• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      骨條藻屬硅藻的分類、生態(tài)及生理研究進(jìn)展

      2020-01-16 07:39:05胡婧文弋鈺昕尤慶敏王全喜
      關(guān)鍵詞:生態(tài)學(xué)生理學(xué)

      胡婧文 弋鈺昕 尤慶敏 王全喜

      摘? 要: 骨條藻屬(Skeletonema)是全球分布的廣溫廣鹽性浮游硅藻,常見于沿海河口和海洋中,近年來也常出現(xiàn)在一些淡水環(huán)境中。骨條藻屬硅藻可作餌料、生產(chǎn)生物柴油的原料、治療癌癥的候選藥,也是一類可引發(fā)赤潮的藻類。該文綜述了骨條藻屬硅藻在系統(tǒng)分類學(xué)、生態(tài)學(xué)、生理學(xué)方面的研究進(jìn)展,并對其發(fā)展方向進(jìn)行了展望。

      關(guān)鍵詞: 骨條藻屬; 系統(tǒng)分類學(xué); 生態(tài)學(xué); 生理學(xué)

      中圖分類號: Q 949? ? 文獻(xiàn)標(biāo)志碼: A? ? 文章編號: 1000-5137(2020)06-0698-11

      Abstract: Skeletonema is a globally distributed wide-temperature and wide-salt planktonic diatom genus.It is frequently found in coastal estuaries and marine environments.In recent years,it has also appeared in freshwater.The species of Skeletonema can be used as bait,biodiesel feedstock and cancer drug candidates,and it is also a type of algae that can cause red tides.This article reviewed the research progress of Skeletonema in systematic taxonomy,ecology,and physiology,their research prospections were given as well.

      Key words: Skeletonema; taxonomy; ecology; physiology

      0? 引? 言

      骨條藻屬(Skeletonema)隸屬于硅藻門(Bacillariophyta)中心綱(Centricae)骨條藻科(Skeletonemaceae),由多個呈透鏡形、圓柱形,至球狀的細(xì)胞組成長短不一的直或彎曲長鏈,色素體1~10個;在掃描電子顯微鏡(SEM)下,相鄰細(xì)胞依靠殼面邊緣一圈支持突外管相互連接,細(xì)胞間距長短不一,有的很短,有的則長于細(xì)胞貫長軸,支持突數(shù)目變化范圍大(8~30個);具有1個唇形突,位于殼面邊緣或殼面近中央;殼面肋紋放射狀排列,具有中央環(huán)狀結(jié)構(gòu)[1-3]。骨條藻是全球分布的廣溫廣鹽性浮游硅藻,是浮游植物群落的重要組成部分,常見于沿海河口和海洋環(huán)境中,近年來,也在一些淡水環(huán)境中被頻繁發(fā)現(xiàn)。骨條藻可以作餌料、生產(chǎn)生物柴油的原料、治療癌癥的候選藥,但當(dāng)其大量增殖時,會引發(fā)赤潮,對生態(tài)系統(tǒng)造成較大影響,并可能對養(yǎng)殖的海洋經(jīng)濟(jì)動物造成傷害,引起了國內(nèi)外研究者的廣泛關(guān)注。自19世紀(jì)60年代骨條藻被發(fā)現(xiàn)后,一些研究者圍繞骨條藻分類、生理特性等展開基礎(chǔ)性研究。20世紀(jì)90年代后,骨條藻的相關(guān)研究日益增多,至20世紀(jì)末,對骨條藻屬的研究主要圍繞模式種中肋骨條藻(Skeletonema costatum)展開,這可能是骨條藻屬種類種間形態(tài)差異小,加之技術(shù)有限,鑒定困難,因而絕大多數(shù)研究者習(xí)慣于將形態(tài)相似的骨條藻歸為中肋骨條藻進(jìn)行研究[4]。隨后,研究者們開始結(jié)合分子生物學(xué)手段,試圖澄清骨條藻的種類多樣性。自21世紀(jì)以來,對于骨條藻屬的研究涉及系統(tǒng)分類、時空分布特征、赤潮的成因及防治方法、理化因子對其生長影響等方面。本文作者綜述了骨條藻屬硅藻在系統(tǒng)分類學(xué)、生態(tài)學(xué)、生理學(xué)方面的研究進(jìn)展,旨在為更好地認(rèn)識和研究骨條藻提供基礎(chǔ)資料。

      1? 系統(tǒng)分類學(xué)方面的研究

      1865年,GREVILLE[5]描述了一個在巴巴多斯島發(fā)現(xiàn)的化石硅藻,根據(jù)該種建立了骨條藻屬(Skeletonema),將描述的新種定名為巴巴多斯骨條藻(Skeletonema barbadensis Greville)。一年后,GREVILLE[6]在對中國香港水域采集的樣品進(jìn)行觀察時,發(fā)現(xiàn)樣品中優(yōu)勢種的殼面具縱向肋,且與相鄰細(xì)胞相連,認(rèn)為該種與GEORGE[7]在歐洲北海發(fā)現(xiàn)的直鏈藻屬種類Melosira sp.為同一種,因此將其歸類在直鏈藻屬中,命名為中肋直鏈藻(Melosira costata Greville)。1873年,CLEVE[8]在爪哇海發(fā)現(xiàn)M.costata,認(rèn)為該種與巴巴多斯骨條藻形態(tài)相近,應(yīng)該屬于骨條藻屬種類,于是將M.costata修訂為中肋骨條藻。1996年,ROSS等[9]建議將中肋骨條藻定為骨條藻屬的模式種,該建議于2000年被正式采納。中肋骨條藻發(fā)現(xiàn)以后,直到20世紀(jì)60年代,學(xué)者們利用光學(xué)顯微鏡又觀察并描述了3個骨條藻屬新種類:熱帶骨條藻(Skeletonema tropicum Cleve)[10]、近鹽骨條藻(Skeletonema subsalsum(Cleve) Bethge)[11]和細(xì)柱骨條藻(Skeletonema cylindraceum Prosh-kina-Lavrenko et Makarova)[12]。20世紀(jì)70年代,隨著掃描電子顯微鏡(SEM)技術(shù)的運(yùn)用,硅藻學(xué)者通過對骨條藻超微結(jié)構(gòu)的觀察,陸續(xù)發(fā)現(xiàn)了4個新種:曼氏骨條藻(Skeletonema menzelii Gullard)[13]、江河骨條藻(Skeletonema potamos(Weber) Halse)[14]、擬中肋骨條藻(Skeletonema pseudocostatum Medlin)[15]及桂式骨條藻(Skeletonema grevillei Sarno et Zingone)[16]。2005—2007年,DIANA [17-18]等結(jié)合SEM和分子生物學(xué)技術(shù)對采自澳大利亞、北太平洋等海域的標(biāo)本進(jìn)行分析,鑒定出5個新種:多恩骨條藻(Skeletonema dohrnii Sarno et Kooistra)、格里斯骨條藻(Skeletonema grethae Zingone et Sarno)、瑪氏骨條藻(Skeletonema marinoi Sardo et Zingone)、日本骨條藻(Skeletonema japonicum Sarno et Zingone)和亞當(dāng)斯骨條藻(Skeletonema ardens Sarno et Zingone)。

      目前,骨條藻屬共發(fā)現(xiàn)13個種,除江河骨條藻和近骨條藻鹽主要分布在淡水或半咸水環(huán)境中,其他種類均多見于海水中。此外,骨條藻屬的化石種因不具支持突,具環(huán)狀邊緣的唇形突不參與細(xì)胞連接,內(nèi)殼面孔紋被硅質(zhì)封閉結(jié)構(gòu)等特征,明顯區(qū)別于今生種,已于1994年[19]被修訂到類骨條藻屬(Skeletonemopsis)中,巴巴多斯類骨條藻(S.barbadense (Greville) P A Sims)成為該屬的模式種。

      利用形態(tài)學(xué)方法或分子生物學(xué)方法鑒定骨條藻,準(zhǔn)確性高,但也存在鑒定過程專業(yè)性強(qiáng)、鑒定耗時長等缺點(diǎn)。因此有研究者致力于開發(fā)快速且精確的骨條藻檢測方法,并嘗試將其應(yīng)用于預(yù)測有害藻華(HAB)的發(fā)生等方面。ZHANG等[20]研究發(fā)現(xiàn),光譜數(shù)據(jù)主成分分析可用于區(qū)分赤潮藻。隨后,NPA-SH(結(jié)合NPA的定量夾心雜交)技術(shù)[21]、FISH(熒光原位雜交)技術(shù) [22]、LAMP-LFD(環(huán)介導(dǎo)等溫擴(kuò)增與色譜側(cè)向量油尺結(jié)合)法[23]、多重和實時PCR引物組[24]均被開發(fā)用于鑒定骨條藻或快速分析骨條藻物種組成。這些方法可迅速、方便地檢測赤潮藻類,但檢測儀器價格昂貴,且對儀器精密度要求高。

      2? 生態(tài)學(xué)方面的研究

      骨條藻屬種類廣泛存在于世界各地沿海水體中,因生長速度快,成為一些水域的優(yōu)勢種,吸引研究人員對骨條藻多樣性、季節(jié)性及地理分布展開深入調(diào)查和分析。

      一些研究者圍繞骨條藻種類多樣性及季節(jié)性展開研究。MARLI等[25]發(fā)現(xiàn)巴西南部沿海水域中有7種骨條藻,多樣性非常高,推測因該水域臨近帕圖斯瀉湖和拉普拉塔河的淡水生態(tài)系統(tǒng),為在溫水、冷水、微咸水中生活的物種提供了適宜的生存條件。此外,在中國及韓國沿海水域[26-28]骨條藻也具較高多樣性。季節(jié)性研究方面,BORKMAN等[29]、CANESI等[30]對納拉甘西特灣骨條藻展開調(diào)查,發(fā)現(xiàn)骨條藻具冬春季、夏秋季和秋季3種類型的度豐度模式。在對中國廈門港及其周邊海域[31-32]、長江口[33]骨條藻進(jìn)行多樣性調(diào)查和季節(jié)性分析中均發(fā)現(xiàn)中肋骨條藻全年存在,不同的是廈門港及周邊海域的骨條藻種類多樣性更高,其中多恩骨條藻為冬春季種,亞當(dāng)斯骨條藻、桂式骨條藻、曼氏骨條藻和熱帶骨條藻為夏秋季種,長江口水域的另一個骨條藻瑪氏骨條藻僅在春季出現(xiàn)。CARVALHO等[34]分析了巴西南部帕托斯瀉湖中江河骨條藻的形態(tài)特征,討論了其分布及豐度。另外,一些研究學(xué)者對影響骨條藻分布的因素展開研究。DULEBA等[35]研究了江河骨條藻在骨條藻中的分類地位,并預(yù)測該種地理分布范圍和季節(jié)性持續(xù)時間與地表水溫相關(guān)。PIANA等[36]報道了首次在烏拉圭沿海水域發(fā)現(xiàn)的S.tropicum,并發(fā)現(xiàn)其存在地理分布和生存溫度范圍擴(kuò)大的現(xiàn)象,LIU等[37]證實了該現(xiàn)象,并發(fā)現(xiàn)中國熱帶骨條藻的分布范圍由東海和南海向北擴(kuò)展至黃海膠州灣,進(jìn)一步分析可能是來自中國南部地區(qū)的船舶攜帶了該物種或當(dāng)?shù)匕l(fā)電站和海水淡化廠的熱污染為該物種提供了合適的越冬條件所致。PFANNKUCHEN等[38]對在亞得里亞海北部發(fā)現(xiàn)的桂式骨條藻進(jìn)行遺傳分析,發(fā)現(xiàn)桂式骨條藻是引入種,可能由輪船運(yùn)輸攜帶而來。 骨條藻也是一種常見的赤潮生物,常在沿海河口和海洋環(huán)境中引發(fā)赤潮,從而對環(huán)境造成破壞。因此,一些研究人員探究了骨條藻引發(fā)赤潮的形成機(jī)制及影響因素,并試圖建立可靠的危害度評估方法。SALGADO等[39]、LI等[40]監(jiān)測了中肋骨條藻引發(fā)的赤潮并分析了赤潮期間的環(huán)境因素,結(jié)果表明:沿海風(fēng)、水溫、PO43-及Fe濃度在赤潮發(fā)生和衰減中發(fā)揮重要作用。文世勇等[41]發(fā)現(xiàn)采用生長耐受性模型和基于營養(yǎng)素的危害度評估方法可有效評估中肋骨條藻危害度。SHEHATA等[42]使用多種遙感方法,證明葉綠素a(Chla)和凈初級生產(chǎn)力(NPP)是預(yù)測中肋骨條藻藻華爆發(fā)的重要監(jiān)測指標(biāo)。在預(yù)測和評估赤潮后,控制赤潮尤為重要,因此部分研究者致力于探究某些細(xì)菌、高等植物等生物具備的特性,以便尋找控制赤潮的有效方法。研究發(fā)現(xiàn)孔雀松(Cryptomeria japonica)樹皮中的彌羅宋酚、黑松(Pinus thunbergii)心材中的長葉烯[43]、鹽角草(Salicornia europaea)甲醇提取物中的蘆丁[44]及嗜鹽桿菌[45]均能有效抑制中肋骨條藻的生長,從而達(dá)到控制赤潮的目的。目前,利用生物防治控制赤潮已成為藻華治理領(lǐng)域的研究熱點(diǎn)。

      3? 生理學(xué)方面的研究

      近年來,由于分子生物學(xué)、遺傳學(xué)的快速發(fā)展,人們可以在分子水平上更深入地了解植物生命活動,同時推動了植物生理學(xué)發(fā)展。

      3.1 光對骨條藻生長及代謝的影響

      在光周期對骨條藻影響方面,WANG等[46]研究發(fā)現(xiàn)明暗循環(huán)對骨條藻胞外多糖的產(chǎn)生具物種特異性且取決于生長階段。VIDOUDEZ[47]運(yùn)用基于GC-MS的代謝組學(xué)方法,發(fā)現(xiàn)晝夜變化會影響對數(shù)期瑪氏骨條藻代謝。CHUNG等[48-49]探究了生長時期及光照節(jié)律對中肋骨條藻中新的死亡特異性基因ScDSP mRNA表達(dá)水平的影響,并對利用對數(shù)生長(RG)期從中肋骨條藻中提取的mRNA和3個與RG期相關(guān)的cDNA片段構(gòu)建了消減cDNA文庫進(jìn)行序列分析,發(fā)現(xiàn)與RG期相關(guān)的mRNA表達(dá)水平與連續(xù)光照和光周期密切相關(guān)。在紫外線(UV)對中肋骨條藻的影響方面:WU等[50-51]和NAHON等[52]發(fā)現(xiàn)中波紫外線會抑制中肋骨條藻生長甚至致其死亡,但UV可增強(qiáng)胞外碳酸酐酶(CAe)活性,促進(jìn)光合作用中CO2供應(yīng),抵消紫外線對光合作用的抑制。WEI等[53]使用實時定量PCR法,評估了UV對中肋骨條藻DNA復(fù)制相關(guān)基因表達(dá)的影響,發(fā)現(xiàn)短波紫外線會使胸腺嘧啶二聚體、DNA聚合酶α和PCNA的mRNA表達(dá)水平增加。還有研究調(diào)查了骨條藻對不同的光強(qiáng)度和光顏色的反應(yīng):苗洪利等[54-55]研究發(fā)現(xiàn),中肋骨條藻在組合光源下生長更好,在單色光下,隨光譜吸收系數(shù)增加中肋骨條藻飽和光強(qiáng)度降低,生長速率增高,且在藍(lán)光中有最大生長速率。OREFICEA等[56]證明了正弦光波比方波更利于瑪氏骨條藻的生長,RAGHU等[57]發(fā)現(xiàn)脂肪酸、色素和氨基酸的組成變化均為光適應(yīng)結(jié)果,同時SMERILLI等[58]還發(fā)現(xiàn)抗氧化分子(抗壞血酸、酚類化合物等)濃度和活性與光破壞防御機(jī)制存在密切聯(lián)系,填補(bǔ)了光、光合作用、光破壞防御和微藻的抗氧化網(wǎng)絡(luò)之間相互聯(lián)系的空白。此外,對于光照影響的研究還包括對光波長、輻照度等方面的研究:SUN等[59]通過野外培養(yǎng)實驗和模型計算發(fā)現(xiàn)中肋骨條藻通過改變最佳光強(qiáng)度I(opt)來適應(yīng)沿海地區(qū)海水的光照變化。GUIH?NEUF等[60]、LAWRENZ等[61]等闡明了輻照度對中肋骨條藻的光馴化、初級生產(chǎn)力和生長的潛在影響,發(fā)現(xiàn)中肋骨條藻有較特殊的光適應(yīng)性。NORICI等[62]探究了不同光子對瑪氏骨條藻中無機(jī)碳的獲取、固定和分配,及其對硅酸鹽和磷酸鹽吸收的影響。

      3.2? 金屬離子對骨條藻生長及代謝的影響

      隨著工、農(nóng)業(yè)的迅速發(fā)展,一些工業(yè)、生活污水不斷地排入自然水體中,導(dǎo)致水體中的金屬含量急劇升高,對水生生物造成傷害。研究者們針對金屬離子對骨條藻造成的影響及骨條藻的吸附作用展開了一系列研究。HU等[63]、SHI等[64]、GAO等[65]發(fā)現(xiàn)當(dāng)Zn2+的物質(zhì)的量濃度為0~12×10-12 mol?L-1時,隨濃度增加,骨條藻的生長速率及代謝能力增加,且較高濃度的Zn2+會降低中肋骨條藻對UV輻射的敏感性。研究還發(fā)現(xiàn),骨條藻利用無機(jī)碳比利用有機(jī)磷酸鹽需消耗的Zn2+少,且對Zn2+濃度敏感。ZHU等[66]研究結(jié)果表明:Cu與UV輻射會協(xié)同降低光系統(tǒng)II(PSII)的光化學(xué)性能。WANG等[67]通過C14和Fe55示蹤劑測定法證實了高Fe能夠增強(qiáng)細(xì)胞碳固定和鐵吸收。張梅等[68]使用實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)法,定量分析了在不同F(xiàn)e濃度下培養(yǎng)的瑪氏骨條藻部分基因表達(dá)情況,結(jié)果表明:EF-1α+Cytb表達(dá)穩(wěn)定,不受Fe濃度影響,是研究瑪氏骨條藻基因表達(dá)的理想內(nèi)參基因。WANG等[69]探究了不同濃度的Ba2+,Cd2+,Mn2+,Li+,Pb2 +脅迫下中肋骨條藻生長狀態(tài)及Chla合成情況。HWANG等[70]評估了重金屬(Cd,Cu,Zn)對中肋骨條藻種群增長率r的影響,提出可利用r值評估海洋生態(tài)系統(tǒng)中重金屬的毒性。SOEDARTI等[71]發(fā)現(xiàn),中肋骨條藻具生物修復(fù)能力,且對Pb II的修復(fù)能力在第一天最強(qiáng)。

      3.3? 營養(yǎng)鹽對骨條藻生長及代謝的影響

      營養(yǎng)鹽對藻類的生長和代謝至關(guān)重要,營養(yǎng)鹽對骨條藻影響方面的研究大多結(jié)合分子生物學(xué)手段展開。一些研究者探究了晝夜循環(huán)、鹽度變化和營養(yǎng)素對骨條藻中二甲巰基丙酸內(nèi)鹽(DMSP)和二甲基硫(DMS)濃度的影響,結(jié)果表明:氮限制和高鹽度均會使中肋骨條藻細(xì)胞中DMSP和DMS濃度增加[72],而在瑪氏骨條藻中DMSP的形成與晝夜循環(huán)及營養(yǎng)物相關(guān)[73]。GAO等[74-75]探究了中肋骨條藻對硝酸鹽和磷酸鹽的響應(yīng)及其在CO2限制下的生理反應(yīng),結(jié)果表明:較高的硝酸鹽水平可增加中肋骨條藻的生長速率及光合性能,并通過提高其對無機(jī)碳的吸收能力,在CO2限制條件下保持快速生長,而較高的磷酸鹽水平可增加CAe活性,刺激細(xì)胞直接使用HCO3-來增強(qiáng)無機(jī)碳的吸收。這兩項研究揭示了赤潮期間中肋骨條藻如何克服CO2的限制機(jī)制。HUANG等[76]通過添加尿素和腐殖質(zhì)(HS),調(diào)查了溶解有機(jī)氮(DON)對中肋骨條藻吸附、吸收大分子形式痕量金屬鎳(Ni)的影響,發(fā)現(xiàn)尿素可增強(qiáng)中肋骨條藻對Ni的吸附和吸收,而HS則相反。LEE等[77]和LIU等[78]使用qRT-PCR研究了中肋骨條藻在磷酸鹽饑餓及不同硝酸鹽濃度條件下,多恩骨條藻、曼氏骨條藻和瑪氏骨條藻在硝酸鹽、銨鹽充足及硝酸鹽有限條件下,編碼高親和力硝酸鹽轉(zhuǎn)運(yùn)蛋白基因(NRT2)的表達(dá)情況,發(fā)現(xiàn)磷饑餓可降低NRT2轉(zhuǎn)錄水平,并提出了多種氮素條件下3種形式NRT2調(diào)節(jié)的硝酸鹽吸收動力學(xué)模型,證實了骨條藻存在應(yīng)對環(huán)境變化的適應(yīng)策略。ZHANG等[79]利用轉(zhuǎn)錄組測序(RNA-Seq)技術(shù)比較了在磷充足和缺磷條件下生長的中肋骨條藻全局基因表達(dá)模式,發(fā)現(xiàn)有20.8%的獨(dú)特基因在不同磷條件下發(fā)生了顯著改變。在缺磷的細(xì)胞中,參與調(diào)節(jié)晝夜節(jié)律、磷利用、核苷酸代謝、光合作用、糖酵解,和細(xì)胞周期調(diào)控的關(guān)鍵酶/蛋白質(zhì)的基因顯著上調(diào)。ZHAN等[80]分別在三磷酸腺苷(ATP)、溶解性無機(jī)磷(DIP)充足和耗盡條件下培養(yǎng)中肋骨條藻,實驗結(jié)果表明:ATP與DIP均可有效地支持中肋骨條藻生長,轉(zhuǎn)錄組分析顯示中肋骨條藻利用ATP的途徑可能與NAD+二磷酸酶、磷酸二酯酶等水解酶有關(guān)。該研究是對磷利用相關(guān)研究的補(bǔ)充,并為骨條藻磷的代謝途徑研究打下了基礎(chǔ)。WANG等[81]探究了瑪氏骨條藻響應(yīng)氮或磷饑餓時的生理、形態(tài)、生化和分子變化,通過mRNA水平研究,發(fā)現(xiàn)氮缺乏條件下,一些PCD相關(guān)基因(PDCD4,GOX和HSP90)相對上調(diào),磷限制條件下TSG101基因表達(dá)增加,這些發(fā)現(xiàn)表明:PCD是涉及幾種不同蛋白質(zhì)的復(fù)雜機(jī)制,是瑪氏骨條藻中重要的細(xì)胞命運(yùn)決定機(jī)制。JING等[82]使用qRT-PCR法,研究了N,P和Fe對瑪氏骨條藻氮代謝和硝酸還原酶活性的影響,發(fā)現(xiàn)氮代謝基因的表達(dá)受氮磷比的調(diào)節(jié),而Fe通過調(diào)節(jié)基因表達(dá)和硝酸還原酶活性影響氮代謝。THANGARAJ等[83]將iTRAQ的蛋白質(zhì)組學(xué)方法與多種生理技術(shù)相結(jié)合,探索硅酸鹽限制下多恩骨條藻細(xì)胞中與氧化應(yīng)激相關(guān)的反應(yīng)。

      3.4? 其他理化因子對骨條藻生長及代謝的影響

      一些物理、化學(xué)和生物過程,以及人為CO2排放引起的海洋酸化(OA)等都會導(dǎo)致水生環(huán)境的pH值變化,從而影響水生植物的生長。研究人員對于pH值對骨條藻生長影響的研究多結(jié)合OA進(jìn)行。BARTUAL等[84]發(fā)現(xiàn)在飽和光及低CO2水平下,中肋骨條藻有最大光合速率,且其適應(yīng)CO2變化能力可能與光密切相關(guān)。CHEN等[85]和HYUN等[86]在不同CO2濃度下培養(yǎng)中肋骨條藻,探究光合節(jié)律、溫度和CO2濃度綜合作用對其生長的影響。ZHENG等[87]調(diào)查在pH值急性變化中中肋骨條藻的光合響應(yīng),實驗結(jié)果表明:在pH=8.2,低CO2濃度條件下,生長的細(xì)胞對酸化敏感。JACOB等[88]進(jìn)行了pCO2/pH值擾動實驗,以評估CO2驅(qū)動的OA對擬中肋骨條藻的影響,結(jié)果表明:高pCO2/低pH值條件會促使有機(jī)碳更多地分配到DOC(溶解的有機(jī)碳)庫中,而低pCO2條件下,總脂肪酸(FAs)更高。

      除上述研究外,研究者還進(jìn)行了包括溫度、鹽度、氧分在內(nèi)的理化因子對于骨條藻影響的研究。YAN等[89]使用三因素實驗研究溫度、輻照度和鹽度對中肋骨條藻生長的綜合影響,解釋了中肋骨條藻廣泛分布于海洋和河口的原因,為預(yù)測骨條藻引發(fā)的赤潮提供可靠環(huán)境依據(jù)。RUDIYANTI等[90]、SUPIYANTINI等[91]和EBRAHIMI等[92]在不同鹽度下培養(yǎng)中肋骨條藻,探究鹽度對骨條藻生長及其營養(yǎng)成分的影響。研究發(fā)現(xiàn),中肋骨條藻在23‰~35‰鹽度范圍內(nèi)生長良好,且在鹽度為33‰時中肋骨條藻有最大生物量,驗證了中肋骨條藻適宜生存于海洋環(huán)境。還有研究者調(diào)查了日本3個微咸水域中的中肋骨條藻、熱帶骨條藻、近鹽骨條藻和多恩骨條藻[93],西班牙北部畢爾巴鄂河的中肋骨條藻、多恩骨條藻、曼氏骨條藻[94],和上海淀山湖、滴水湖中的近鹽骨條藻[95],探究了鹽度對不同種類生長的影響,探討了骨條藻的適宜生長條件。WU等[96]發(fā)現(xiàn)缺氧對中肋骨條藻的細(xì)胞大小、密度、葉綠素濃度等生物學(xué)特征均產(chǎn)生負(fù)面影響,該研究首次為海洋生態(tài)系統(tǒng)中缺氧對浮游植物的影響提供證據(jù)。SONG等[97]研究了在無營養(yǎng)限制下,不同光強(qiáng)度和溫度對從京畿道灣分離出的瑪氏-多恩骨條藻復(fù)合體的影響。

      3.5? 碳固定代謝途徑

      劉乾等[98]以瑪氏骨條藻轉(zhuǎn)錄組信息為基礎(chǔ),構(gòu)建了瑪氏骨條藻碳固定代謝通路并分析了不同生長時期,代謝途徑中酶編碼基因的差異表達(dá),研究發(fā)現(xiàn),代謝通路中含18種酶對應(yīng)34個編碼基因,且C3和C4代謝途徑中存在表達(dá)差異的基因分別有7個和3個。2020年,LIU等[99]利用轉(zhuǎn)錄組測序和qRT-PCR對瑪氏骨條藻碳固定途徑展開進(jìn)一步研究,分析了瑪氏骨條藻碳固定基因的表達(dá)模式,同時發(fā)現(xiàn)一系列碳固定基因在不同條件下表達(dá)水平不同,有助于探究瑪氏骨條藻的基因表達(dá)機(jī)制,增進(jìn)研究者對硅藻碳固定途徑的理解。

      4? 總結(jié)與展望

      近20年來,研究者們圍繞骨條藻進(jìn)行了大量工作,在生態(tài)學(xué)、生理學(xué)等方面取得了較大進(jìn)展。此外,研究者還發(fā)現(xiàn)骨條藻具有較高的應(yīng)用價值,可進(jìn)行大規(guī)模培養(yǎng),用作餌料、生產(chǎn)生物柴油原料、化妝品原料,及治療癌癥的候選物[100]。因此,對骨條藻生理、應(yīng)用等方面的研究日益增多。

      目前,骨條藻的研究仍存在一些問題。在系統(tǒng)分類學(xué)方面,已發(fā)現(xiàn)13個今生種,但種間重要的形態(tài)學(xué)區(qū)分特征仍不明確。模式種中肋骨條藻的基因序列較混亂,影響分子系統(tǒng)學(xué)研究的準(zhǔn)確性。近鹽骨條藻等多種骨條藻形態(tài)特征會隨鹽度改變,導(dǎo)致骨條藻不易鑒定,種間關(guān)系不清晰。在生態(tài)學(xué)方面,研究者們主要研究了骨條藻在各大海域的分布特征,而關(guān)于淡水骨條藻,鮮有報道。近年來本實驗室在我國內(nèi)陸水體,如太湖、鄱陽湖、蘇州河中頻繁發(fā)現(xiàn)骨條藻,并在某一時期成為優(yōu)勢種。這些淡水骨條藻的來源及其分布都是值得關(guān)注的問題。在生理學(xué)方面,研究多結(jié)合分子生物學(xué)手段展開,但研究局限于兩個種類:中肋骨條藻和瑪氏骨條藻,這可能是因為這兩個種類已進(jìn)行基因組測序工作,遺傳背景較為清晰,方便對數(shù)據(jù)進(jìn)行深入挖掘和分析。

      綜上,骨條藻屬可從以下幾個方面加強(qiáng)研究:1) 整理核實骨條藻屬種類,特別是中肋骨條藻分子數(shù)據(jù)的準(zhǔn)確性;2) 綜合形態(tài)學(xué)及分子生物學(xué)手段,明確種間形態(tài)特征界限,尋找鑒定骨條藻物種的有效標(biāo)記基因;3) 開展骨條藻在半咸水和淡水中分布特征的研究,分析其近些年頻發(fā)的原因;4) 探究骨條藻形態(tài)隨鹽度等理化因子變化的規(guī)律及內(nèi)在分子機(jī)制,探討藻類的抗性機(jī)理;5) 進(jìn)一步探究骨條藻引發(fā)赤潮的內(nèi)在機(jī)理,提供有效的赤潮監(jiān)測和防治方法。

      參考文獻(xiàn):

      [1] 金德祥,陳金環(huán),黃凱歌.中國海洋浮游硅藻類 [M].上海:上??茖W(xué)技術(shù)出版社,1965.

      JIN D X,CHEN J H,HUANG K G.Marine Planktonic Diatoms in China [M].Shanghai:Shanghai Science and Technology Press,1965.

      [2] 郭玉潔,錢樹本.中國海藻志:第五卷 [M].北京:科學(xué)出版社,2003.

      GUO Y J,QIAN S B.Flora Algarum Marinarum Sinicarum:Tomus Ⅴ [M].Beijing:Science Press,2003.

      [3] TOMAS C R.Identifying Marine Phytoplankton [M].London:Academic Press,1997.

      [4] 程金鳳,高亞輝,梁君榮,等.骨條藻的種類與基因多樣性研究進(jìn)展 [J].自然科學(xué)進(jìn)展,2007,17(5):586-594.

      CHENG J F,GAO Y H,LIANG J R,et al.Research progress on species and gene diversity of Skeletonema [J].Progress in Natural Science,2007,17(5):586-594.

      [5] GREVILLE R K.Description of new and rare diatoms:Series 16 [J].Transactions of the Microscopical Society of London New,1865,13:43-57.

      [6] GREVILLE R K.Description of new and rare diatoms:Series 20 [J].Transactions of the Microscopical Society of London New,1866,14:77-86.

      [7] GEORGE N.Notes on some new and rare Diatomace? from the stomachs of Ascidi? [J].Annals and Magazine of Natural History,1986,116 (20):158-159.

      [8] CLEVE P T.Examination of diatoms found on the surface of the sea of Java [J].Bihang Till Kongl Svenska Vetensk-Akad Handlingar,1873,11(1):3-13.

      [9] ROSS R,SIMS P A,GALLAGHER J C.Proposals to conserve the names Skeletonema Grev,with a conserved type,and Skeletonemopsis P A Sims (Bacillariophyceae) [J].Taxon,1996,45:315-316.

      [10] CLEVE P T.Notes on some Atlantic plankton organisms [J].Kongl Svenska Vetensk-Akad Handlingar,1900,34:1-22.

      [11] BETHGE H.?iber die Kieselalge Sceletonema subsalsum [J].Berichte der Deutschen Botanischen Gesellschaft,1928,46:340-347.

      [12] MAKAROVA I V,PROSCHKINA L A I.Diatomeae novae e Mari Caspico [J].Novitates Systematicae Plantarum non Vascularium,1964(1):34-43.

      [13] GUILLARD R R L,CARPENTER E J,REIMANN B E F.Skeletonema menzelii sp.nov:a new diatom from the western Atlantic Ocean [J].Phycologia,1974,13:131-138.

      [14] GRETHE R H,DALE L E.Brackish water and freshwater species of the diatom genus Skeletonema.II.Skeletonema potamos comb.Nov.[J].Journal of Phycology,1976,12:73-82.

      [15] MEDLIN L K,ELWOOD H J,STICKEL S,et al.Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophyta):evidence for a new species,Skeletonema pseudocostatum 1 [J].Journal of Phycology,1991,27(4):514-524.

      [16] ADRIANA Z,ISABELLA P,PAT A S.Diversity in the genus Skeletonema (Bacillariophyta).I.a reexamination of the type material of Skeletonema costatum with the description of S.grevillei sp.NOV.1 [J].Journal of Phycology,2010,41(1):140-150.

      [17] DIANA S,WIEBE H C F K,LINDA K,et al.Diversity in the genus Skeletonema (Bacillariophyceae):II.an assessment of the taxonomy of Skeletonema costatum-like species with the description of four new species [J].Journal of Phycology,2005,41(1):151-176.

      [18] DIANA S,WIEBE H C F K,BALZANO S,et al.Diversity in the genus Skeletonema (Bacillariophyceae):III.phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei,with the description of Skeletonema ardens sp.NOV.1 [J].Journal of Phycology,2007,43(1):156-170.

      [19] SIMS P A.Skeletonemopsis,A new genus based on the fossil species of the genus Skeletonema Grev [J].Diatom Research,1994,9(2):387-410.

      [20] ZHANG Q Q,LEI S H,WANG X L,et al.Research on discrimination of 3D fluorescence spectra of phytoplanktons [J].Spectroscopy and Spectral Analysis,2004,24(10):1227-1229.

      [21] YU Z,YU Z G,CAI Q S,et al.Detection of two diatoms using sandwich hybridization integrated with nuclease protection assay (NPA-SH) [J].Hydrobiologia Volumes,2007,575:1-11.

      [22] ZHANG B Y,CHEN G F,WANG G C,et al.Identification of two Skeletonema costatum-like diatoms by fluorescence in situ hybridization [J].Chinese Journal of Oceanology and Limnology,2010,28(2):310-314.

      [23] HUANG H L,ZHU P,ZHOU C X,et al.Detection of Skeletonema costatum based on loop-mediated isothermal amplification combined with lateral flow dipstick [J].Molecular and Cellular Probes,2017,36:36-42.

      [24] ENJOJI N,TOSHIYA K,YUKI Y,et al.Development of primer sets for multiplex and qPCR assays targeting Skeletonema species and their application to field samples [J].Journal of Oceanography,2019,75:319-334.

      [25] MARLI B,MARINES G,CLARISSE O.Diversity and morphology of Skeletonema species in southern Brazil,Southwestern Atlantic Ocean [J].Journal of Phycology,2010,45(6):1348-1352.

      [26] CHEN G F,WANG G C, ZHANG B Y,et al.Morphological and phylogenetic analysis of Skeletonema costatum-like diatoms (Bacillariophyta) from the China Sea [J].European Journal of Phycology,2007,42(2):163-175.

      [27] CHENG J F,LI Y L,LIANG J R,et al.Morphological variability and genetic diversity in five species of Skeletonema (Bacillariophyta) [J].Progress in Natural Science Materials International,2008,18(11):1345-1355.

      [28] JUNG S W,SUK M Y,SANG D L,et al.Morphological characteristics of four species in the genus Skeletonema in coastal waters of South Korea [J].Algae,2009,24(4):195-203.

      [29] BORKMAN D G,SMAYDA T.Multidecadal (1959—1997) changes in Skeletonema abundance and seasonal bloom patterns in Narragansett Bay,Rhode Island,USA [J].Journal of Sea Research,2009,61(1/2):84-94.

      [30] CANESI K L,RYNEARSON T A.Temporal variation of Skeletonema community composition from a long-term time series in Narragansett Bay identified using high-throughput DNA sequencing [J].Marine Ecology Progress Series,2016,556:1-16.

      [31] 張曉東.廈門港骨條藻屬Skeletonema (Bacillariophyta) 物種多樣性及周年變化的研究 [D].青島:中國科學(xué)院研究生院(海洋研究所),2012:20-38.

      ZHANG X D.Diversity and annual variation of Skeletonema (Bacillariophyta) in Xiamen Harbor waters [D].Qingdao:Graduate School of the Chinese Academy of Sciences (Institute of Oceanology),2012:20-38.

      [32] GU H,ZHANG X D,SUN J,et al.Diversity and seasonal occurrence of Skeletonema (Bacillariophyta) species in Xiamen Harbour and surrounding seas,China [J].Cryptogamie Algologie,2012,33(3):245-263.

      [33] 吳波,崔百惠,劉琪,等.長江口骨條藻屬(Skeletonema) 種類多樣性及其形態(tài) [J].上海師范大學(xué)學(xué)報(自然科學(xué)版),2013,42(1):44-48

      WU B,CUI B H,LIU Q,et al.Morphological description of the Genus Skeletonema (Bacillariophyceae) in Yangtze River Estuary,China [J].Journal of Shanghai University (Natural Sciences),2013,42(1):44-48.

      [34] CARVALHO T,BECKER V,SANTOS C B D.Skeletonema potamos (Bacillariophyta) in Patos Lagoon,southern Brazil:taxonomy and distribution [J].Revista Peruana De Biología,2011,16(1):93-96.

      [35] DULEBA M,ECTOR L,HORVATH Z,et al.Biogeography and phylogenetic position of a warm-stenotherm centric diatom,Skeletonema potamos (C.I.Weber) hasle and its long-term dynamics in the River Danube [J].Protist,2014,165(5):715-729.

      [36] PIANA M G,F(xiàn)ERRARI G.Skeletonema tropicum (Bacillariophyceae) present in Uruguayan southern coastal waters [J].Diheringia Serie Botanica,2009,64(2):145-149.

      [37] LIU D Y,JIANG J J, WANG Y,et al.Large scale northward expansion of warm water species Skeletonema tropicum (Bacillariophyceae) in China Seas [J].Chinese Journal of Oceanology and Limnology,2012,30:519-527.

      [38] PFANNKUCHEN D M,GODRIJAN J, TANKOVIC M S,et al.The ecology of one cosmopolitan,one newly introduced and one occasionally advected species from the genus Skeletonema in a highly structured ecosystem,the Northern Adriatic [J].Microbial Ecology,2018,75:674-687.

      [39] SALGADO X A,CID M N,PIEDRACOBA S,et al.Origin and fate of a bloom of Skeletonema costatum during a winter upwelling/downwelling sequence in the Ría de Vigo (NW Spain) [J].Journal of Marine Research,2005,63(6):1127-1149.

      [40] LI C,ZHU B B,CHEN H,et al.The relationship between the Skeletonema costatum red tide and environmental factors in Hongsha Bay of Sanya,South China Sea [J].Journal of Coastal Research,2009,25 (3):651-658.

      [41] 文世勇,趙冬至.基于營養(yǎng)鹽的渤海灣海域中肋骨條藻赤潮危險度評估 [J].海洋環(huán)境科學(xué),2011,30(1):28-31.

      WEN S Y,ZHAO D Z.Hazard degree assessment of Skeletonema costatum red tide based on nutrient in Bohai Bay [J].Marine Environmental Science,2011,30(1):28-31.

      [42] SHEHATA N,MEEHAN K,LEBER D E.Oceanography of Skeletonema costatum harmful algal blooms in the East China Sea using MODIS and Quick SCAT satellite data [J].Journal of Applied Remote Sensing,2012,6(1):1-18.

      [43] TSURUTA K,YOSHIDA Y,KUSUMOTO N,et al.Inhibition activity of essential oils obtained from Japanese trees against Skeletonema costatum [J].Journal of Wood Science,2011,57:520-525.

      [44] JIANG D,HUANG L F,LIN Y Q,et al.Inhibitory effect of Salicornia europaea on the marine alga Skeletonema costatum [J].Science China Life Sciences,2012,55:551-558.

      [45] 韓貝貝,張書飛,吳風(fēng)霞,等.一株嗜鹽桿菌對中肋骨條藻的溶藻作用機(jī)理研究 [J].生態(tài)科學(xué),2020,39(1):1-9.

      HAN B B,ZHANG S F,WU F X,et al.Study of algicidal mechanism on Skeletonema costatum by Halobacillus bacteria [J].Ecological Science,2020,39(1):1-9.

      [46] WANG D,HUANG S Y.Influences of light-dark cycle on production of extracellar polysaccharide in three marine planktonic diatom species [J].Journal of Xiamen University,2004,43(2):244-248.

      [47] VIDOUDEZ C,POHNERT G.Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases [J].Metabolomics,2012,8(4):654-669.

      [48] CHUNG C C,HWANG S P,CHANG J.Cooccurrence of ScDSP gene expression,cell death,and DNA fragmentation in a marine diatom,Skeletonema costatum [J].Applied and Environmental Microbiology,2005,71(12):8744-8751.

      [49] CHUNG C C,HWANG S P,CHANG J.The identification of three novel genes involved in the rapid-growth regulation in a marine diatom,Skeletonema costatum [J].Marine Biotechnology,2009,11(3):356-367.

      [50] WU H Y,GAO K S,WU H Y.Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures [J].Journal of Photochemistry and Photobiology B:Biology,2009,94(2):82-86.

      [51] WU H Y,GAO K S.Ultraviolet radiation stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum [J].Functional Plant Biology,2009,36:137-143.

      [52] NAHON S, FRANCOIS C, FRANCOIS L, et al.Ultraviolet radiation negatively affects growth and food quality of the pelagic diatom Skeletonema costatum [J].Journal of Experimental Marine Biology and Ecology,2010,383(2):164-170.

      [53] WEI S,HWANG S P,CHANG J.Influence of ultraviolet radiation on the expression of proliferating cell nuclear antigen and dna polymerase α in Skeletonema costatum (Bacillariophyceae) [J].Journal of Phycology,2010,40(4):655-663.

      [54] 苗洪利,孫麗娜,田慶震,等.光照對中肋骨條藻和利瑪原甲藻生長的影響 [J].光電子·激光,2011,22(5):158-162.

      MIAO H L,SUN L N,TIAN Q Z,et al.Effects of illumination on the growth of Skeletonema costatum and Prorocentrum lina [J].Journal of Optoelectronics ·Laser,2011,22(5):158-162.

      [55] MIAO H L,SUN L N,TIAN Q Z,et al.Study on the effect of monochromatic light on the growth of the red tide diatom Skeletonema costatum [J].Optics and Photonics Journal,2012,2:152-156.

      [56] OREFICEA I, CHANDRASEKARAN R, SMERILLI A,et al.Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi [J].Algal Research,2016,17:1-13.

      [57] RAGHU C,BARRAA L,CARILLOC S.Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi [J].Journal of Biotechnology,2014,192:114-122.

      [58] SMERILLI A,BALZANO S,MASELLI M,et al.Antioxidant and photoprotection networking in the coastal diatom Skeletonema marinoi [J].Antioxidants,2019,8(154):1-19.

      [59] SUN B,LIANG SK,WANG C Y,et al.Role of irradiance on the seasonality of Skeletonema costatum Cleve blooms in the coastal area in East China Sea [J].Environmental science,2008,29(7):1849-1854.

      [60] GUIH?NEUF F,MIMOUNI V,ULMANN L.Environmental factors affecting growth and omega 3 fFatty acid composition in Skeletonema costatum.The Influences of Irradiance and Carbon Source [J].Diatom Research,2008,23(1):93-103.

      [61] LAWRENZ E,RICHARDSON T L.Differential effects of changes in spectral irradiance on photoacclimation,primary productivity and growth in Rhodomonas salina (Cryptophyceae) and Skeletonema costatum (Bacillariophyceae) in simulated blackwater environments [J].Journal of Phycology,2017,53(6):1241-1254.

      [62] NORRICI A,BAZZONI A M,PUGNETTI A,et al.Impact of irradiance on the C allocation in the coastal marine diatom Skeletonema marinoi Sarno and Zingone [J].Plant,Cell and Environment,2011,34:1666-1677.

      [63] HU H,SHI Y J,CONG W,et al.Growth and photosynthesis limitation of marine red tide alga Skeletonema costatum by low concentrations of Zn2+ [J].Biotechnology Letters,2003,25(22):1881-1885.

      [64] SHI Y J,HU H,MA R Y,et al.Improved use of organic phosphate by Skeletonema costatum through regulation of Zn2+ concentrations [J].Biotechnology Letters,2004,26(9):747-751.

      [65] GAO G,GAO K S,GIORDANO M.Responses to solar UV radiation of the diatom Skeletonema costatum (bacillariophyceae) grown at different Zn2+ concentrations [J].Journal of Phycology,2010,45:119-129.

      [66] ZHU Z J, WU Y P, XU J T,et al.High copper and UVR synergistically reduce the photochemical activity in the marine diatom Skeletonema costatum [J].Journal of Photochemistry and Photobiology B:Biology,2019,192:97-102.

      [67] WANG B,CHEN M,ZHENG M F,et al.Responses of two coastal algae (Skeletonema costatum and Chlorella vulgaris) to changes in light and iron levels [J].Journal of Phycology,2020,56(3):618-629.

      [68] 張梅,邢永澤,甄毓,等.實時熒光定量PCR分析中不同鐵濃度處理下瑪氏骨條藻內(nèi)參基因的篩選 [J].海洋學(xué)報,2020,42(2):124-133.

      ZHANG M,XING Y Z,ZHEN Y,et al.Screening of the reference genes of Skeletonema marinoi under different concentration of Fe2+ conditions in real-time quantitative PCR analysis [J].Acta Oceanologica Sinica,2020,42(2):124-133.

      [69] 王洪斌,成明,錢鵬,等.金屬離子對中肋骨條藻的脅迫效應(yīng)及葉綠素a合成的影響 [J].海洋科學(xué),2012,36(7): 104-108.

      WANG H B,CHENG M,QIAN P,et al.The stress effects of metal ions on Skeletonema costatum and the influences on chlorophyll a synthesis [J].Marine Sciences,2012,36(7):104-108.

      [70] HWANG U K,MI R H M,LEE J W,et al.Toxic effects of heavy metal (Cd,Cu,Zn) on population growth rate of the marine diatom (Skeletonema costatum) [J].Korean Journal of Environmental Biology,2014,32(3):243-249.

      [71] SOEDARTI T,MARYONO L R,HARIY S.Bioremediation of lead [Pb II] contaminated sea water by marine diatom Skeletonema costatum [J].Icsbe,2016:263-270.

      [72] YANG G,LI C , SUN J J. Influence of salinity and nitrogen content on production of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) by Skeletonema costatum [J].Chinese Journal of Oceanology and Limnology,2011,29(2):378-386.

      [73] SPIELMEYER A,POHNERT G.Daytime,growth phase and nitrate availability dependent variations of dimethylsulfoniopropionate in batch cultures of the diatom Skeletonema marinoi [J].Journal of Experimental Marine Biology and Ecology,2012,413(10):121-130.

      [74] GAO G,XIA J R,YU J L,et al.Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment,with special reference to inorganic carbon acquisition [J].Marine Environmental Research,2018,133(2):15-23.

      [75] GAO G,XIA J R,YU J L,et al.Regulation of inorganic carbon acquisition in a red tide alga (Skeletonema costatum):the importance of phosphorus availability [J].Biogeosciences Discussions,2018,15(8):4871-4882.

      [76] HUANG X G,LI H, HUANG B Q,et al.Influence of dissolved organic nitrogen on Ni bioavailability in Prorocentrum donghaiense and Skeletonema costatum [J].Marine Pollution Bulletin,2015,96(1/2):368-373.

      [77] LEE K,RYNEARSON T A.Identification and expression analyses of the nitrate transporter gene (NRT2) family among Skeletonema species (Bacillariophyceae) [J].Journal of Phycology,2019,55(5):1115-1125.

      [78] LIU Y,SONG X X,HAN X T,et al.Influences of external nutrient conditions on the transcript levels of a nitrate transporter gene in Skeletonema costatum [J].Acta Oceanologica Sinica,2013,32(6):82-88.

      [79] ZHANG S F,YUAN C J,CHEN Y,et al.Comparative transcriptomic analysis reveals novel insights into the adaptive response of Skeletonema costatum to changing ambient phosphorus [J].Frontiers in Microbiology,2016,7:1-15.

      [80] ZHAN X H,LIN S J,LIU D.Transcriptomic and physiological responses of Skeletonema costatum to ATP utilization [J].Environmental Microbiology,2020,22(5):1861-1869.

      [81] WANG H L,CHEN F,MI T Z,et al.Responses of marine diatom Skeletonema marinoi to nutrient deficiency:programmed cell death [J].Marine Genomics,2015,24(1):81-88.

      [82] JING X L,MI T Z,ZHEN Y,et al.Influence of N,P,F(xiàn)e nutrients availability on nitrogen metabolism-relevant genes expression in Skeletonema marinoi [J].Journal of Ocean University of China,2019,18(1):239-252.

      [83] THANGARAJ S,SHANG X M,LIU H J.Quantitative proteomic analysis reveals novel insights into intracellular silicate stress-responsive mechanisms in the diatom Skeletonema dohrnii [J].International Journal of Molecular Sciences,2019,20(10):1-20.

      [84] BARTUAL A,GALVEZ J.Short-and long-term effects of irradiance and CO2 availability on carbon fixation by two marine diatoms [J].Canadian Journal of Botany,2003,81(3):191-200.

      [85] CHEN X W,GAO K S.Characterization of diurnal photosynthetic rhythms in the marine diatom Skeletonema costatum grown in synchronous culture under ambient and elevated CO2 [J].Functional Plant Biology,2004,31(4):399-404.

      [86] HYUN B,CHOI H K,JANG P G,et al.Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis,Chaetoceros didymus,Skeletonema costatum and Thalassiosira nordenskioeldii) in laboratory experiments [J].Journal of Environmental Science International 2014,23(6):1003-1012.

      [87] ZHENG Y,GIORDANO M,GAO K S.Photochemical responses of the diatom Skeletonema costatum grown under elevated CO2 concentrations to short-term changes in pH [J].Aquatic Biology,2015,23(1):109-118.

      [88] JACOB B G,DASSOW P V,SALISBURY J E.Impact of low pH/high pCO2 on the physiological response and fatty acid content in diatom Skeletonema pseudocostatum [J].Journal of the Marine Biological Association of the United Kingdom,2017,97(2):225-233.

      [89] YAN T,ZHOU M J,QIAN P Y.Combined effects of temperature,irradiance and salinity on growth of diatom Skeletonema costatum [J].Chinese Journal of Oceanology and Limnology,2002,20(3):237-243.

      [90] RUDIYANTI S.The Growth of Skeletonema costatum on Various Salinity Levels Media [J].Jurnal Saintek Perikanan,2011,6(2):69-76.

      [91] SUPRIYANTINI E,KELAUTAN J I,KELAUTAN P F D.Pengaruh salinitas terhadap kandungannutrisi Skeletonema costatum [J].Buletin Oseanografi Marina Januari,2013,2:51-57.

      [92] EBRAHIMI E,SALARZADEH A.The effect of temperature and salinity on the growth of Skeletonema costatum and Chlorella capsulata in vitro [J].International Journal of Life Sciences,2016,10(1):40-44.

      [93] YAMADA M,OTSUBO M,TSUTSUM Y,et al.Species diversity of the marine diatom genus Skeletonema in Japanese brackish water areas [J].Fisheries Science,2013,79:923-934.

      [94] ORUBE J H,ORIVE E,DAVID H,et al.Skeletonema species in a temperate estuary:a morphological,molecular and physiological approach [J].Diatom Research,2016,31(3):185-197.

      猜你喜歡
      生態(tài)學(xué)生理學(xué)
      《現(xiàn)代電生理學(xué)雜志》稿約
      2021年諾貝爾生理學(xué)或醫(yī)學(xué)獎揭曉!
      PBL在《動物生理學(xué)》教學(xué)改革中的應(yīng)用
      《現(xiàn)代電生理學(xué)雜志》稿約.
      唯物辯證思維在《生態(tài)學(xué)》教學(xué)中的應(yīng)用
      東方教育(2016年21期)2017-01-17 20:21:49
      生態(tài)學(xué)視野下的幼兒園環(huán)境創(chuàng)設(shè)探析
      遼西地區(qū)油松造林的生態(tài)學(xué)探討
      以生態(tài)學(xué)理論為基礎(chǔ)的和諧警民關(guān)系對策研究
      青年時代(2016年27期)2016-12-08 22:20:00
      生態(tài)化高職英語翻轉(zhuǎn)課堂模式設(shè)計研究
      《現(xiàn)代電生理學(xué)雜志》稿約
      琼中| 林芝县| 日照市| 盐边县| 郑州市| 冀州市| 阳新县| 竹北市| 牙克石市| 竹山县| 南通市| 射阳县| 安岳县| 迁西县| 苍山县| 清水县| 鄯善县| 小金县| 抚州市| 通江县| 兖州市| 乌什县| 三都| 那坡县| 南康市| 东光县| 土默特右旗| 镇康县| 神木县| 靖远县| 彭阳县| 简阳市| 芮城县| 依安县| 东乌珠穆沁旗| 宿迁市| 隆化县| 长白| 宁国市| 沽源县| 墨脱县|