李清香,王念新,呂 爽,葛世倫
發(fā)起人與出資者的在線交互對(duì)眾籌項(xiàng)目成功的影響
李清香,王念新*,呂 爽,葛世倫
(江蘇科技大學(xué) 經(jīng)濟(jì)管理學(xué)院,江蘇 鎮(zhèn)江 212003)
已經(jīng)有學(xué)者對(duì)眾籌成功的影響因素進(jìn)行研究,但忽略了發(fā)起人與出資者之間的在線交互對(duì)眾籌項(xiàng)目成功的影響。本文將發(fā)起人和出資者之間的在線交互分為單向溝通和雙向溝通兩類,將項(xiàng)目更新數(shù)量作為單向溝通的衡量指標(biāo),將雙向溝通分解為出資者對(duì)發(fā)起人的評(píng)論和發(fā)起人對(duì)出資者的回復(fù)兩個(gè)過程,考慮了評(píng)論數(shù)量、評(píng)論情感傾向、回復(fù)數(shù)量、回復(fù)長(zhǎng)度和回復(fù)速度等,以揭示發(fā)起人與出資者之間的在線交互對(duì)眾籌項(xiàng)目成功的影響,并利用追夢(mèng)網(wǎng)的846個(gè)項(xiàng)目數(shù)據(jù)進(jìn)行了實(shí)證分析。研究結(jié)果表明,項(xiàng)目更新數(shù)量對(duì)眾籌成功沒有影響,評(píng)論情感傾向和回復(fù)長(zhǎng)度正向影響眾籌成功,評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量和眾籌成功之間的關(guān)系。上述結(jié)果表明發(fā)起人與出資者之間的雙向溝通在眾籌過程中發(fā)揮著重要作用。
眾籌;在線交互;評(píng)論;回復(fù);語(yǔ)義分析
眾籌是指借助互聯(lián)網(wǎng)平臺(tái),以捐贈(zèng)、獲得回報(bào)物或者表決權(quán)的形式支持企業(yè)家完成特定目的的新興融資方式[1]。與傳統(tǒng)的融資方式相比,眾籌具有進(jìn)入門檻低的特點(diǎn),只要通過了眾籌平臺(tái)的審核,任何人或者機(jī)構(gòu)都可以發(fā)起眾籌項(xiàng)目,不需要特定的資質(zhì)或者提供抵押物,這也給出資者識(shí)別高質(zhì)量的項(xiàng)目帶來(lái)了困難,也就是說發(fā)起人與出資者之間存在信息不對(duì)稱。同時(shí),與傳統(tǒng)的投資者(如銀行家、天使投資人或者風(fēng)投)相比,眾籌項(xiàng)目的出資者是普通的社會(huì)大眾,他們往往不具備評(píng)估投資風(fēng)險(xiǎn)和機(jī)會(huì)的專業(yè)能力,這進(jìn)一步增加了眾籌市場(chǎng)的信息不對(duì)稱程度。
為了在信息不對(duì)稱的眾籌市場(chǎng)中做出更加科學(xué)合理的決策,出資者通常會(huì)尋求多方面的信息,判斷眾籌項(xiàng)目及其發(fā)起人的質(zhì)量[2,3]。已有研究表明項(xiàng)目描述信息[4-6](如目標(biāo)籌資額、籌資期、是否包含視頻等)、發(fā)起人的經(jīng)驗(yàn)[7,8](如過去發(fā)起項(xiàng)目的數(shù)量、過去支持項(xiàng)目的數(shù)量等)和發(fā)起人與出資者之間的交互[4,8-10](如項(xiàng)目更新、項(xiàng)目評(píng)論等)等信息,均會(huì)影響出資者的投資決策,進(jìn)而影響眾籌項(xiàng)目能否成功。
雖然上述研究已經(jīng)對(duì)眾籌成功的影響因素進(jìn)行了初步的研究,但還存在兩個(gè)方面的不足:一方面,現(xiàn)有研究?jī)H考慮了項(xiàng)目更新和項(xiàng)目獲得的評(píng)論,對(duì)發(fā)起人的回復(fù)沒有進(jìn)行研究。實(shí)際上,發(fā)起人和出資者的在線交互包括單向溝通和雙向溝通兩類,僅單向溝通的角度研究項(xiàng)目更新或者從出資者到發(fā)起人的評(píng)論,而忽略從發(fā)起人到出資者的回復(fù),很難全面系統(tǒng)地了解發(fā)起人和出資者之間的兩類在線交互對(duì)眾籌成功的重要影響;另一方面,現(xiàn)有研究?jī)H考慮了項(xiàng)目評(píng)論的數(shù)量,沒有考慮評(píng)論的情感傾向,沒有分析評(píng)論內(nèi)容對(duì)眾籌成功的影響,這有可能導(dǎo)致不準(zhǔn)確甚至是錯(cuò)誤的結(jié)論。
為了彌補(bǔ)上述研究不足,本文將發(fā)起人和出資者之間的在線交互分為單向溝通和雙向溝通兩類,將項(xiàng)目更新數(shù)量作為單向溝通的衡量指標(biāo),將雙向溝通分解為出資者對(duì)發(fā)起人的評(píng)論和發(fā)起人對(duì)出資者的回復(fù)兩個(gè)過程,將發(fā)起人回復(fù)納入研究范圍(包括回復(fù)的數(shù)量、速度和長(zhǎng)度),并運(yùn)用基于機(jī)器學(xué)習(xí)的情感分析方法,分析評(píng)論內(nèi)容的情感傾向,更為全面地探討發(fā)起人與出資者之間的在線互動(dòng)對(duì)眾籌項(xiàng)目成功的影響。利用追夢(mèng)網(wǎng)846個(gè)眾籌項(xiàng)目進(jìn)行了實(shí)證研究,結(jié)果表明,評(píng)論的情感傾向和發(fā)起人回復(fù)的長(zhǎng)度正向影響眾籌成功,評(píng)論的情感傾向正向調(diào)節(jié)評(píng)論數(shù)量與眾籌成功之間的關(guān)系。這些研究結(jié)果表明出資者評(píng)論和發(fā)起人回復(fù)在眾籌過程中發(fā)揮著重要作用,有助于揭示眾籌成功的奧秘。
眾籌作為專業(yè)術(shù)語(yǔ),是2006年首次由Michael Sullivan在博客中提出的[11]。隨后,Lambert和Schwienbacher融合了眾包的概念,將眾籌定義為“借助互聯(lián)網(wǎng)平臺(tái),以捐贈(zèng)、獲得回報(bào)物或者表決權(quán)的形式支持企業(yè)家完成特定目的的新興融資方式”[1]。Mollick認(rèn)為該定義不夠全面,如不包括P2P借貸眾籌,因此他將眾籌定義為“文化的、社會(huì)的和出于利益的企業(yè)家,不通過金融中介機(jī)構(gòu),而是直接通過互聯(lián)網(wǎng),從相對(duì)多的大眾群體中吸引相對(duì)小額投資的籌資方式”[4]。
根據(jù)發(fā)起人與出資者之間關(guān)系的不同,眾籌可以分為四種[4]:基于回報(bào)的眾籌、基于捐贈(zèng)的眾籌、基于借貸的眾籌和基于股權(quán)的眾籌。本文的研究對(duì)象為獎(jiǎng)勵(lì)類眾籌。近年來(lái),獎(jiǎng)勵(lì)類眾籌發(fā)展迅速,項(xiàng)目成功率卻不高[12]。以Kickstarter為例,該平臺(tái)上發(fā)起的項(xiàng)目共計(jì)331284個(gè),累計(jì)獲得籌資額2,793,564,048美元,共吸引出資者12,186,894人次,其中只有117223個(gè)項(xiàng)目籌資成功,成功率僅為35.82%[13]。已有的理論難以解釋為何一些項(xiàng)目成功,而另外一些項(xiàng)目卻失敗了。Ahlers等[14]展示了在同一城市、同一服務(wù)業(yè)的兩個(gè)機(jī)構(gòu)在同一個(gè)眾籌平臺(tái)上發(fā)起了兩個(gè)類似的項(xiàng)目,一個(gè)兩周后便成功了,而另一個(gè)兩個(gè)月后失敗了。因此,亟需研究影響眾籌成功的影響因素,明確出資者在眾籌平臺(tái)中為何選擇支持特定項(xiàng)目的決策機(jī)制。
鑒于眾籌發(fā)展迅速但成功率不高的現(xiàn)狀,許多學(xué)者對(duì)眾籌成功的影響因素進(jìn)行了研究。本文對(duì)已有關(guān)于眾籌成功影響因素的研究進(jìn)行歸納總結(jié),如表1所示。從表格中可以看出眾籌成功的影響因素主要來(lái)自三個(gè)方面,分別為項(xiàng)目描述信息、發(fā)起人相關(guān)信息以及發(fā)起人與出資者的交互信息。項(xiàng)目描述信息中眾籌成功的影響因素主要包括目標(biāo)籌資額、籌資期、有無(wú)視頻、圖片數(shù)量、項(xiàng)目描述的拼寫錯(cuò)誤等;發(fā)起人相關(guān)信息包括發(fā)起人社交網(wǎng)絡(luò)規(guī)模、發(fā)起人以往發(fā)起項(xiàng)目數(shù)量和以往支持項(xiàng)目的數(shù)量等;發(fā)起人與出資者之間的交互包括項(xiàng)目更新和項(xiàng)目評(píng)論。
表1 眾籌成功影響因素
注:(+)為正向影響,(-)為負(fù)向影響,(/)為沒有影響
根據(jù)信息流動(dòng)方向的不同,溝通模式可以分為兩種:?jiǎn)蜗驕贤ǎ╫ne-way communication)和雙向溝通(two-way communication)[16]。單向溝通中,只是發(fā)送方單方面地向接收方傳達(dá)信息,且發(fā)送方?jīng)]有期望會(huì)收到接收方的答復(fù)和反饋,比如廣播和電視就是典型的單向溝通。而雙向溝通則是發(fā)送方首先將信息傳達(dá)給接收方,接收方收到信息、理解處理信息后再發(fā)送反饋給發(fā)送方。也就是說,只有當(dāng)接收方將答復(fù)或者反饋發(fā)還給發(fā)送方,雙向溝通才會(huì)產(chǎn)生,比如面對(duì)面的對(duì)話以及電話溝通就是雙向溝通。
和單向溝通相比,雙向溝通主要具有以下三個(gè)優(yōu)點(diǎn)[16]。首先,雙向溝通更準(zhǔn)確。由于發(fā)送方可以收到接收方的反饋,這可以對(duì)雙方的溝通及時(shí)地改進(jìn)和修正。其次,雙向溝通更完整。雙向溝通不只是單方面信息的輸出,還包括接收方的反饋,這就形成了一個(gè)完整的溝通過程。最后,雙向溝通可以消除對(duì)信息的誤讀。在雙向溝通模式中,發(fā)送方和接收方可以順暢地相互交流,有助于消除對(duì)信息的誤讀。
為了減少出資者和發(fā)起人之間的信息不對(duì)稱程度,許多眾籌網(wǎng)站都提供了兩類發(fā)起人和出資者交互的基于計(jì)算機(jī)媒介的溝通(Computer Mediated Communication,CMC)工具,項(xiàng)目更新區(qū)和項(xiàng)目評(píng)論區(qū)。在項(xiàng)目更新區(qū),發(fā)起人單方面進(jìn)行項(xiàng)目進(jìn)展的匯報(bào),以便出資者了解項(xiàng)目進(jìn)展?fàn)顟B(tài)[11],因此發(fā)起人和出資者在項(xiàng)目更新區(qū)的互動(dòng)即為一種單向溝通。
在項(xiàng)目評(píng)論區(qū),出資者可以進(jìn)行評(píng)論,表達(dá)自己對(duì)項(xiàng)目的觀點(diǎn)或者疑問,希望得到項(xiàng)目發(fā)起人的答復(fù);發(fā)起人在收到評(píng)論信息以后,可以進(jìn)行回復(fù),回答出資者的疑問或者表示感謝等。因此,如圖1所示,在項(xiàng)目評(píng)論區(qū)的發(fā)起人和出資者之間的信息流動(dòng)是雙向的:包括出資者(發(fā)送方)發(fā)表評(píng)論給發(fā)起人(接收方)以及發(fā)起人(接收方)將回復(fù)反饋給出資者(發(fā)送方)兩個(gè)過程。因此,發(fā)起人和出資者在評(píng)論區(qū)的互動(dòng)是完整的雙向溝通過程,這有助于雙方更準(zhǔn)確地交流并且有助于降低誤讀信息的可能性,從而能夠有效降低眾籌項(xiàng)目和潛在出資者之間信息不對(duì)稱程度,從而影響出資決策或者出資意愿[6]。
圖1 發(fā)起人與出資者之間的雙向溝通
Figure1 Two-way communication between sponsors and funders
與網(wǎng)絡(luò)購(gòu)物(online shopping)相比,眾籌過程中發(fā)起人與出資者的雙向溝通更加重要。因?yàn)閷?duì)網(wǎng)絡(luò)購(gòu)物而言,消費(fèi)者在購(gòu)買商品以后發(fā)表評(píng)論是基于對(duì)商品實(shí)際的“體驗(yàn)”,后續(xù)的消費(fèi)者可以根據(jù)這種之前消費(fèi)者在真正“體驗(yàn)”后的評(píng)價(jià)來(lái)判斷商品的好壞。網(wǎng)購(gòu)消費(fèi)者挑選商品時(shí),可以直接瀏覽之前消費(fèi)者的評(píng)價(jià),而不通過和賣家的溝通判斷商品或者服務(wù)質(zhì)量。但是對(duì)眾籌項(xiàng)目而言,籌資結(jié)束之前,其對(duì)應(yīng)的產(chǎn)品或者服務(wù)是不存在的,出資者無(wú)法親自“體驗(yàn)”到項(xiàng)目的實(shí)際質(zhì)量。因此出資者在評(píng)論區(qū)發(fā)表評(píng)論只是詢問項(xiàng)目發(fā)起人關(guān)于項(xiàng)目的信息,或者表達(dá)自己對(duì)項(xiàng)目主觀的態(tài)度或者觀點(diǎn),發(fā)起人的回復(fù)不但能夠解釋出資者的疑問。而且是支持者判斷發(fā)起人的態(tài)度以及對(duì)自己項(xiàng)目的熱情和努力的信號(hào),是潛在出資者判斷項(xiàng)目質(zhì)量甚至進(jìn)行出資決策的重要依據(jù)之一[17]。
另外還有研究提出出資者與發(fā)起人或其他出資者進(jìn)行互動(dòng)形成社區(qū)參與(Community Engagement)[18],高頻率的交互可以促進(jìn)項(xiàng)目發(fā)起人和支持者之間的社會(huì)關(guān)系的建立[19,20],而且深度交互會(huì)增加他人實(shí)施善舉的信心并可以達(dá)成合作的共識(shí)[21],從而影響眾籌成功[9]。另一方面,項(xiàng)目評(píng)論區(qū)也包括情感層面和社交層面的互動(dòng),這會(huì)對(duì)潛在出資者產(chǎn)生人際關(guān)系的影響,而人際溝通會(huì)直接或間接地影響潛在出資者出資決策或出資意愿[22,23]。實(shí)證研究的結(jié)果也表明,項(xiàng)目評(píng)論區(qū)的互動(dòng)是影響眾籌成功的關(guān)鍵因素之一。如,Zheng認(rèn)為發(fā)起人與出資者在線互動(dòng)的次數(shù)越多,項(xiàng)目能獲得的籌資額越高[24];Kraus對(duì)項(xiàng)目獲得的評(píng)論數(shù)與項(xiàng)目籌資的關(guān)系進(jìn)行研究發(fā)現(xiàn),在不考慮其他因素的情況下,項(xiàng)目評(píng)論數(shù)與項(xiàng)目籌資額存在正相關(guān)關(guān)系[25]。
鑒于發(fā)起人和出資者的在線交互在籌資過程中發(fā)揮重要作用,本文同時(shí)研究了單向溝通和雙向溝通對(duì)眾籌項(xiàng)目成功的影響,研究模型如圖2所示。其中,將項(xiàng)目更新數(shù)量作為單向溝通的衡量指標(biāo),而將雙向溝通分解為出資者評(píng)論和發(fā)起人回復(fù)兩個(gè)過程,考慮了評(píng)論數(shù)量、評(píng)論情感傾向、回復(fù)數(shù)量、回復(fù)長(zhǎng)度和回復(fù)速度等變量,全面研究發(fā)起人和出資者的在線交互對(duì)眾籌成功的影響。除此之外,本文還考慮了項(xiàng)目屬性(如目標(biāo)籌資額、籌資期、視頻數(shù)、圖片數(shù))和發(fā)起人的信息(如發(fā)起人以往發(fā)起項(xiàng)目和支持項(xiàng)目的數(shù)量)等控制變量,因?yàn)橐延醒芯勘砻?,這些變量對(duì)眾籌項(xiàng)目成功有顯著影響。
圖2 研究模型
Figure 2 Research model
已有研究表明具有激情(passion)的創(chuàng)業(yè)者會(huì)不停地思考和討論創(chuàng)業(yè)想法,并且能夠動(dòng)員一切資源將其想法轉(zhuǎn)化為現(xiàn)實(shí)[17]。眾籌項(xiàng)目具有創(chuàng)業(yè)特征,潛在出資者同樣可以根據(jù)發(fā)起人進(jìn)行項(xiàng)目更新的頻率,判斷發(fā)起人對(duì)自己項(xiàng)目的激情程度。頻繁且專業(yè)的更新可以向出資者展示發(fā)起人在自己項(xiàng)目中付出的努力和發(fā)起人對(duì)自己項(xiàng)目的激情。發(fā)起人進(jìn)行越多的項(xiàng)目更新,潛在出資者受到其激情影響的可能性越大,從而越有可能進(jìn)行出資支持?;诖?,本文提出:
H1:眾籌項(xiàng)目更新數(shù)量越多,眾籌成功的可能性越大
評(píng)論區(qū)作為一種CMC工具,支持發(fā)起人和出資者進(jìn)行在線溝通互動(dòng)。如果出資者對(duì)項(xiàng)目感興趣,除了通過項(xiàng)目描述或者發(fā)起人信息來(lái)了解項(xiàng)目,還會(huì)在評(píng)論區(qū)發(fā)表評(píng)論以提出對(duì)項(xiàng)目的疑惑或者表達(dá)自己的觀點(diǎn)。這些評(píng)論可以幫助潛在出資者獲得更多項(xiàng)目相關(guān)信息,降低眾籌過程中的信息不對(duì)稱性,從而幫助潛在出資者做出出資項(xiàng)目的決策。已有研究也證明,評(píng)論數(shù)量正向影響眾籌成功[9]。因此,本文提出:
H2:眾籌項(xiàng)目評(píng)論越多,眾籌成功的可能性越大
消費(fèi)者在網(wǎng)上購(gòu)買商品的時(shí)候,越來(lái)越依賴于其他消費(fèi)者對(duì)商品的評(píng)論。產(chǎn)生這種現(xiàn)象的原因主要是網(wǎng)絡(luò)口碑效應(yīng)(electronic Word-of-Mouth,eWOM)[26]。已經(jīng)有研究表明,口碑效應(yīng)會(huì)在挑選商品或服務(wù)的階段影響消費(fèi)者的信息搜索、評(píng)估或者決策[27-29],會(huì)增加消費(fèi)者的感知可靠性(reliability)、可信度(credibility)和信任感(trustworthiness)[30,31]。因此,口碑效應(yīng)在消費(fèi)者在線購(gòu)買決策中起著重要的作用。
基于獎(jiǎng)勵(lì)的眾籌模式可以視作商品預(yù)售的過程,項(xiàng)目評(píng)論可以形成對(duì)項(xiàng)目的認(rèn)知并且可以說服潛在出資者進(jìn)行出資,即在這個(gè)過程中eWOM也會(huì)對(duì)眾籌項(xiàng)目籌資成功產(chǎn)生影響[26]。潛在出資者在篩選項(xiàng)目時(shí),也會(huì)瀏覽他人對(duì)項(xiàng)目的評(píng)論,如果該項(xiàng)目獲得的評(píng)論普遍比較消極,很可能使得出資者對(duì)項(xiàng)目產(chǎn)生不好的印象,從而做出不出資支持的決策;如果項(xiàng)目的評(píng)價(jià)普遍比較積極,這會(huì)降低潛在出資者的感知風(fēng)險(xiǎn),從而做出出資支持的決策?;诖?,本文提出以下假設(shè):
H3:眾籌項(xiàng)目評(píng)價(jià)情感傾向越積極,眾籌成功的可能性越大
感知交互性(perceived interactivity)是影響溝通質(zhì)量的重要因素[32]。利用評(píng)論區(qū)這一CMC工具,發(fā)起人可以回復(fù)出資者的評(píng)論,從而與出資者進(jìn)行雙向溝通。發(fā)起人對(duì)評(píng)論信息進(jìn)行處理并回復(fù)的能力被稱為溝通外部效用(externally based efficacy)[33],因?yàn)檫@些回復(fù)信息不但能夠與發(fā)表評(píng)論的潛在出資者進(jìn)行雙向溝通,而且還可能影響其他潛在出資者的決策。發(fā)起人回復(fù)越多,溝通的外部效用越大,這就會(huì)提高出資者對(duì)發(fā)起人的感知交互性,進(jìn)而提高溝通質(zhì)量[32,33],最終會(huì)促使出資者出資支持項(xiàng)目,提高項(xiàng)目眾籌成功可能性。
H4a:發(fā)起人回復(fù)的數(shù)量越多,眾籌成功的可能性越大
溝通障礙會(huì)降低溝通質(zhì)量。眾籌平臺(tái)的出資者往往是普通的網(wǎng)民,缺乏評(píng)估項(xiàng)目質(zhì)量的專業(yè)知識(shí)和能力,加上文化差異等原因,出資者和發(fā)起人存在溝通障礙,很容易對(duì)眾籌項(xiàng)目產(chǎn)生誤解或者疑惑[34]。而發(fā)起人詳細(xì)的回復(fù)可以在一定程度上緩解溝通障礙,促進(jìn)溝通質(zhì)量。當(dāng)出資者發(fā)表評(píng)論,尤其是對(duì)項(xiàng)目存在疑問時(shí),發(fā)起人詳細(xì)地回復(fù)可以具體地向出資者解釋,降低出資者疑惑。同時(shí),較長(zhǎng)的回復(fù)也表明了發(fā)起人對(duì)項(xiàng)目付出的努力[35],這會(huì)讓出資者看到發(fā)起人對(duì)自己發(fā)起項(xiàng)目的熱情,因此出資者會(huì)更樂意出資支持。
H4b:發(fā)起人回復(fù)的長(zhǎng)度越長(zhǎng),眾籌成功的可能性越大
作為感知交互性的一個(gè)維度,同步性(synchronicity)也會(huì)影響溝通質(zhì)量[36]。同步性是指?jìng)€(gè)體發(fā)起溝通與收到回復(fù)之間的連續(xù)性[37]。如果同步度較低(如溝通過程中存在延遲),溝通流(communication flow)將會(huì)受到阻礙[38],用戶將有可能分散注意力。因此,增強(qiáng)同步性有助于促進(jìn)雙向溝通從而提高溝通質(zhì)量。據(jù)同步性原則,發(fā)起人及時(shí)地回復(fù)會(huì)提高溝通交流的同步性,有助于將出資者的注意力集中在發(fā)起人自己的項(xiàng)目,提高發(fā)起人和出資者之間雙向溝通的質(zhì)量,增強(qiáng)出資者的出資意愿,從而促進(jìn)項(xiàng)目籌資成功。因此,本文提出:
H4c:發(fā)起人回復(fù)的速度越快,眾籌成功的可能性越大
在信息不對(duì)稱的眾籌市場(chǎng)中,理性的出資者往往會(huì)尋找多方面信息,以便做出合理的出資決策。因此,潛在的出資者不僅會(huì)注意項(xiàng)目獲得的評(píng)論數(shù)量,也會(huì)留意其他出資者的觀點(diǎn)或態(tài)度[35,39],即評(píng)論的數(shù)量和情感可能共同影響出資者的決策。如果項(xiàng)目已有評(píng)論普遍比較消極負(fù)向,這表明其他出資者對(duì)項(xiàng)目或者發(fā)起人不滿意。隨著評(píng)論數(shù)量的增加,出資者的不滿情緒會(huì)不斷累積,這會(huì)增強(qiáng)潛在出資者的感知風(fēng)險(xiǎn),從而不會(huì)進(jìn)行出資支持項(xiàng)目。相反地,出資者發(fā)表的正向積極的評(píng)論可以反映出項(xiàng)目的高質(zhì)量[39]。因此,隨著評(píng)論數(shù)量的增加,這些正向的評(píng)論可以降低潛在出資者的感知風(fēng)險(xiǎn)[40,41],從而項(xiàng)目更容易籌資成功。因此,本文提出:
H5:項(xiàng)目評(píng)論的情感傾向正向調(diào)節(jié)評(píng)論數(shù)量與眾籌成功之間的關(guān)系
本文的研究著眼于中國(guó)的眾籌市場(chǎng),數(shù)據(jù)來(lái)源于追夢(mèng)網(wǎng)。追夢(mèng)網(wǎng),是國(guó)內(nèi)眾籌網(wǎng)站的先行者之一。本文用Datascraper和Metastudio網(wǎng)頁(yè)抓取工具[4,42],對(duì)追夢(mèng)網(wǎng)已經(jīng)結(jié)束的項(xiàng)目進(jìn)行數(shù)據(jù)采集。每個(gè)項(xiàng)目,收集的信息包括目標(biāo)籌資額、籌資期、發(fā)起人以往經(jīng)歷、有無(wú)視頻介紹、項(xiàng)目更新情況、項(xiàng)目評(píng)論數(shù)量、評(píng)論內(nèi)容以及發(fā)起人回復(fù)等。
本文模型涉及的主要變量描述如表2所示。
本文共抓取了追夢(mèng)網(wǎng)從2011年9月20日到2015年2月28日的960個(gè)項(xiàng)目,考慮到如果目標(biāo)籌資額過小,項(xiàng)目太容易籌資成功,因此本文剔除了目標(biāo)籌資額小于1000的項(xiàng)目。另外,為了減少數(shù)據(jù)的峰度,也剔除了評(píng)論數(shù)量過大的異常值,最后本文的最終數(shù)據(jù)集共包括846個(gè)項(xiàng)目,這些項(xiàng)目全部的籌資額達(dá)到19947377元,出資人數(shù)達(dá)到57649位。所有項(xiàng)目共獲得4809條評(píng)論,1668條回復(fù),其中發(fā)起人回復(fù)數(shù)462條。描述性統(tǒng)計(jì)結(jié)果如表3所示。
為了計(jì)算項(xiàng)目評(píng)論的情感傾向,本文引入情感分析,對(duì)項(xiàng)目評(píng)論進(jìn)行情感傾向分析,并得出情感傾向得分。情感分析,又稱為意見挖掘,是利用文本挖掘的技術(shù),對(duì)在線評(píng)論進(jìn)行語(yǔ)義分析。通過情感分析,可以識(shí)別出用戶的情感傾向,是“高興”還是“傷悲”,或者是判斷用戶的觀點(diǎn)態(tài)度是“支持”還是“反對(duì)”[43]。該方法目前主要的應(yīng)用領(lǐng)域是網(wǎng)上消費(fèi)者評(píng)論,有兩種類型[44]。第一種是語(yǔ)義導(dǎo)向的方法(Semantic-oriented Methods)[45-47],該方法通過建立包括積極和消極詞匯的情感詞典,計(jì)算句子的情感傾向。另一種方法是機(jī)器學(xué)習(xí)的方法(Machine Learning Techniques)[48,51],該方法將情感分析視作一種分類問題,利用訓(xùn)練過的分類器對(duì)情感進(jìn)行分類[52,53]。已經(jīng)有研究表明,基于機(jī)器學(xué)習(xí)的情感分析方法比語(yǔ)義導(dǎo)向的方法更顯著有效[52],因此本文選擇基于機(jī)器學(xué)習(xí)的情感分析方法對(duì)眾籌項(xiàng)目評(píng)論進(jìn)行語(yǔ)義分析。
表2 變量定義
表3 描述性統(tǒng)計(jì)
本文就是運(yùn)用基于機(jī)器學(xué)習(xí)的情感分析的方法,對(duì)眾籌項(xiàng)目中的評(píng)論內(nèi)容進(jìn)行情感傾向分析,本文選擇基于機(jī)器學(xué)習(xí)的BosonNLP情感分析代碼包進(jìn)行情感分析。BonsonNLP情感引擎提供行業(yè)領(lǐng)先的篇章級(jí)情感分析?;谏习偃f(wàn)條社交網(wǎng)絡(luò)平衡語(yǔ)料和數(shù)十萬(wàn)條新聞平衡語(yǔ)料的機(jī)器學(xué)習(xí)模型,結(jié)合自主開發(fā)的半監(jiān)督學(xué)習(xí)技術(shù),正負(fù)面情感分析準(zhǔn)確度達(dá)到80%~85%。經(jīng)過行業(yè)數(shù)據(jù)標(biāo)注學(xué)習(xí)后準(zhǔn)確率可達(dá)85%~90%[54]。對(duì)項(xiàng)目的每條評(píng)論進(jìn)行情感分析,得到項(xiàng)目評(píng)論的情感得分。情感傾向得分由兩部分構(gòu)成,第一個(gè)數(shù)字代表該評(píng)論情感傾向積極的概率,相應(yīng)地,第二個(gè)數(shù)字就是該評(píng)論情感傾向消極的概率,二者之和為1。因此,本文取第一個(gè)數(shù)字代表該評(píng)論的情感傾向得分。如圖3所示的兩條評(píng)論,第一條評(píng)論是積極的概率為0.985,是消極的概率為0.015,該評(píng)論是積極的概率更大;第二條評(píng)論是積極的概率為0.004,是消極的概率為0.996,該評(píng)論是消極的概率更大。
圖3 情感分析樣例
Figure 3 Sample of emotional analysis
為了減少變量峰度和偏度,對(duì)項(xiàng)目目標(biāo)籌資額、項(xiàng)目籌資期和圖片數(shù)量取對(duì)數(shù)。表4是變量間的多重共線性檢驗(yàn)結(jié)果。從表4中可以看出,變量間的相關(guān)性均小于0.5,且遠(yuǎn)低于0.7[55],表明變量間不存在多重共線性。
表4 變量間的相關(guān)性
注:* p≤0.05, ** p≤0.01
考慮到因變量為項(xiàng)目是否成功,是一個(gè)二元變量,因此本文選擇二元邏輯回歸分析方法。并且,加入乘積項(xiàng)來(lái)分析調(diào)節(jié)變量對(duì)自變量與因變量的調(diào)節(jié)效應(yīng),在乘積之前,對(duì)自變量和調(diào)節(jié)項(xiàng)進(jìn)行均值去中心化,以最小化變量的多重共線性。本文構(gòu)建三個(gè)模型,分別以項(xiàng)目是否成功為因變量,對(duì)收集的項(xiàng)目數(shù)據(jù)進(jìn)行二元邏輯回歸分析,結(jié)果如表5所示。
表5 二元邏輯回歸結(jié)果
注:* p≤0.05, ** p≤0.01, ? p≤0.10
模型1中,只加入控制變量。本文將項(xiàng)目基本信息(如目標(biāo)籌資額、籌資期、視頻數(shù)、圖片數(shù))、發(fā)起人相關(guān)信息(如發(fā)起人之前發(fā)起項(xiàng)目數(shù)和支持項(xiàng)目數(shù))作為控制變量,即已經(jīng)被證實(shí)過的眾籌成功的影響因素,結(jié)果顯示,除了圖片數(shù)外,其他控制變量對(duì)眾籌成功影響均顯著,這與已有研究結(jié)果一致。
模型2中,包括控制變量和自變量,主要包括項(xiàng)目更新數(shù)、項(xiàng)目評(píng)論數(shù)量、評(píng)論情感傾向得分、發(fā)起人回復(fù)數(shù)量、發(fā)起人回復(fù)長(zhǎng)度和發(fā)起人回復(fù)速度。引入自變量后,模型的解釋度提高,R2(Cox & Snell)和R2(Nagelkerke)分別從0.135和0.185提高到0.226和0.307。從表中可以看出,評(píng)論數(shù)(0.060,p=0.000)、評(píng)論情感傾向得分(1.184,p=0.013)與眾籌成功正相關(guān),H2和H3成立;發(fā)起人回復(fù)長(zhǎng)度(0.017,p=0.018)與眾籌成功正相關(guān),H4b成立,而回復(fù)數(shù)量(0.035,p=0.563)和回復(fù)速度(0.028,p=0.110)對(duì)眾籌成功沒有顯著影響,H4a和H4c不成立。
模型3中,除了控制變量和自變量,加入評(píng)論數(shù)量和評(píng)論情感傾向交互項(xiàng)。與模型2相比R2(Cox & Snell)和R2(Nagelkerke)也都有所提高,分別從0.226和0.307提高到0.229和0.312。從結(jié)果得知,評(píng)論數(shù)量(-0.036,p=0.377)對(duì)眾籌成功的影響不再顯著,即H2不成立,評(píng)論情感傾向(0.839,p=0.097)對(duì)眾籌成功影響仍然顯著,即H3成立;發(fā)起人回復(fù)長(zhǎng)度(0.012,p=0.065)與眾籌項(xiàng)目成功仍存在顯著正相關(guān)關(guān)系,H4b仍然成立,發(fā)起人回復(fù)數(shù)量(0.046,p=0.446)和回復(fù)速度(0.028,p=0.116)對(duì)眾籌成功沒有顯著影響,即H4a和H4c不成立。
圖4 評(píng)論情感的調(diào)節(jié)效應(yīng)
Figure 4 Moderating effect of comment on emotion
二元邏輯回歸作為非線性模型,其調(diào)節(jié)效應(yīng)不能簡(jiǎn)單的根據(jù)回歸系數(shù)的大小、方向以及顯著性來(lái)判斷,因此明確調(diào)節(jié)效應(yīng)具有一定的難度,因?yàn)樽宰兞咳≈挡煌{(diào)節(jié)項(xiàng)的方向和回歸系數(shù)顯著性也會(huì)隨之變化。為了解決這一問題,Zelner利用仿真方法[56],開發(fā)了非線性模型調(diào)節(jié)效應(yīng)的分析方法。本文利用Zelner的方法,基于90%的置信區(qū)間繪制了評(píng)論情感傾向?qū)υu(píng)論數(shù)量與眾籌成功之間關(guān)系的調(diào)節(jié)效應(yīng)圖,如圖4所示。圖4(a)是在不同的評(píng)論數(shù)量(x軸)情況下,評(píng)論情感傾向的好壞(虛線和實(shí)線)對(duì)眾籌成功(y軸)的影響。圖4(b)是在不同的評(píng)論數(shù)量情況下,不同的評(píng)論情感傾向?qū)Ρ娀I成功的影響差異,即第一幅圖中虛線和實(shí)線之間的垂直距離。從模型3可以看出來(lái),評(píng)論情感傾向是顯著且正向的調(diào)節(jié)項(xiàng)。圖4a表明,與評(píng)論情感傾向積極的情況相比,評(píng)論情感傾向積極時(shí),評(píng)論數(shù)量對(duì)眾籌成功的影響相對(duì)更強(qiáng)。圖4(b)表明,在評(píng)論數(shù)不多的情況下,評(píng)論情感傾向起到正向調(diào)節(jié)效應(yīng),即在評(píng)論數(shù)不多的情況下,評(píng)論情感傾向越積極,眾籌成功的概率更大,H5成立。如果評(píng)論數(shù)目較多,評(píng)論情感傾向?qū)Ρ娀I成功沒有顯著影響。
本文的研究結(jié)果主要包括:
第一,單向溝通對(duì)眾籌成功沒有顯著影響。這是因?yàn)轫?xiàng)目更新是發(fā)起人單方面向出資者匯報(bào)項(xiàng)目進(jìn)展情況的單向溝通,缺乏出資者反饋這一環(huán)節(jié),發(fā)起人通過項(xiàng)目更新無(wú)法了解到出資者對(duì)于項(xiàng)目的疑惑,出資者的疑問也得不到解答,溝通質(zhì)量不高,無(wú)法有效減少發(fā)起人和出資者之間的信息不對(duì)稱程度,從而導(dǎo)致這種單向溝通不會(huì)對(duì)眾籌成功產(chǎn)生影響。
第二,雙向溝通在眾籌成功中發(fā)揮著重要作用。研究結(jié)果表明評(píng)論情感傾向和回復(fù)長(zhǎng)度對(duì)眾籌成功影響顯著,因?yàn)榉e極正向的評(píng)論可以降低潛在出資者的感知風(fēng)險(xiǎn),從而潛在出資者愿意出資支持。發(fā)起人回復(fù)的長(zhǎng)度越長(zhǎng),可以包括越多的項(xiàng)目信息,能夠更加清楚地解釋出資者的疑問,降低了信息不對(duì)稱程度,提高了雙向溝通的質(zhì)量,從而幫助項(xiàng)目籌資成功。
第三,雙向溝通中評(píng)論數(shù)量、發(fā)起人回復(fù)數(shù)量和回復(fù)速度對(duì)眾籌成功沒有顯著影響。這是因?yàn)樵u(píng)論數(shù)量作為一個(gè)單純的數(shù)字指標(biāo),無(wú)法反映出眾籌項(xiàng)目真正的質(zhì)量,潛在出資者從評(píng)論數(shù)量無(wú)法獲得項(xiàng)目或者發(fā)起人相關(guān)的信息來(lái)判斷項(xiàng)目的好壞,因此評(píng)論數(shù)量對(duì)眾籌成功沒有影響。而發(fā)起人回復(fù)作為雙向溝通的反饋環(huán)節(jié),只要發(fā)起人回復(fù)了出資者,溝通外部效用也就產(chǎn)生了,但是不會(huì)再隨著數(shù)量增加而增加,也不會(huì)影響出資者的感知交互性。發(fā)起人的回復(fù)速度對(duì)眾籌成功沒有影響,因?yàn)樵u(píng)論區(qū)的雙向溝通并不是即時(shí)通訊,溝通的同步性(synchronicity)不是判斷項(xiàng)目和發(fā)起人質(zhì)量的重要指標(biāo),即使發(fā)起人及時(shí)地回復(fù),出資者也未必會(huì)在立刻注意到。因此發(fā)起人回復(fù)數(shù)量和回復(fù)速度對(duì)眾籌成功的影響不顯著。
第四,評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量和眾籌成功之間的關(guān)系。在評(píng)論數(shù)量較少或者中等時(shí),評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量對(duì)眾籌成功的影響,而當(dāng)評(píng)論數(shù)量較多時(shí),評(píng)論情感傾向不再有調(diào)節(jié)作用。這可能是因?yàn)闈撛诔鲑Y者不會(huì)去瀏覽所有的評(píng)論。如果項(xiàng)目獲得過多的評(píng)論,潛在出資者只會(huì)草草地略過評(píng)論內(nèi)容,而只是把評(píng)論數(shù)量作為出資支持的依據(jù)。
本文對(duì)眾籌研究主要有三方面的理論貢獻(xiàn)。
第一,本文系統(tǒng)全面地研究了發(fā)起人與出資者之間的在線交互對(duì)眾籌成功的影響?,F(xiàn)有研究?jī)H考慮了項(xiàng)目更新數(shù)和評(píng)論數(shù)對(duì)眾籌成功地影響[4,8-10]。實(shí)際上,發(fā)起人和出資者的在線交互包括單向溝通和雙向溝通兩類,僅從單向溝通的角度研究項(xiàng)目更新或者從出資者到發(fā)起人的評(píng)論,而忽略從發(fā)起人到出資者的回復(fù),很難全面系統(tǒng)地了解發(fā)起人和出資者之間的在線交互對(duì)眾籌成功重要影響。本文將發(fā)起人和出資者之間的在線交互分為單向溝通和雙向溝通兩類,將項(xiàng)目更新數(shù)量作為單向溝通的衡量指標(biāo),將雙向溝通分解為出資者對(duì)發(fā)起人的評(píng)論和發(fā)起人對(duì)出資者的回復(fù)兩個(gè)過程,并新增了回復(fù)數(shù)量、回復(fù)長(zhǎng)度和回復(fù)速度等已有研究尚未考慮的變量,更為全面地探討發(fā)起人和出資者的交互對(duì)眾籌成功的影響。研究結(jié)果表明,單向溝通對(duì)眾籌成功沒有顯著影響,而發(fā)起人和出資者之間的雙向溝通在眾籌成功中發(fā)揮著重要作用,這有助于深刻地揭示發(fā)起人與出資者之間的在線交互對(duì)眾籌成功影響的奧秘。
第二,本文將CMC工具的重要性拓展至眾籌這一新的研究情境。CMC工具的重要性在很多其他領(lǐng)域已經(jīng)得到證實(shí),如群體合作[32]、電子商務(wù)[57]和微博服務(wù)[58]等,但是CMC工具在眾籌中的使用及其影響還缺乏相關(guān)研究。網(wǎng)絡(luò)購(gòu)物中消費(fèi)者可以根據(jù)已經(jīng)收到商品的顧客評(píng)價(jià)來(lái)判斷商品的好壞,而在項(xiàng)目眾籌成功之前,任何出資者都沒辦法真正地體驗(yàn)到項(xiàng)目。因此在這種“預(yù)售”情況下,信息不對(duì)成性和不確定性更強(qiáng),潛在出資者更需要利用CMC工具,與項(xiàng)目發(fā)起人進(jìn)行有效溝通,但是尚未有研究關(guān)注CMC工具在眾籌這一新情境下的使用及其影響。本文將CMC工具的重要性拓展至眾籌這一新的研究情境,關(guān)注了項(xiàng)目更新區(qū)和評(píng)論區(qū)兩類CMC工具,實(shí)證研究結(jié)果表明評(píng)論情感傾向和回復(fù)長(zhǎng)度對(duì)眾籌績(jī)效有正向影響,并且評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量和眾籌成功之間的關(guān)系,表明了評(píng)論區(qū)這一CMC工具在眾籌成功中發(fā)揮著重要作用。
第三,本文的研究結(jié)果表明了評(píng)論數(shù)量和評(píng)論內(nèi)容對(duì)眾籌成功的復(fù)雜影響。已有研究只是考慮評(píng)論數(shù)量對(duì)眾籌成功的影響[9,10],沒有關(guān)注評(píng)論內(nèi)容,因此難以全面了解評(píng)論對(duì)眾籌成功的影響。本文在考慮評(píng)論數(shù)量的基礎(chǔ)上,利用情感分析的方法分析項(xiàng)目評(píng)論的情感傾向,并將評(píng)論情感傾向加入研究模型,更為全面系統(tǒng)地檢測(cè)評(píng)論在眾籌成功中的作用。本文研究發(fā)現(xiàn)評(píng)論數(shù)量對(duì)眾籌成功沒有直接的影響,評(píng)論情感傾向會(huì)正向影響眾籌成功并且評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量和眾籌成功之間的關(guān)系,這一研究結(jié)果揭示了評(píng)論數(shù)量和評(píng)論內(nèi)容對(duì)眾籌成功的復(fù)雜影響。
本文的研究對(duì)眾籌項(xiàng)目發(fā)起人有兩個(gè)方面的現(xiàn)實(shí)意義。一方面,發(fā)起人在項(xiàng)目籌資階段,比起項(xiàng)目更新這種單向溝通,更應(yīng)該注意與出資者之間進(jìn)行雙向溝通互動(dòng),關(guān)注發(fā)起人評(píng)論,并且發(fā)起人在回復(fù)時(shí),比起回復(fù)的數(shù)量,回復(fù)的質(zhì)量更關(guān)鍵,發(fā)起人應(yīng)該詳細(xì)準(zhǔn)確地進(jìn)行回復(fù),并耐心地將評(píng)論者的疑惑或問題解答清楚,這會(huì)給出資者以好印象,從而促進(jìn)項(xiàng)目籌資成功;另一方面,在項(xiàng)目獲得的評(píng)論數(shù)不多的情況下,項(xiàng)目發(fā)起人應(yīng)該留意項(xiàng)目的評(píng)論內(nèi)容,盡量使得項(xiàng)目評(píng)論積極正向,提高項(xiàng)目好評(píng)率,吸引更多的潛在出資者,幫助項(xiàng)目籌資成功。如果項(xiàng)目獲得較多的評(píng)論,項(xiàng)目形成較大規(guī)模的社區(qū)參與,發(fā)起人應(yīng)該注意對(duì)這次參與其中的成員的管理,促進(jìn)溝通交流,以更好地改進(jìn)項(xiàng)目,使得項(xiàng)目盡快地籌資成功。
本文尚存在一些局限,值得進(jìn)一步深入研究。第一,本文只是以國(guó)內(nèi)眾籌網(wǎng)站追夢(mèng)網(wǎng)為例進(jìn)行實(shí)證研究,因此結(jié)論和發(fā)現(xiàn)可能不具備普適性,后續(xù)研究中應(yīng)該關(guān)注更多類型的眾籌和不同國(guó)家的眾籌平臺(tái)。第二,本文使用的是截面數(shù)據(jù),難以揭示發(fā)起人與出資者的在線交互對(duì)眾籌項(xiàng)目成功的因果關(guān)系,后續(xù)研究可以構(gòu)建面板數(shù)據(jù),進(jìn)一步的探討眾籌線上互動(dòng)對(duì)出資者出資決策的影響。第三,本文使用的評(píng)論情感分析方法尚不夠成熟,評(píng)論的情感得分的準(zhǔn)確率還有待提高。
為了研究發(fā)起人與出資者的在線互動(dòng)對(duì)眾籌成功的影響,本文根據(jù)信息流動(dòng)方向的不同,將發(fā)起人與出資者的在線互動(dòng)分為單向溝通和雙向溝通兩類,分別研究了兩類在線互動(dòng)對(duì)眾籌成功的影響。同時(shí)運(yùn)用情感分析的方法,對(duì)眾籌項(xiàng)目的評(píng)論內(nèi)容進(jìn)行情感傾向分析,以便更加深刻地了解在線互動(dòng)過程中評(píng)論內(nèi)容對(duì)眾籌項(xiàng)目成功的影響。利用追夢(mèng)網(wǎng)846個(gè)眾籌項(xiàng)目的數(shù)據(jù)進(jìn)行了實(shí)證研究,研究結(jié)果表明,項(xiàng)目更新數(shù)量對(duì)眾籌成功沒有影響,評(píng)論情感傾向和回復(fù)長(zhǎng)度正向影響眾籌成功,評(píng)論情感傾向正向調(diào)節(jié)評(píng)論數(shù)量和眾籌成功之間的關(guān)系。上述結(jié)果表明發(fā)起人與出資者之間的雙向溝通在眾籌過程中發(fā)揮著重要作用。
[1] Schwienbacher A, Larralde B. Crowdfunding of Small Entrepreneurial Ventures[J]. Ssrn Electronic Journal, 2010.
[2] Burtch G, Ghose A, Wattal S. An Empirical Examination of the Antecedents and Consequences of Contribution Patterns in Crowd- Funded Markets[J]. Information Systems Research, 2013, 24(3): 499-519.
[3] Burtch G, Ghose A, Wattal S. An empirical examination of peer referrals in online crowdfunding[J]. 2014.
[4] Mollick E. The dynamics of crowdfunding: An exploratory study ☆☆[J]. Journal of Business Venturing, 2014, 29(1): 1-16.
[5] Colombo M G, Franzoni C, Lamastra R. Internal Social Capital and the Attraction of Early Contributions in Crowdfunding[J]. Entrepreneurship Theory & Practice, 2015, 39(1): 75–100.
[6] Beier M, Wagner K. Crowdfunding Success: A Perspective from Social Media and E-Commerce[C]International Conference on Information Systems, 2015.
[7] Wessel M, Thies F, Benlian A. A Lie Never Lives to be Old: The Effects of Fake Social Information on Consumer Decision-Making in Crowdfunding[C]European Conference on Information Systems, 2015. 76-86.
[8] Yang L, Hahn J, Learning from Prior Experience: An Empirical Study of Serial Entrepreneurs in IT-enabled Crowdfunding, in Thirty Sixth International Conference on Information Systems. 2015.
[9] Li Z, Jarvenpaa S. Motivating IT-Mediated Crowds: The Effect of Goal Setting on Project Performance in Online Crowdfunding[J]. Working Papers, 2015.
[10] Xiao S, Tan X, Dong M, et al. How to design your project in the online crowdfunding market? Evidence from Kickstarter[J]. 2014.
[11] Beaulieu T Y, Sarker S. A conceptual framework for understanding crowdfunding[J]. Communications of the Association for Information Systems, 2015, 37: 1-31.
[12] Etter V, Grossglauser M, Thiran P. Launch hard or go home!: predicting the success of kickstarter campaigns[C]ACM Conference on Online Social Networks, 2013. 177-182.
[13] Kickstarter. Stats. 2016 [cited; Available from: from https://www. kickstarter.com/help/stats?ref=footer.
[14] Ahlers G K, Cumming D J, Günther C, et al. Signaling in equity crowdfunding[J]. Available at SSRN 2161587, 2012.
[15] Zvilichovsky D, Inbar Y, Barzilay O. Playing Both Sides of the Market: Success and Reciprocity on Crowdfunding Platforms[J]. Available at SSRN 2304101), 2015.
[16] Business C. What is Two way Communication in Business? 2015 [cited; Available from: http://bizcommunicationcoach.com/what-is- two-way-communication-in-business/.
[17] Chen X-P, Yao X, Kotha S. Entrepreneur passion and preparedness in business plan presentations: a persuasion analysis of venture capitalists' funding decisions[J]. Academy of Management Journal, 2009, 52(1): 199-214.
[18] Alexey M. Effect of Social Media on Crowdfunding Project Results[J]. Lap Lambert Academic Publishing, 2013.
[19] Heide J B, Miner A S. The shadow of the future: Effects of anticipated interaction and frequency of contact on buyer-seller cooperation[J]. Academy of Management Journal, 1992, 35(2): 265-291.
[20] Smith K G, Scully J A. Top Management Team Demography and Process: The Role of Social Integration and Communication[J]. Administrative Science Quarterly, 1994, 39(3): 412-438.
[21] Cohen T R, Wildschut T, Insko C A. How communication increases interpersonal cooperation in mixed-motive situations[J]. Journal of Experimental Social Psychology, 2010, 46(1): 39-50.
[22] Huntley J K. Conceptualization and measurement of relationship quality: Linking relationship quality to actual sales and recommendation intention[J]. Industrial Marketing Management, 2006, 35(6): 703-714.
[23] Liu C T, Guo Y M, Lee C H. The effects of relationship quality and switching barriers on customer loyalty[J]. International Journal of Information Management the Journal for Information Professionals, 2011, 31(1): 71-79.
[24] Zheng H, Li D, Wu J, et al. The role of multidimensional social capital in crowdfunding: A comparative study in China and US ☆[J]. Information & Management, 2014, 51(4): 488-496.
[25] Kraus C R A B C C M C S. Strategies for reward-based crowdfunding campaigns[J]. Journal of Innovation & Knowledge, 2016.
[26] Thies F, Wessel M, Benlian A. Understanding the Dynamic Interplay of Social Buzz and Contribution Behavior within and between Online Platforms – Evidence from Crowdfunding[J]. Publications of Darmstadt Technical University Institute for Business Studies, 2014.
[27] Engel J F, Blackwell, R.D., and Kegerreis, R.J. . How Information Is Used to Adopt an Innovation[J]. Journal of Advertising Research, 1969. , (9:4): 3-8.
[28] Lynn S A. Identifying buying influences for a professional service: Implications for marketing efforts[J]. Industrial Marketing Management, 1987, 16(2): 119-130.
[29] Richins M L, Root-Shaffer T. The role of involvement and opinion leadership in consumer word-of-mouth: An implicit model made explicit[C]Advances in Consumer Research, 1988. 32-36.
[30] Arndt J. Role of Product-Related Conversations in the Diffusion of a New Product[J]. Journal of Marketing Research, 1967, 4(3): 291-295.
[31] Brown J, Broderick A J, Lee N. Word of mouth communication within online communities: Conceptualizing the online social network[J]. Journal of Interactive Marketing, 2007, 21(3): 2-20.
[32] Lowry P B, Guthrie R W. The CMC Interactivity Model: How Interactivity Enhances Communication Quality and Process Satisfaction in Lean-Media Groups[J]. Journal of Management Information Systems, 2009, 26(1): 155-195.
[33] Song J H, Zinkhan G M. Determinants of Perceived Web Site Interactivity[J]. Journal of Marketing, 2013, 72(2): 99-113.
[34] Menon A, Bharadwaj S G, Howell R. The quality and effectiveness of marketing strategy: Effects of functional and dysfunctional conflict in intraorganizational relationships[J]. Journal of the Academy of Marketing Science, 1996, 24(4): 299-313.
[35] Chevalier J A, Mayzlin D. The effect of word of mouth on sales: Online book reviews[J]. Journal of Marketing Research, 2006, 43(3): 345-354.
[36] Dennis A R, Fuller R M, Valacich J S. Media, tasks, and communication processes: A theory of media synchronicity[J]. MIS Quarterly, 2008, 32(3): 575-600.
[37] Liu Y, Shrum L J. What is Interactivity and is it always such a good thing? Implications of Definition, Person, and Situation for the Influence of Interactivity on Advertising Effectiveness[J]. Journal of Advertising, 2002, 31(4): 53-64.
[38] Yadav M S, Varadarajan R. Interactivity in the electronic marketplace: An exposition of the concept and implications for research[J]. Journal of the Academy of Marketing Science, 2005, 33(4): 585-603.
[39] Cui G, Lui H K, Guo X. The Effect of Online Consumer Reviews on New Product Sales[J]. International Journal of Electronic Commerce, 2012, 17(1): 39-58.
[40] Chen J, Xu H, Whinston A B. Moderated online communities and quality of user-generated content[J]. Journal of Management Information Systems, 2011, 28(2): 237-268.
[41] Zhu F, Zhang X. Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics[J]. Journal of Marketing, 2010, 74(2): 133-148.
[42] Zvilichovsky D, Inbar Y, Barzilay O. Playing Both Sides of the Market: Success and Reciprocity on Crowdfunding Platforms[J]. Ssrn Electronic Journal, 2013, 4.
[43] 王偉;王洪偉. 特征觀點(diǎn)對(duì)購(gòu)買意愿的影響:在線評(píng)論的情感分析方法[J]. 系統(tǒng)工程理論與實(shí)踐, 2016,36(1): 63-76.
Wang W, Wang H W.The influence of aspect-based opinions on user’s purchase intention using sentiment analysis of online reviews[J]. Systems Engineering-Theory & Practice, 2016,36(1): 63-76.
[44] Yan Z, Xing M, Zhang D, et al. A context-dependent sentiment analysis of online product reviews based on dependency relationships[J]. 2014.
[45] Kim, Hovy, Eduard. Determining the sentiment of opinions[J]. 2004.
[46] Williams G K, Anand S S. Predicting the Polarity Strength of Adjectives Using WordNet[C]International Conference on Weblogs and Social Media, Icwsm 2009, San Jose, California, Usa, May, 2009.
[47] Turney P D, Littman M L. Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus[J]. Artificial Intelligence, 2002.
[48] Boiy E, Moens M F. A machine learning approach to sentiment analysis in multilingual Web texts[J]. Information Retrieval Journal, 2009, 12(5): 526-558.
[49] Jiang L, Yu M, Zhou M, et al. Target-dependent Twitter sentiment classification[C]Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011. 151-160.
[50] Mullen T, Collier N. Sentiment Analysis using Support Vector Machines with Diverse Information Sources[C]Conference on Empirical Methods in Natural Language Processing , EMNLP 2004, A Meeting of Sigdat, A Special Interest Group of the Acl, Held in Conjunction with ACL 2004, 25-26 July 2004, Barcelona, Spain, 2004. 412-418.
[51] Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques[J]. Computer Science, 2002: 79-86.
[52] Tan S, Zhang J. An empirical study of sentiment analysis for chinese documents[J]. Expert Systems with Applications An International Journal, 2008, 34(4): 2622-2629.
[53] Liu Z, Liu L, Li H. An Empirical Study of Sentiment Analysis for Chinese Microblogging[J]. 2012.
[54] BosonNLP. Sentiment Analysis. 2016 [cited; Available from: from: http://bosonnlp.com/product.
[55] Anderson D R, Sweeney D J, Williams T A, et al. Statistics for business & economics[M]. Nelson Education, 2016: Pages.
[56] Zelner B A. Using simulation to interpret results from logit, probit, and other nonlinear models[J]. Strategic Management Journal, 2009, 30(12): 1335-1348.
[57] Ou C X, Pavlou P A, Davison R M. Swift Guanxi in online marketplaces: the role of computer-mediated communication technologies[J]. Mis Quarterly, 2014, 38(1): 209-230.
[58] Zhao L, Lu Y. Enhancing perceived interactivity through network externalities: An empirical study on micro-blogging service satisfaction and continuance intention[J]. Decision Support Systems, 2012, 53(4): 825-834.
Understanding the importance of online interaction between creators and backers on crowdfunding success
LI Qingxiang, WANG Nianxin*, LV Shuang, GE Shilun
(School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
Crowdfunding has received much attention from IS academics, and it is important to understand what led to crowdfunding success. Although many studies examined determinants of crowdfunding success and the effects of interaction between backers and creator, two research gaps exist. First, the role of creator reply in crowdfunding success is understudied. According to the theory of communication, the interaction between creators and backers has two categories: one-way communication and two-way communication. Just considering one-way communication, such as the update (from the creators to backers) and the comment (from backers to the creator), can’t fully and systematically understand the effects of two-way interaction between creators and backers on crowdfunding success. Moreover, the study considers the effects of comment amount on crowdfunding without considering comment sentiment, which might lead to an inaccurate conclusion or even bias research results.
To fill these two important research gaps, we view the interaction between backers and creators as two categories: one-way communication and two-way communication. We update the indicator of one-way communication, and divide two-way communication into a comment from backers to creators and reply from creators and backers. We simultaneously consider backer comment (including comment amount and comment sentiment) and creator reply (including reply amount, length, and speed) to investigate the effects of two-way interaction between creators and backers on crowdfunding success, and analyze the sentiment of the comments by using BosonNLP algorithm. Eight hundred forty-six projects from a major crowdfunding platform in China were collected and analyzed.
In the first part, we conducted binary logistic regression to explore the effect of both one-way communication (namely update) and two-way communication (including comment amount, comment sentiment, reply amount, length and speed) on crowdfunding success. The results indicate that comment sentiment and reply length are positively associated with fundraising success. Positive comments can decrease potential backers’ perceived risk, and eventually improve the likelihood of crowdfunding success. Since the longer creator replys, backers will be more confident about the project, which increases communication quality. Thus, projects with longer creator reply are more likely to be successfully funded.
The second part examined the moderation effect of comment sentiment on the relationship between comment amount and crowdfunding success. Following the method of Zelner, we generated two sets of moderation plots. The results suggest that comment sentiment positively moderates the relationship between comment amount and crowdfunding success under the contexts of low or medium comment amount, while the moderate effects are not significant when comment amount is high. A plausible explanation is that potential backers have no time to browse all the comments. If a project has too many comments, potential backers will skip comments hastily, and consider comment amount as a signal to make an investment decision. These research results show that two-way interaction between backers and creators is important for crowdfunding success, which is a benefit for uncovering the mystery of crowdfunding success.
In summary, two-way interaction between creators and backers plays a vital role in crowdfunding success. Creators should pay more attention to two-way communication with backers. While creators reply, they should explain clearly to help potential backers understand projects in detail. Moreover, it is important to notice that when the project has not achieved more comments, creators should pay more attention to the reply of comments and improve the comment sentiment, which can increase the likelihood of crowdfunding success.
Crowdfunding; Online interaction; Comment; Reply; Sentiment analysis
2017-02-21
2017-11-01
Supported by the National Natural Science Foundation of China (71471079, 71331003) and the Jiangsu University Blue Project and Graduate Science and Technology Innovation Program (KYCX17_1823)
C931.6
A
1004-6062(2020)01-0118-009
10.13587/j.cnki.jieem.2020.01.013
2017-02-21
2017-11-01
國(guó)家自然科學(xué)基金資助項(xiàng)目(71471079,71331003);江蘇高校青藍(lán)工程資助項(xiàng)目;研究生科技創(chuàng)新計(jì)劃(KYCX17_1823)
王念新(1979—),男,江蘇沛縣人;江蘇科技大學(xué)經(jīng)濟(jì)管理學(xué)院副教授,博士,碩士生導(dǎo)師;研究方向:眾籌、云計(jì)算管理、信息技術(shù)商業(yè)價(jià)值、信息技術(shù)戰(zhàn)略等。
中文編輯:杜 ??;英文編輯:Charlie C. Che