14, 15], 但二甲雙胍減輕體重的作用機制目前尚不明確。因此本研究主要探究不同濃度二甲雙胍對脂肪前體細(xì)胞的影響。
二甲雙胍有減輕體重的作用, 但機制目前仍未完全闡明。可能的機制包括:①二甲雙胍通過改善瘦素和腫瘤壞死因子(TNF-α)的抵抗?fàn)顟B(tài)[16], 以抑制胞內(nèi)的脂質(zhì)積聚來延緩肥胖的發(fā)展。②二甲雙胍對食欲有抑制作用[17], 從而達到減重作用。③改善高胰島素血癥并降低基礎(chǔ)胰島素及負(fù)荷后胰島素水平[17]。④二甲雙胍能抑制前體脂肪細(xì)胞內(nèi)脂質(zhì)累積并降低成脂基因PPARγ和C/EBP a 表達[18]。
通過實驗雖然證實了高濃度的二甲雙胍能抑制脂肪前體細(xì)胞的增殖和分化, 但正常血藥濃度的二甲雙胍對脂肪前體細(xì)胞增殖和細(xì)胞分化并無影響。在本實驗中應(yīng)用二甲雙胍干預(yù)脂肪前體細(xì)胞的時間比較短, 如果在體內(nèi)長期應(yīng)用正常血藥濃度二甲雙胍, 是否會對脂肪前體細(xì)胞的細(xì)胞增殖和細(xì)胞分化產(chǎn)生還需進一步研究證實。此外, 流行病學(xué)調(diào)查資料提示二甲雙胍還可以降低某些腫瘤的發(fā)病率和病死率[19], 其可能機制為激活LKBI/AMPK通路[20], 從而誘導(dǎo)某些腫瘤細(xì)胞的細(xì)胞周期停滯以及誘導(dǎo)細(xì)胞凋亡[21]。這從側(cè)面提示, 假如二甲雙胍在體內(nèi)能夠誘導(dǎo)或促進脂肪前體細(xì)胞的凋亡, 這可能會成為二甲雙胍減輕體重一個重要機制。本實驗應(yīng)用不同濃度的二甲雙胍對脂肪前體細(xì)胞的增殖進行干預(yù), 發(fā)現(xiàn)用高濃度(≥5 mmol/L)的二甲雙胍對脂肪前體細(xì)胞的增殖過程進行干預(yù)后, 鏡下觀察細(xì)胞的數(shù)量明顯減少, 且有凋亡小體的出現(xiàn), 提示二甲雙胍可能促進脂肪前體細(xì)胞的凋亡, 但二甲雙胍真正能否促進脂肪前體細(xì)胞的凋亡以及可能的作用機制還需要進一步研究。
綜上所述, 二甲雙胍濃度較低(≤0.5 mmol/L)時對3T3-L1脂肪前體細(xì)胞增殖無影響;二甲雙胍濃度較高(≥5 mmol/L)時3T3-L1脂肪前體細(xì)胞的增殖可明顯被抑制, 且隨著藥物的濃度增加抑制作用增強;二甲雙胍濃度較高(≥5 mmol/L)可能促進3T3-L1脂肪前體細(xì)胞的凋亡。低濃度的二甲雙胍(≤0.5 mmol/L)對3T3-L1脂肪前體細(xì)胞的分化無影響;3T3-L1脂肪前體細(xì)胞的分化可被5 mmol/L的二甲雙胍抑制。
參考文獻
[1] Cefalu WT, Bray GA, Home PD, et al. Advances in the Science, Treatment, and Prevention of the Disease of Obesity: Reflections From a Diabetes Care Editors Expert Forum. Diabetes care, 2015, 38(8):1567-1582.
[2] Go AS,Mozaffarian D,Roger VL, et al.Correction to: Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation, 2017, 129(1):e28-e92.
[3] Kim HJ, Hwang JT, Min JK, et al. The inhibitory effect of saponin derived from Cheonggukjang on adipocyte differentiation In vitro. Food Science & Biotechnology, 2014, 23(4):1273-1278.
[4] Odegaard JI, Chawla A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science, 2013, 339(6116):172-177.
[5] 中華醫(yī)學(xué)會糖尿病學(xué)分會. 中國2型糖尿病防治指南(2017年版). 中華糖尿病雜志, 2018, 10(1):4-6.
[6] Montague CT, ORahilly S. The perils of portliness: causes and consequences of visceral adiposity. Diabetes, 2000, 49(6):883-888.
[7] Garvey WT, Garber AJ, Mechanick JI, et al. American association of clinical endocrinologists and american college of endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists, 2014, 20(9):977-989.
[8] Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England), 2014, 384(9945):766-781.
[9] Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ, 2016, 23(7):1128-1139.
[10] Shao XR, Wang MQ, Wei XQ, et al. Peroxisome proliferator-activated receptor-γ: master regulator of adipogenesis and obesity. Curr Stem Cell Res Ther, 2016, 11(3):282-289.
[11] Masini M, Anello M, Bugliani M, et al. Prevention by metformin of alterations induced by chronic exposure to high glucose in human islet beta cells is associated with preserved ATP/ADP ratio. Diabetes Res Clin Pract, 2014, 104(1):163-170.
[12] 唐雪梅, 李婧雯, 甘立霞, 等. 二甲雙胍刺激肝臟瘦素受體基因表達上調(diào)血漿可溶性瘦素受體水平. 第三軍醫(yī)大學(xué)學(xué)報, 2015,?37(8):746-750.
[13] 蔡曉凌, 紀(jì)立農(nóng). 從指南變遷看二甲雙胍在 2 型糖尿病治療中的地位. 藥品評價, 2015, 12(1):9-13.
[14] Kay JP, Alemzadeh R, Langley G, et al. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism: clinical and experimental, 2001, 50(12):1457-1461.
[15] McNulty SJ, Ur E, Williams G. A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin. Diabetes care, 2003, 26(1):125-131.
[16] 岳杉, 張艷紅, 耿厚法. 二甲雙胍對3T3-L1脂肪細(xì)胞瘦素、腫瘤壞死因子-α表達與分泌量影響的觀察. 中國糖尿病雜志,?2013, 21(6):548-550.
[17] 母義明, 紀(jì)立農(nóng), 寧光, 等. 二甲雙胍臨床應(yīng)用專家共識(2016年版). 中國糖尿病雜志, 2016, 24(10):871-880.
[18] 王慧, 劉四紅, 翟元梅, , 等. 二甲雙胍通過調(diào)節(jié)成脂影響脂肪細(xì)胞對白血病細(xì)胞作用. 中國實驗血液學(xué)雜志, 2015, 23(2):340-344.
[19] Coyle C, Cafferty FH, Vale C, et al. Metformin as an adjuvant treatment for cancer: a systematic review and meta-analysis. Ann Oncol, 2016, 27(12):2184-2195.
[20] Chang HW, Lee YS, Nam HY, et al. Knockdown of beta-catenin controls both apoptotic and autophagic cell death through LKB1/ AMPK signaling in head and neck squamous cell carcinoma cell lines. Cell Signal, 2013, 25(4):839-847.
[21] Hadad SM, Hardie DG, Appleyard V, et al. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol, 2014(16):746-752.
[收稿日期:2019-08-28 ]