岳海燕,金阿芳,高衛(wèi)強(qiáng)
(新疆大學(xué)機(jī)械工程學(xué)院,新疆烏魯木齊830047)
我國面積遼闊,鐵路運(yùn)輸具有不可替代的作用,20世紀(jì)90年代以來,中國對高速鐵路的建設(shè)開展了大量的科學(xué)研究和技術(shù)攻關(guān),我國鐵路形成了具有中國特色的高鐵技術(shù)體系[1].蘭新高速鐵路于2014年通車,是中國《中長期鐵路網(wǎng)規(guī)劃》的重點(diǎn)項目,也是歐亞大陸橋鐵路走廊不可或缺的部分.
新疆植被稀少,沙源豐富,在大風(fēng)經(jīng)過的地帶就會形成沙塵天氣[2].大風(fēng)區(qū)內(nèi)自然條件惡劣,風(fēng)速高、風(fēng)期長、起風(fēng)速度快,尤其是百里風(fēng)區(qū)和三十里風(fēng)區(qū),屬于內(nèi)陸風(fēng)力最為強(qiáng)勁的地區(qū).蘭新線百里風(fēng)區(qū)每年都會出現(xiàn)速度超過40 m/s 的大風(fēng),實(shí)測最大風(fēng)速(瞬時)可達(dá)64 m/s,給鐵路運(yùn)輸造成了巨大的安全隱患.目前高速列車的行駛速度不斷提高,而列車由于大風(fēng)影響出現(xiàn)事故的情況頻發(fā)[3].強(qiáng)風(fēng)容易造成諸如火車傾覆,車窗玻璃破碎和鐵路交通設(shè)施損壞等事故,而高速列車普遍運(yùn)行速度快,對環(huán)境要求高,強(qiáng)橫風(fēng)將嚴(yán)重影響列車的安全運(yùn)營[4].
根據(jù)以往的經(jīng)驗(yàn)總結(jié)和大風(fēng)對既有線路的危害分析,鐵路運(yùn)營需要解決列車傾覆、軌道積沙、沙石擊碎玻璃等諸多問題,以免影響鐵路安全運(yùn)營.在橫風(fēng)等惡劣天氣下,列車能否盡可能抵抗其影響從而安全運(yùn)營是衡量列車運(yùn)行的重要特征[5].為保障列車在大風(fēng)天氣下能正常運(yùn)行,國內(nèi)外多采取建造擋風(fēng)墻來減小橫風(fēng)對列車運(yùn)行影響的措施[6,7],擋風(fēng)墻是行之有效的防風(fēng)手段.
研究人員對此進(jìn)行了眾多探索,MARIJO 等[8]運(yùn)用試驗(yàn)與數(shù)值計算方法研究了三維擋風(fēng)墻后紊流的特性.張軍平等[9]通過對路基周圍風(fēng)沙流場數(shù)值分析,發(fā)現(xiàn)在路基周圍會出現(xiàn)氣流運(yùn)動的速度分區(qū),并針對不同速度分區(qū)進(jìn)行研究.許志峰[10]研究了擋風(fēng)墻的疏透度,并提出使列車平穩(wěn)運(yùn)行的擋風(fēng)墻設(shè)置.張潔等[11]提出兩種優(yōu)化擋風(fēng)墻坡腳的方案,研究其對列車氣動力系數(shù)的影響.鄭曉靜等[12]對鐵路沿線已有擋風(fēng)墻在受強(qiáng)側(cè)風(fēng)作用時避免行進(jìn)列車傾覆方面的有效性以及擋風(fēng)墻沿線所存在的積沙問題進(jìn)行了定量分析.牛波等[13]通過數(shù)值模擬方法研究高速列車在不同車速和不同沙塵暴等級下運(yùn)行時,沙塵對擋風(fēng)墻高度和距離等參數(shù)的影響.
上述文獻(xiàn)主要從設(shè)置擋風(fēng)墻后,防止列車傾覆的角度去研究,忽略了擋風(fēng)墻的阻沙效果及流場特性.蘭新高鐵線路所處的特殊地理環(huán)境和氣象條件,不僅要求沿線的擋風(fēng)墻具有擋風(fēng)作用外,還要具備防沙阻沙效果.本文利用CFD方法,借助湍流模型與DPM模型,模擬了不同初始風(fēng)速的強(qiáng)風(fēng)沙途經(jīng)不同參數(shù)的擋風(fēng)墻時路堤周圍的流場情況,繼而分析不同工況的擋風(fēng)墻對強(qiáng)風(fēng)沙的響應(yīng)規(guī)律,為今后西北多風(fēng)沙地區(qū)鐵道工程設(shè)置擋風(fēng)墻提供參考.
本文主要計算風(fēng)沙條件下,擋風(fēng)墻周圍的流場特性,采用DPM離散相模型進(jìn)行數(shù)值模擬.控制方程包括質(zhì)量方程、動量方程與湍流模型方程,本文選擇k-ε 湍流模型.
連續(xù)方程
式中,ρ為密度,t為時間,u為速度,單位都為國際單位.
動量方程
式中,p為流體微單元上的壓強(qiáng),τxx,τyy,τzz等是因分子粘性作用而產(chǎn)生的作用在微單元體表面上的粘性應(yīng)力τ的分量,fx,fy,fz為三個方向的單位質(zhì)量力.
K ?ε方程
式中,k為湍動能,μt為湍動強(qiáng)度,ε為湍動耗散率,u為速度分量,G由平均速度梯度引起的湍動能產(chǎn)生,σt,σε為響應(yīng)的普朗特系數(shù),C為經(jīng)驗(yàn)常數(shù).
在大風(fēng)地區(qū)需要設(shè)置擋風(fēng)墻以減弱強(qiáng)風(fēng)對高速列車的影響,文中擋風(fēng)墻高度設(shè)定為H m.經(jīng)查閱文獻(xiàn),風(fēng)區(qū)多為季風(fēng)且風(fēng)向穩(wěn)定,因此,設(shè)計模型為單側(cè)擋風(fēng)墻.借助CFD方法對路堤及擋風(fēng)墻流場進(jìn)行數(shù)值計算,攜帶不同體積含量沙粒的風(fēng)沙流以一定的速度沿水平方向進(jìn)入流場左側(cè),因空氣質(zhì)量較輕,可忽略其重力對速度的影響.
采用直立式擋風(fēng)墻,以蘭新高鐵沿線中某一典型擋風(fēng)墻幾何尺寸為設(shè)計原型建立數(shù)值模型,如圖1所示.設(shè)定路堤高度為3 m,路堤邊坡坡比為1:1,擋風(fēng)墻位置設(shè)置在距離路堤迎風(fēng)側(cè)坡腳3 m處,墻高為H m,路堤兩側(cè)坡腳都距離模型邊界20 m.
為了讓氣流的繞流和流場充分發(fā)展,避免擋風(fēng)墻背風(fēng)側(cè)渦旋流對出口邊界條件的影響,數(shù)值計算模型長度為55 m,高度為15 m,寬度為25 m.
模型左側(cè)為速度進(jìn)口邊界條件(VELOCITY-INLET),設(shè)置為含有沙粒的均勻風(fēng)場,風(fēng)速均勻,沙粒直徑一般在0.1 mm~0.25 mm;模型右側(cè)為出口,出口采用自由出口邊界條件(OUTLET-VENT),其余設(shè)置為無滑移壁面邊界條件(WALL).
圖1 計算區(qū)域與邊界條件Fig 1 Calculating area and boundary conditions
本文為保證數(shù)值模擬的準(zhǔn)確性和計算效率,不過多占用計算資源,使用ICEM CFD軟件進(jìn)行網(wǎng)格劃分,如圖2所示.由風(fēng)沙流場的運(yùn)動特性可知,靠近擋風(fēng)墻,路堤的運(yùn)動更為復(fù)雜,因此在進(jìn)口、擋風(fēng)墻與路堤周圍處的網(wǎng)格劃分較為稠密,在出口、地面、壁面的網(wǎng)格較為稀疏,這樣既可以節(jié)約計算時間,加快數(shù)值模擬的收斂速度,又充分考慮到重點(diǎn)觀測部位以保證模擬的有效性和準(zhǔn)確性,提高了計算精度.計算工況如表1所示.
圖2 計算域網(wǎng)格Fig 2 The grids of calculation field
表1 計算工況Tab 1 Calculation conditions
國內(nèi)關(guān)于風(fēng)沙流運(yùn)動特性研究的歷史較短,大多數(shù)研究機(jī)構(gòu)通過風(fēng)洞試驗(yàn)或者實(shí)際野外觀測的手段,本文使用數(shù)值模擬方法,研究未布設(shè)擋風(fēng)墻的情況下,路堤周圍的流場特性.氣流和沙粒從流場左側(cè)以20 m/s的速度平行于地表進(jìn)入,氣流的速度分布云圖和速度矢量圖如圖3所示.
圖3 路堤周圍流場分布圖Fig 3 Flow field distribution around the embankment
如圖3所示,氣流遇到路堤阻擋后,運(yùn)動方向發(fā)生改變,在路堤迎風(fēng)側(cè)路肩處開始形成速度分區(qū),在路堤上方速度變大,在迎風(fēng)側(cè)坡腳和背風(fēng)側(cè)處形成低速區(qū),且背風(fēng)側(cè)的風(fēng)速減小的范圍要遠(yuǎn)大于迎風(fēng)側(cè)坡腳處,由于受到迎風(fēng)側(cè)坡面的影響,風(fēng)速沿著坡面逐漸疊加,在迎風(fēng)側(cè)路肩上方位置風(fēng)速急劇增大,對路肩的侵蝕也最為嚴(yán)重,且沙粒也極易堆積在迎風(fēng)側(cè)與路堤處,影響列車的安全通行.
圖4為路堤迎風(fēng)側(cè)坡腳和路肩處斷面上的風(fēng)速廓線圖,由圖4可知,在迎風(fēng)側(cè)坡腳處,自0 m~3.4 m范圍內(nèi),與路肩高度平齊處速度增長速度較快,從0 m/s增長至20 m/s左右,進(jìn)入高速區(qū),自此大約維持在22 m/s左右,風(fēng)速相對穩(wěn)定;在迎風(fēng)側(cè)路肩處,速度高達(dá)32 m/s,而后又沿著高度逐漸減小,直到距離路肩上方3 m處,速度減小緩慢,風(fēng)速達(dá)到相對穩(wěn)定的狀態(tài),此現(xiàn)象也與圖3描繪的現(xiàn)象相符.
圖4 路堤不同位置處的風(fēng)速廓線圖Fig 4 Wind speed profile at different locations of the embankment
為了研究擋風(fēng)墻背風(fēng)側(cè)流場特性,設(shè)定入口風(fēng)速為20 m/s,擋風(fēng)墻高度為3 m,對流場進(jìn)行模擬,結(jié)果如圖5所示.
由圖5(a)和圖5(b)可以看出,攜帶沙粒的氣流在受到擋風(fēng)墻和路堤的阻礙時,氣流運(yùn)動方向發(fā)生明顯變化,過流斷面減小,氣流被壓縮發(fā)生繞流,且攜沙氣流的速度也形成較為明顯的分區(qū),在擋風(fēng)墻頂端上方區(qū)域,形成高速區(qū),在擋風(fēng)墻與路堤迎風(fēng)側(cè)之間、路堤上方、路堤背風(fēng)側(cè)形成低速區(qū),在擋風(fēng)墻與路堤迎風(fēng)側(cè)之間形成渦流,此處沙粒運(yùn)動也較為復(fù)雜,速度減小,一部分沙??赡軙逊e,同時也起到了凈化氣流的作用,且背風(fēng)側(cè)坡腳氣流速度減小的范圍要大于迎風(fēng)側(cè)坡腳的范圍,當(dāng)氣流繞過擋風(fēng)墻后,過流斷面增大,氣流會攜帶一部分沙粒越過路堤上方,一些吹向遠(yuǎn)處,一些落在擋風(fēng)墻背風(fēng)側(cè),形成堆積.經(jīng)過一段時間后,速度與方向又逐漸恢復(fù)到初始狀態(tài),繼續(xù)流動.
圖5 設(shè)置3 m高擋風(fēng)墻周圍流場圖Fig 5 Flow field diagram around a 3 m high windshield wall
在高速鐵路軌道旁設(shè)置擋風(fēng)墻,在保護(hù)列車盡可能少的受到風(fēng)沙侵蝕的同時,又可減少鐵軌路面上的積沙面積,不讓列車運(yùn)行受到積沙的影響.擋風(fēng)墻的高度也直接影響著工程造價和保護(hù)列車及軌道的效果.擋風(fēng)墻越高,工程造價越高,需要的抗傾覆力矩也越大,擋風(fēng)墻太低起不到應(yīng)有的效果,所以,一個合理的擋風(fēng)墻高度起到了至關(guān)重要的作用.
風(fēng)沙流是指含有沙粒的氣流,其形成要有較為密集的沙粒和一定速度的風(fēng)力.風(fēng)攜帶沙粒吹向擋風(fēng)墻周圍,研究不同高度條件下?lián)躏L(fēng)墻周圍的流場主要是觀察氣流通過擋風(fēng)墻之后的速度變化情況.為了研究不同高度條件下?lián)躏L(fēng)墻背風(fēng)側(cè)的風(fēng)速特征,分別取擋風(fēng)墻高度為2.5 m,3 m,3.5 m,4 m,攜帶沙粒的風(fēng)速分別以20 m/s,30 m/s,40 m/s的工況進(jìn)行數(shù)值模擬.截取同一個面處,對距離擋風(fēng)墻背風(fēng)側(cè)1.5 m處進(jìn)行數(shù)據(jù)提取.
圖6 擋風(fēng)墻高度2.5 m時不同初始風(fēng)速的風(fēng)速廓線圖Fig 6 Wind speed profile of different initial windspeeds when the heigh of the windshield is 2.5 m
圖7 擋風(fēng)墻高度3 m時不同初始風(fēng)速的風(fēng)速廓線圖Fig 7 Wind speed profile of different initial windspeeds when the height of the windshield is 3 m
研究擋風(fēng)墻背風(fēng)側(cè)風(fēng)速變化情況有著重要的作用,當(dāng)擋風(fēng)墻高度為2.5 m時,如圖6所示,三種初始風(fēng)速的變化曲線規(guī)律大致相似,在0~2.5 m的高度范圍內(nèi),當(dāng)初始風(fēng)速為20 m/s時,最大風(fēng)速為11 m/s左右;初始風(fēng)速為30 m/s時,最大速度為16 m/s左右;初始風(fēng)速為40 m/s時,最大速度為21 m/s左右.在2.5 m~15 m的高度范圍內(nèi),風(fēng)速廓線都經(jīng)歷了先減小后增大的變化過程,初始風(fēng)速分別為20 m/s,30 m/s,40 m/s時,期間最小速度分別為6 m/s,8 m/s,12 m/s,在高速區(qū)時,速度又分別最大增加至31 m/s,47 m/s,63 m/s,而后隨著風(fēng)沙的流動,慢慢減速至初始速度.
當(dāng)擋風(fēng)墻高度為3 m時,如圖7所示,在0~5 m的高度內(nèi),三種初始風(fēng)速的曲線區(qū)別很小,風(fēng)速也普遍小,初始風(fēng)速為20 m/s時,最大速度為12 m/s;初始風(fēng)速為30 m/s時,最大風(fēng)速為17 m/s;初始風(fēng)速為40 m/s時,最大風(fēng)速為15 m/s.在5 m~15 m的范圍內(nèi),速度先呈指數(shù)規(guī)律增大,分別增大至32 m/s,48 m/s,64 m/s,在擋風(fēng)墻高度2 m以上為加速區(qū),隨著高度的增加風(fēng)速呈指數(shù)分布規(guī)律上升,然后氣流速度逐漸變的平緩,漸漸趨于初始風(fēng)速.
擋風(fēng)墻高度為3.5 m時,如圖8所示,與墻高為3 m的情況相比較,大致規(guī)律相同,只是在0 ~6 m的高度范圍內(nèi),三種初始風(fēng)速的曲線略有波動,速度都較小,速度保持在10 m/s以內(nèi);在6 m~15 m的高度范圍內(nèi),在高度為7 m的時候,都達(dá)到了流場內(nèi)的最大風(fēng)速.初始風(fēng)速為20 m/s時,風(fēng)速最大為34 m/s;初始風(fēng)速為30 m/s時,風(fēng)速最大為50 m/s;初始風(fēng)速為40 m/s時,風(fēng)速最大為68 m/s,然后隨著高度的增加逐漸遠(yuǎn)離路堤,速度又漸漸較為平緩的降低至初始風(fēng)速.
當(dāng)擋風(fēng)墻高度為4 m時,如圖9所示,在距地面0 ~7 m的高度范圍內(nèi),速度波動平緩且風(fēng)速較小,最大風(fēng)速基本在11 m/s之內(nèi);在高度7 m~15 m范圍內(nèi),風(fēng)速先是呈指數(shù)規(guī)律上升.初始風(fēng)速為20 m/s時,最大風(fēng)速為35 m/s;初始風(fēng)速為30 m/s時,最大風(fēng)速為54 m/s;初始風(fēng)速為40 m/s時,最大風(fēng)速為72 m/s,然后隨著高度的增加逐漸遠(yuǎn)離路堤,速度又漸漸較為平緩的降低至初始風(fēng)速左右.
圖8 擋風(fēng)墻高度3.5 m時不同初始風(fēng)速的風(fēng)速廓線圖Fig 8 Wind speed profile of different initial wind speeds when the height of the windshield is 3.5m
圖9 擋風(fēng)墻高度4 m時不同初始風(fēng)速的風(fēng)速廓線Fig 9 Wind speed profile of different initial wind speeds when the height of the windshield is 4m
擋風(fēng)墻的高度對傾覆力矩、建造成本、阻沙效果都有至關(guān)重要的影響.在前文中,主要討論了不同風(fēng)速下,各高度擋風(fēng)墻的背風(fēng)側(cè)流場特性,為了研究擋風(fēng)墻的合理高度,將四種不同高度的擋風(fēng)墻同時做對比,進(jìn)行合理高度的比較.
如圖10所示,當(dāng)初始風(fēng)速為20 m/s時,可以看出,擋風(fēng)墻高度為2.5 m的情況與其余三種情況區(qū)別比較明顯,流場的速度波動更大,在墻的高度范圍內(nèi)速度的波動更為明顯,穩(wěn)定性較低,且離墻體近的地方風(fēng)速較大,不利于列車通行.擋風(fēng)墻高度為3 m,3.5 m,4 m時,通過比較,可以看出當(dāng)擋風(fēng)墻高度為4 m時,在相對離墻較遠(yuǎn)且遠(yuǎn)離高鐵的地方速度開始增長,安全性更高.當(dāng)初始風(fēng)速為30 m/s,40 m/s時,變化規(guī)律相似,從而說明擋風(fēng)墻高度為4 m時,對列車的保護(hù)性能更好,流場更為穩(wěn)定.
圖10 不同初始風(fēng)速下?lián)躏L(fēng)墻風(fēng)速廓線Fig 10 Wind speed profile of windshield wall under different initial wind speeds
在以上的研究分析中,未布設(shè)擋風(fēng)墻與布設(shè)擋風(fēng)墻之后的流場特性有明顯不同之處,擋風(fēng)墻改變了路堤周圍的流場分布,阻擋沙粒的沉積.
(1)在未布設(shè)擋風(fēng)墻時,攜沙氣流遇到路堤后在路堤的路肩處形成分區(qū),在迎風(fēng)側(cè)路肩上方位置風(fēng)速急劇增大,對路肩的侵蝕最為嚴(yán)重,沙粒也極易堆積在迎風(fēng)側(cè)與路堤處,影響列車安全運(yùn)行.
(2)在布設(shè)擋風(fēng)墻后,攜沙氣流遇到擋風(fēng)墻形成速度分區(qū),高速區(qū)由路堤的路肩前移到擋風(fēng)墻上方區(qū)域,且背風(fēng)側(cè)坡腳氣流速度減小的范圍要大于迎風(fēng)側(cè)坡腳的范圍.同時在擋風(fēng)墻與路堤迎風(fēng)側(cè)之間形成渦流,一部分沙??赡軙虼硕逊e,同時也起到了凈化氣流的作用,也減少了沙粒沉積在軌道的數(shù)量.
(3)不同風(fēng)速的攜沙氣流通過擋風(fēng)墻時,風(fēng)速垂直廓線的規(guī)律大致相同,呈現(xiàn)先緩慢波動增長后指數(shù)規(guī)律增長的趨勢,最后逐漸靠近初始風(fēng)速.初始風(fēng)速越高,達(dá)到的最大風(fēng)速也越大.且出現(xiàn)的最大風(fēng)速約是初始風(fēng)速的1.7倍.
(4)初始風(fēng)速一定,攜沙氣流通過不同高度擋風(fēng)墻時,風(fēng)速垂直廓線的規(guī)律大致相同.擋風(fēng)墻高度越高,在自身高度范圍內(nèi),速度波動越小.