韓軍凱,馮奕鈺,封?偉
摻雜石墨烯制備方法新進(jìn)展
韓軍凱1, 2,馮奕鈺1,封?偉1
(1. 天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300072;2. 深圳市公安局刑事科學(xué)技術(shù)研究所,深圳 518000)
石墨烯是一種新興的二維碳納米材料,在平面內(nèi)碳原子以sp2電子軌道雜化形成蜂巢狀晶格結(jié)構(gòu),厚度只有0.34nm,具備優(yōu)異的光電性能.然而石墨烯價(jià)帶和導(dǎo)帶之間的帶隙為零,這限制了其在納米電子學(xué)中的應(yīng)用.通過雜原子(如氮、硼、氟等)對石墨烯進(jìn)行摻雜的方式,可以打開帶隙使其成為n型或p型材料,調(diào)節(jié)其電子結(jié)構(gòu)和其他內(nèi)在性質(zhì),有效地改善或擴(kuò)大其在各種領(lǐng)域中的應(yīng)用.摻雜對石墨烯性能的影響主要取決于雜原子鍵合類型以及摻雜量.比如摻雜氮原子的石墨烯片將在晶格中產(chǎn)生吡啶氮、石墨氮以及吡咯氮這3種常見的鍵合結(jié)構(gòu),而不同氮的存在形式會(huì)對摻雜石墨烯的催化及電學(xué)特性產(chǎn)生影響.本文綜述了近年來摻雜石墨烯的制備、性質(zhì)和應(yīng)用,比較了現(xiàn)有制備方法的優(yōu)缺點(diǎn),介紹了其在能量存儲(chǔ)轉(zhuǎn)換、光電器件以及傳感器等方面的應(yīng)用實(shí)例,分析總結(jié)了現(xiàn)有摻雜石墨烯材料的不足并展望了其未來的發(fā)展方向.
石墨烯;摻雜;光電器件;研究進(jìn)展
石墨烯是2004年英國曼徹斯特大學(xué)的No-voselov等[1]通過微機(jī)械剝離法從高定向熱解石墨(highly oriented pyrolytic graphite,HOPG)中制備得到的.它是碳的單原子層二維晶體,具備獨(dú)特的性質(zhì).此發(fā)現(xiàn)打破了熱力學(xué)漲落不允許任何二維晶體在有限溫度下存在這一認(rèn)識(shí).Girit等[2]利用像差校正電子顯微鏡觀察到在單層石墨烯面上存在諸多的褶皺起伏,這些褶皺均勻地存在于石墨烯表面和邊緣部位,進(jìn)一步研究發(fā)現(xiàn)這些褶皺的存在是石墨烯能夠保持在熱力學(xué)穩(wěn)定狀態(tài)的原因.
石墨烯是由碳原子以sp2電子軌道雜化形成的具有六角型蜂巢晶格狀二維層狀材料,它是富勒烯、碳納米管和石墨等碳同素異形體的基本組成單元[3].石墨烯單層0.34nm的厚度使其成為最薄的二維材料,碳原子之間采用sp2雜化,層內(nèi)原子之間通過σ鍵連接在一起,游離電子形成了大面積的共軛π鍵,這種獨(dú)特結(jié)構(gòu)特點(diǎn)賦予石墨烯良好的電學(xué)性能(載流子遷移率達(dá)到120000cm2/(V·s))、力學(xué)性能(彈性模量和斷裂強(qiáng)度分別為1.0TPa和130GPa)、光學(xué)性能(單層石墨烯具有97.7%的可見光透過率)以及導(dǎo)熱性能(在室溫條件下導(dǎo)熱系數(shù)能夠達(dá)到5000W/(m·K)以上).最近,Cao等[4]在特定角度扭曲的雙層石墨烯中發(fā)現(xiàn)新的電子態(tài),可以實(shí)現(xiàn)絕緣體到超導(dǎo)體的轉(zhuǎn)變.這些優(yōu)異的性質(zhì)使得石墨烯在場效應(yīng)晶體管、透明導(dǎo)電電極、電化學(xué)生物傳感器、超級電容器、鋰離子電池以及催化劑載體等領(lǐng)域引起科學(xué)家的廣泛關(guān)注[5-8].
石墨烯是一種零帶隙的材料,不能直接用于半導(dǎo)體工業(yè)[9-10].石墨烯的摻雜按照摻雜類型可以分為p型摻雜和n型摻雜,可以通過摻雜打開帶隙,從而改變石墨烯的電子結(jié)構(gòu)、本征電學(xué)性質(zhì)和載流子量子運(yùn)輸特性,能夠很好地拓寬其物理和化學(xué)性質(zhì).化學(xué)摻雜是通過引入載流子來調(diào)整電子結(jié)構(gòu)的最有前景的方法之一[11].從原則上講,石墨烯的化學(xué)摻雜既可以通過石墨烯的表面吸附實(shí)現(xiàn),也可以通過石墨烯中碳原子的雜原子取代實(shí)現(xiàn).前者一般通過簡單的濕化學(xué)反應(yīng)實(shí)現(xiàn),但是一般摻雜水平較低,而且摻雜效果的穩(wěn)定性較差,吸附的摻雜分子會(huì)在外力作用下脫離石墨烯表面.相比之下,后者的摻雜效果穩(wěn)定性更好且更容易實(shí)現(xiàn)高的摻雜量.將雜原子(例如B、N、F、P和S等)引入碳晶格可以充分地使原本均勻共軛的電子網(wǎng)絡(luò)失去方向性,該網(wǎng)絡(luò)通過調(diào)整摻雜區(qū)域的電荷分布和自旋來調(diào)節(jié)表面性質(zhì)[12].
目前,針對石墨烯不同的雜原子摻雜已經(jīng)開展了廣泛的研究,取得了一些重要的進(jìn)展.但是在對摻雜量、摻雜位置、摻雜石墨烯中碳原子和雜原子之間的化學(xué)鍵連的可控方面仍然存在一定的挑戰(zhàn)[13].本文綜述了近年來摻雜石墨烯方向的一些研究進(jìn)展,根據(jù)摻雜元素的不同,詳細(xì)討論了不同制備方法對摻雜量、化學(xué)鍵結(jié)構(gòu)的影響以及相關(guān)的應(yīng)用,最后總結(jié)分析了摻雜石墨烯目前存在的問題以及未來的發(fā)展?趨勢.
氮與周期表中的碳相鄰,原子半徑(0.070nm)和碳原子(0.077nm)相近,電負(fù)性(3.04)大于碳(2.55),使得通過原子替代式的摻雜將氮原子納入碳網(wǎng)絡(luò)相比其他原子更容易些.通過氮摻雜,石墨烯的電子狀態(tài)可以從本質(zhì)上發(fā)生改變,摻雜后的石墨烯對特定反應(yīng)和催化過程呈現(xiàn)出更佳的活性.在氮摻雜石墨烯中,氮主要以3種形式存在:石墨氮、吡咯氮、吡啶氮.其中石墨氮是氮原子替代了石墨烯面內(nèi)六元環(huán)中的碳原子,而后兩種形式的氮?jiǎng)t是氮原子替代了石墨烯邊緣的碳原子,這兩種形式的氮分別為石墨烯的π電子體系貢獻(xiàn)了2個(gè)和1個(gè)電子,其中吡咯氮的電子為sp3雜化,吡啶氮的電子為sp2雜化.氮摻雜中存在兩個(gè)難點(diǎn),即精確控制氮的摻雜量以及氮的具體存在形式[9, 14].
1.1.1?CVD法
如圖1所示,Wei等[15]首次報(bào)道通過化學(xué)氣相沉積(chemical vapor deposition,CVD)方法制備得到了氮摻雜的少層石墨烯,其中NH3、CH4分別作為氮源和碳源,銅作為催化劑,生長溫度是800℃.XPS測試結(jié)果表明,N原子和C原子通過共價(jià)鍵連接,在石墨烯中N原子的存在形式包括吡啶氮、吡咯氮以及石墨氮,其中石墨氮占主要部分,具體化學(xué)鍵連形式如圖2所示.通過控制NH3和CH4的流量比可以調(diào)節(jié)氮摻雜的含量,最高可以達(dá)到8.9%.將得到的氮摻雜石墨烯制備成場效應(yīng)晶體管(field effect transistor,F(xiàn)ET),器件展現(xiàn)出n型半導(dǎo)體的特性,載流子遷移率在200~450cm2/(V·s).文獻(xiàn)[16]使用液體吡啶分子同時(shí)作為氮源和碳源,在1000℃的高溫下,吡啶分子裂解成碳原子和氮原子然后再組裝成大面積的單層氮摻雜石墨烯.除了氣體和液體氮源,固體氮源也常被用來制備氮摻雜石墨烯,Sachin等[17]使用樟腦和三聚氰胺分別作為碳源和氮源,用常壓CVD的技術(shù)制備得到了氮摻雜石墨烯.除此之外,還有很多其他固體氮源被采用[18].
圖1?CVD法制備氮摻雜石墨烯的TEM照片
圖2?CVD法制備氮摻雜石墨烯中氮原子鍵型
通過CVD法制備得到的氮摻雜石墨烯,氮含量一般都在3.0%~16.0%(原子百分?jǐn)?shù),下同),其中最高的報(bào)道值為16.7%,最低的報(bào)道值為0.25%.通過CVD法制備得到的氮摻雜石墨烯,由于晶體結(jié)構(gòu)完整,常被用來作為電子器件如FETs等[14, 19-20].
1.1.2?GO后處理法
CVD法制備得到的氮摻雜石墨烯結(jié)構(gòu)完整,但產(chǎn)率低、工藝復(fù)雜.氧化石墨烯(graphene oxide,GO)是石墨烯的一種衍生物,其結(jié)構(gòu)中含有—OH、—O—和—COOH等含氧官能團(tuán),以鱗片石墨為原料,可以通過強(qiáng)酸氧化的方法得到GO.以GO為前驅(qū)體,在對其進(jìn)行還原的過程中引入氮原子,可以得到氮摻雜石墨烯,具有產(chǎn)量高、易加工、成本低的優(yōu)勢[21-22].
Li等[23]將GO在NH3氣氛中進(jìn)行高溫退火還原,得到了氮摻雜的石墨烯,XPS的測試結(jié)果顯示在溫度低至300℃時(shí),氮摻雜即可發(fā)生,在500℃達(dá)到最高值5%.GO上的含氧官能團(tuán)在還原的過程中會(huì)和NH3發(fā)生反應(yīng)形成C—N鍵.Hwang等[24]通過將GO水溶液旋涂成一張薄膜,用水合肼預(yù)處理后,在750℃下于H2/NH3混合氣體中持續(xù)退火5min還原,制備得到了氮摻雜的石墨烯薄膜,用于聚合物發(fā)光二極管的陰極部分展示出了良好的效果,可以替代成本高昂的氟摻雜氧化錫.Li等[25]以GO、三聚氰胺、甲醛為原料,在180℃、12h的條件下通過水熱的辦法制備得到了氮摻雜的三維石墨烯,在高溫高壓的條件下對GO進(jìn)行還原的同時(shí)將氮元素?fù)诫s進(jìn)去,通過改變GO和三聚氰胺的比例,產(chǎn)物的氮含量可以在3.12%~9.69%之間調(diào)整,XPS測試結(jié)果顯示其中氮的存在包括石墨氮、吡啶氮、吡咯氮3種形式,在燃料電池中用于氧還原反應(yīng)(oxygen reduction reaction,ORR)的催化劑,相比于商業(yè)化的Pt/C電極,得到的3D氮摻雜石墨烯展現(xiàn)出對甲醇更好的耐受性以及良好的電催化性能.也可以將氮摻雜石墨烯作為不同納米粒子(如Fe3O4、SnO2等)的載體,在水熱對GO還原的同時(shí)將納米粒子負(fù)載到石墨烯片層上,從而拓寬其在不同領(lǐng)域(如鋰離子電池、燃料電池、超級電容器、太陽能電池等)中的應(yīng)用[26].
1.1.3?其他方法
等離子體法是一種能夠修飾材料表面的方法,具備簡單易操作的特點(diǎn),往往被用來引入外部原子、基團(tuán).如圖3所示,Rybin等[27]首先使用CVD的方法,在銅基底上生長了石墨烯,然后用氮等離子體對其進(jìn)行處理,可以實(shí)現(xiàn)最高3%的氮摻雜比例,相比于初始石墨烯,摻雜石墨烯的價(jià)帶偏移了大約0.2eV.電弧放電法曾經(jīng)被廣泛用于合成高質(zhì)量的碳材料如富勒烯、碳納米管等,目前也有很多研究者將其應(yīng)用在了氮摻雜石墨烯的合成上,Lin等[28]首次在H2/吡啶、H2/氨氣氣氛中高壓放電合成了氮摻雜石墨烯.
圖3?等離子體法處理石墨烯前后的SEM照片
在元素周期表中,硼元素位于碳元素的左邊,相比于碳,硼的電負(fù)性更小,硼的引入會(huì)對石墨烯形成p型摻雜的效果,相比于氮,硼摻雜石墨烯的研究較少[20, 29-31].
1.2.1?CVD法
如圖4所示,Li等[32]分別將硼粉和乙醇作為硼源和碳源,以銅作為基底,在950℃的溫度下,通過一步CVD的方法生長得到了少層的硼摻雜石墨烯,其中硼的摻雜量可以達(dá)到0.5%,而基于硼摻雜石墨烯制備得到的場效應(yīng)晶體管顯示出明顯的p型半導(dǎo)體特性.Cattelan等[33]分別使用甲烷和二硼烷為碳源和硼源,通過兩步CVD的方法,在多晶銅的基底上生長出單層硼摻雜石墨烯,其中替代性的硼原子含量可以達(dá)到1.5%.
圖4 CVD法制備硼摻雜石墨烯的數(shù)碼照片及SEM照片
1.2.2?GO后處理法
Sheng等[34]將B2O3與GO在管式爐中共混,在氬氣保護(hù)和高溫退火的同時(shí),B2O3中游離出來的B原子能夠替代性地?fù)诫s進(jìn)石墨烯的晶格中,摻雜量可以達(dá)到3.5%,和同條件下合成的石墨烯相比,硼摻雜的石墨烯在堿性電解液中表現(xiàn)出良好的電催化活性和長期穩(wěn)定性.如圖5所示,Chowdhury等[35]分別選擇GO和硼酸作為碳源和硼源,通過簡單、環(huán)保的一步水熱還原法制備得到硼摻雜的石墨烯氣凝膠材料,硼的摻雜量可以在0.14%~3.37%之間調(diào)整,并且展示出對有機(jī)污染物的有效降解.
圖5 水熱法制備硼摻雜3D石墨烯氣凝膠的數(shù)碼照片及SEM照片
1.2.3?其他方法
Panchakarla等[36]使用石墨電極,在氫氣和硼烷混合氣體氣氛中,用直流電弧放電法制備得到了少層的硼摻雜石墨烯,硼的含量在1%~3%之間.Li等[37]通過使用等離子體法處理GO前驅(qū)體,在常規(guī)環(huán)境條件下將硼原子摻雜進(jìn)石墨烯晶格中,XPS測試結(jié)果表明,在用等離子體處理GO 3min后,硼的摻雜量可以達(dá)到1.4%.得到的硼摻雜石墨烯應(yīng)用在超級電容器中,其在0.5A/g的電流密度下展示出446.24F/g的比容量.
與氮和硼相比,氟原子的電負(fù)性(4.0)比碳原子(2.5)大很多,在氟摻雜石墨烯中根據(jù)具體氟化方法不同,存在的C—F鍵型可以分為3種:離子型、共價(jià)型以及半離子型.C—F鍵的存在導(dǎo)致氟摻雜石墨烯表現(xiàn)出獨(dú)特的性質(zhì)[38].
由于碳原子和氟原子間巨大的電負(fù)性差異,導(dǎo)致C—F鍵顯示較高的極性,氟摻雜石墨烯展現(xiàn)出對生物信號(hào)的良好響應(yīng)特征,可以在各種生物應(yīng)用場景中發(fā)揮作用.而高摻雜量的氟摻雜石墨烯材料具備能量密度高的特點(diǎn),可以用作高能鋰電池的陰極材料.
在氟摻雜石墨烯的制備過程中用到的大部分氟化試劑具有較強(qiáng)的腐蝕性,因此相比于其他雜原子摻雜的制備方法,氟摻雜石墨烯對環(huán)境條件有更高苛刻的要求,目前氟摻雜石墨烯的方法主要有3種,包括氣相法、等離子體法以及溶劑熱法[39-40].
1.3.1?氣相法
F2是氣相法制備氟摻雜石墨烯的一種重要氟化劑,如圖6所示,Wang等[41]將GO在F2中加熱到180℃,通過控制F2的濃度合成了具備不同氟碳比的氟摻雜石墨烯,其中氟碳比最高可以達(dá)到1.02.盡管F2活性高,但F2屬于一種高度腐蝕的氣體,出于安全考慮,使用F2對石墨烯進(jìn)行氟摻雜的整個(gè)過程需要使用特殊的設(shè)備,這嚴(yán)重限制了F2直接氟化法的應(yīng)用范圍.Nair等[42]利用手套箱中無水無氧的環(huán)境,在70℃下用XeF2處理石墨烯薄膜可以得到氟摻雜?的石墨烯,其在400℃的高溫下仍可保持良好的穩(wěn)?定性.
圖6?氣相法制備氟摻雜石墨烯的流程示意
1.3.2?等離子體法
相比于條件苛刻的氣相氟化法,等離子體法被認(rèn)為是一種更為清潔的方法[43].Poh等[44]在含有SF4、SF6等氣體的環(huán)境中通過微波等離子體的方法制備得到了氟摻雜的石墨烯,其基本原理是在等離子體氣氛中產(chǎn)生的氟自由基能夠吸附到石墨烯表面,通過與碳原子的作用形成不同的C—F鍵,材料的氟碳比可以通過控制氟化試劑種類和氟化溫度來進(jìn)行調(diào)整,最高可以達(dá)到4.25%.Struzzi等[45]以SF6為前驅(qū)體,通過等離子體法對懸空的石墨烯片進(jìn)行處理,接下來的Raman和XPS測試結(jié)果表明氟原子和硫原子是以共價(jià)鍵連的方式連接到碳晶格中,而EDS結(jié)果顯示摻雜原子呈現(xiàn)均勻分布,氟原子的存在賦予了石墨烯良好的疏水特性,硫原子的存在則賦予了摻雜石墨烯對金屬納米粒子良好的親和性.等離子體法是一種步驟簡單、環(huán)境友好的方法,但是它存在處理區(qū)域范圍較小以及對設(shè)備要求較高等缺點(diǎn),而且在離子轟擊的過程中石墨烯的碳共軛結(jié)構(gòu)會(huì)不可避免地受到破壞.
1.3.3?溶劑熱法
溶劑熱法是制備氟摻雜石墨烯的另一種常見方法,其原理是在高溫高壓的條件下將氟原子摻雜進(jìn)入石墨烯的晶格中.由于表面存在諸多的含氧官能團(tuán),如—OH、—O—、—COOH等,具備良好加工性的GO是溶劑熱法的優(yōu)異原料,可以通過選擇合適的氟化試劑在高溫下除去或取代GO上的含氧基團(tuán)并形成C—F鍵,得到氟摻雜的石墨烯材料.Wang等[46]用GO為原料,以HF為氟化劑,在180℃下水熱反應(yīng)30h得到了氟摻雜的石墨烯,得到的氟化石墨烯厚度大多為1、2層,氟的摻雜量可以通過調(diào)整溫度、時(shí)間和HF濃度來控制,改變摻雜量會(huì)進(jìn)一步影響其帶隙在1.82~2.99eV之間變化.如圖7所示,本課題組同樣以GO為原料,以HF的水溶液為氟化劑,研究了在水熱反應(yīng)中不同溫度(90℃、120℃、150℃、180℃)對氟的摻雜量以及碳-氟鍵型的影響規(guī)律,結(jié)果發(fā)現(xiàn)在150℃時(shí),得到的3D石墨烯材料氟含量最高,其中含有大量的碳-氟半離子鍵,展現(xiàn)出改善的比容量以及良好的倍率特性[47].
圖7 水熱法制備氟摻雜3D石墨烯氣凝膠數(shù)碼照片及TEM照片
除了上述提到的硼、氮以及氟元素,Yang等[48]用電負(fù)性和碳原子相似的硫原子和硒原子對石墨烯進(jìn)行摻雜,得到的摻雜石墨烯在堿性介質(zhì)中展現(xiàn)出比商業(yè)Pt/C電極更好的催化活性.磷[49-50]、氯[51]、溴[52]、碘[53]、硅[54]等也被用來對石墨烯進(jìn)行摻雜.
本文綜述了近年來摻雜石墨烯制備和應(yīng)用的一些進(jìn)展,包括石墨烯摻雜原子種類、摻雜方法、摻雜量及其在能源存儲(chǔ)、催化等方向的應(yīng)用,具體來說,通過在石墨烯網(wǎng)絡(luò)中分別引入不同的雜原子,可以得到n型或p型摻雜石墨烯.討論了典型的摻雜策略包括CVD法、GO后處理法以及等離子體法,此外還介紹了基于不同摻雜元素和方法的應(yīng)用.
盡管近年來已經(jīng)取得了一些進(jìn)展,但是基于摻雜石墨烯的未來發(fā)展以及實(shí)際應(yīng)用仍然面臨諸多挑戰(zhàn).首先,石墨烯片的尺寸、結(jié)構(gòu)和成分不能精確控制,導(dǎo)致?lián)诫s石墨烯的可重復(fù)性較差;其次,實(shí)際應(yīng)用中對摻雜量有一定的要求,而石墨烯固有的sp2雜化網(wǎng)絡(luò)使得雜原子較難進(jìn)入晶格中,所以未來應(yīng)該將更多的研究重點(diǎn)放在雜原子摻雜量的可控上;最后,摻雜類型的調(diào)控,如氮摻雜石墨烯中不同形式氮的比例調(diào)控以及氟摻雜石墨烯中碳-氟的鍵型調(diào)控都需要做得更加精細(xì)和可控.機(jī)遇和挑戰(zhàn)并存,相信隨著研究的不斷深入,未來更多可控合成的摻雜石墨烯會(huì)被開發(fā)出來,在相關(guān)領(lǐng)域中大放光彩.
[1] Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[2] Girit ? ?,Meyer J C,Erni R,et al. Graphene at the edge:Stability and dynamics[J]. Science,2009,323(5922):1705-1708.
[3] Geim A K,Novoselov K S. The rise of graphene[J]. Nature Materials,2007,63(3):183-191.
[4] Cao Y,F(xiàn)atemi V,F(xiàn)ang S,et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature,2018,556:43-50.
[5] Du Jinhong,Pei Songfeng,Ma Laipeng,et al. 25th anniversary article:Carbon nanotube-and graphene-based transparent conductive films for optoelectronic devices[J]. Advanced Materials,2014,26(13):1958-1991.
[6] Alexander B A,Suchismita G,Bao Wenzhong,et al. Superior thermal conductivity of single-layer graphene [J]. Nano Letters,2008,8(3):902-907.
[7] Lee Changgu,Wei Xiaoding,Kysar J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
[8] Castro N A H,Guinea F,Peres N M R,et al. The electronic properties of graphene[J]. Reviews of Modern Physics,2009,81(1):109-162.
[9] Xue Yunzhou,Wu Bin,Bao Qiaoliang,et al. Controllable synthesis of doped graphene and its applications [J]. Small,2014,10(15):2975-2991.
[10] Shin Donghoon,Kim Wooyoung,Jun Jaemoon,et al. Highly selective FET-type glucose sensor based on shape-controlled palladium nanoflower-decorated graphene[J]. Sensors and Actuators B:Chemical,2018,264:216-223.
[11] Nigar Salma,Zhou Fuzhong,Wang Hao,et al. Modulating the electronic and magnetic properties of graphene [J]. RSC Advance,2017,7(81):51546-51580.
[12] Lee Hoik,Paeng Keewook,Kim Icksoo. A review of doping modulation in graphene[J]. Synthetic Metals,2018,244:36-47.
[13] Xu Xiaozhi,Liu Chang,Sun Zhanghao,et al. Interfacial engineering in graphene bandgap[J]. Chemical Society Review,2018,47:3059-3099.
[14] Manpreet Kaur,Manmeet Kaur,Virenderk S. Nitrogen-doped graphene and graphene quantum dots:A review onsynthesis and applications in energy,sensors and environment[J]. Advances in Colloid and Interface Science,2018,259:44-64.
[15] Wei Dacheng,Liu Yunqi,Wang Yu,et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letter,2009,9(5):1752-1758.
[16] Jin Zhong,Yao Jun,Kittrell Carter,et al. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets[J]. ACS Nano,2011,5(5):4112-4117.
[17] Sachin M Shinde,Emi Kano,Golap Kalita,et al. Grain structures of nitrogen-doped graphene synthesized by solid source-based chemical vapor deposition[J]. Carbon,2016,96:448-453.
[18] Li Qiucheng,Song Yingze,Xu Runzhang,et al. Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries [J]. ACS Nano,2018,12(10):10240-10250.
[19] Xu Haifeng,Ma Lianbo,Jin Zhong,et al. Nitrogen-doped graphene:Synthesis,characterizations and energy applications[J]. Journal of Energy Chemistry,2018,27:146-160.
[20] Wang Yang,Huang Jingyun,Chen Xingbu,et al. Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery[J]. Carbon,2018,137:368-378.
[21] Rao C,Gopalakrishnan K,Govindaraj A. Synthesis,properties and applications of graphene doped with boron,nitrogen and other elements[J]. Nano Today,2014,9:324-343.
[22] Liu Panbo,Zhang Yiqing,Yan Jing,et al. Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption[J]. Chemical Engineering Journal,2019,368:285-298.
[23] Li Xiaolin,Wang Hailiang,Robinson Joshuat,et al. Simultaneous nitrogen doping and reduction of graphene oxide[J]. Journal of American Chemical Society,2009,131(43):15939-15944.
[24] Hwang Jinok,Park Jisun,Choi Dongsung,et al. Workfunction-tunable,N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes[J]. ACS Nano,2012,6(1):159-167.
[25] Li Yi,Yang Juan,Zhao Na,et al. Facile fabrication of N-doped three-dimensional reduced graphene oxide as a superior electrocatalyst for oxygen reduction reaction [J]. Applied Catalysis A:General,2017,534:30-39.
[26] Cui Huijuan,Zhou Zhen,Jia Dianzeng. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4:7-19.
[27] Rybin Maxim,Pereyaslavtsev Alexander,Vasilieva Tatiana,et al. Efficient nitrogen doping of graphene by plasma treatment[J]. Carbon,2016,96:196-202.
[28] Lin Yupu,Younal Ksari,Dominique Aubel,et al. Efficient and low-damage nitrogen doping of graphene via plasmabased methods[J]. Carbon,2016,100:337-344.
[29] Stefano Agnoli,Marco Favaro. Doping graphene with boron:A review of synthesis methods,physicochemical characterization,and emerging applications[J]. Journal of Materials Chemistry A,2016,4(14):5002-5025.
[30] Fedorov A V,Yashina L V,Vilkov O Y,et al. Spin-polarized Fermi surface,hole-doping and band gap in graphene with boron impurities[J]. Nanoscale,2018,48(10):22810-22817.
[31] Zhang Mingli,Tao Hengcong,Liu Yongchao,et al. Ultrasound-assisted nitrogen and boron codoping of graphene oxide for efficient oxygen reduction reaction[J]. ACS Sustainable Chemistry & Engineering,2019,7(3):3434-3442.
[32] Li Xiao,F(xiàn)an Lili,Li Zhen,et al. Boron doping of graphene for graphene-silicon p-n junction solar cells [J]. Advanced Energy Materials,2012,2(4):425-429.
[33] Cattelant Mattia,Agnoli Stefane,F(xiàn)avaro Marco,et al. Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures[J]. Chemistry of Materials,2013,25(9):1490-1495.
[34] Sheng Zhenhuan,Gao Hongli,Bao Wenjing,et al. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells[J]. Journal of Materials Chemistry,2012,22:390-395.
[35] Chowdhury Shamik,Jiang Yiqun,Muthukaruppan Solai,et al. Effect of boron doping level on the photocatalytic activity of graphene aerogels[J]. Carbon,2018,128:237-248.
[36] Panchakarla L S,Subrahmanyam K S,Saha S K,et al. Synthesis,structure,and properties of boron-and nitrogen-doped graphene[J]. Advanced Materials,2009,21(46):4726-4730.
[37] Li Shaobo,Wang Zhaofeng,Jiang Hanmei,et al. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors[J]. Chemical Communication,2016,52:10988-10991.
[38] Lee Jonghak,Koon Gavinkokwai,Shin Dongwook,et al. Property control of graphene by employing “semi-ionic”liquid fluorination[J]. Advanced Functional Materials,2013,23(26):3329-3334.
[39] Feng Wei,Long Peng,F(xiàn)eng Yiyu,et al. Two-dimensional fluorinated graphene:Synthesis,struc-tures,properties and applications[J]. Advanced Science,2016,3:1500413-1500434.
[40] Plsek J,Drogowska K A,F(xiàn)ridrichova M,et al. Laser-ablation-assisted SF6 decomposition for extensive and controlled fluorination of graphene[J]. Carbon,2019,145:419-425.
[41] Wang Xu,Dai Yunyang,Gao Jie,et al. High-yield production of highly fluorinated graphene by direct heating fluorination of graphene-oxide[J]. ACS Applied Materials & Interfaces,2013,5(17):8294-8299.
[42] Nair Rahul,Ren Wencai,Rashid Jalil,et al. Fluorographene:A two‐dimensional counterpart of teflon [J]. Small,2010,6(24):2877-2884.
[43] Lim Taekyung,Ju Sanghyun. Control of graphene surface wettability by using CF4plasma[J]. Surface & Coatings Technology,2017,328:89-93.
[44] Poh Hweeling,Sofer Zdenek,Klimova Katerina,et al. Fluorographenes via thermal exfoliation of graphite oxide in SF6,SF4and MoF6atmospheres[J]. Journal of Materials Chemistry C,2014,2(26):5198-5207.
[45] Struzzi C,Sezen H,Amati M,et al. Fluorine and sulfur simultaneously co-doped suspended graphene[J]. Applied Surface Science,2017,422(15):104-110.
[46] Wang Zhaofeng,Wang Jinqing,Li Zhangpeng,et al. Synthesis of fluorinated graphene with tunable degree of fluorination[J]. Carbon,2012,50(15):5403-5410.
[47] An Haoran,Li Yu,Long Peng,et al. Hydrothermal preparation offluorinated graphene hydrogel for high-performance supercapacitors[J]. Journal of Power Sources,2016,312(30):146-155.
[48] Yang Zhi,Yao Zhen,Li Guifa,et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano,2012,6(1):205-211.
[49] Zhang Chenzhen,Mahmood Nasir,Han Yin,et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials,2013,25(35):4932-4937.
[50] Tian Ye,Wei Zhen,Zhang Kehui,et al. Three-dimensional phosphorus-doped graphene as an efficient metal-free electrocatalyst for electrochemical sensing [J]. Sensors and Actuators B:Chemical,2017,241(31):584-591.
[51] Wu Ying,Lin Xiuyi,Shen Xi,et al. Exceptional dielectric properties of chlorine-doped graphene oxide/poly (vinylidene fluoride)nanocomposites[J]. Carbon,2015,89:102-112.
[52] Ma Weigang,Liu Yingjun,Yan Shen,et al. Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties[J]. Nano Research,2018,11(2):741-750.
[53] Wang Xuewan,Sun Gengzhi,Routh Parimal,et al. Heteroatom-doped graphene materials:Syntheses,properties and applications[J]. Chemical Society Reviews,2014,43(20):7067-7098.
[54] Muhammad Rafique,Yong Shuai,Nayyar Hussain. First-principles study on silicon atom doped monolayer graphene[J]. Physica E,2018,95:94-101.
Recent Research Progress in Doped-Graphene Preparation
Han Junkai1, 2,F(xiàn)eng Yiyu1,F(xiàn)eng Wei1
(1. School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;2. Institute of Forensic Science and Technology,Shenzhen Police Bureau,Shenzhen 518000,China)
Graphene is a new two-dimensional carbon nano-material in which carbon atoms form honeycomb-like lattice structures by sp2electron orbital hybridization. Graphene has a thickness of only 0.34 nm and exhibits excellent photoelectric properties. The bandgap between the valence band and conduction band of graphene is zero, which limits its application in nano-electronics. Doping graphenes with heteroatoms (e.g., nitrogen, boron, and fluorine) can produce bandgap, change them into n-type or p-type materials, and adjust their photoelectric properties, effectively improving or expanding their applications in various fields. The effect of doping on the graphene properties depends mainly on the type of bonding configurations and the atomic content of the dopant. For example, graphene sheets doped with nitrogen atoms would generate three kinds of bonding configurations within the lattice, including pyridinic N, graphitic N, and pyrrolic N. Different existing states of nitrogen have a significant effect on the selectivity and the catalytic activity of doped graphene. This review outlines the preparation, properties, and applications of doped-graphene in recent years; compares the advantages and disadvantages of existing preparation methods; and introduces the applications of graphene in energy storage and conversion, photoelectric devices, and sensors. Finally, the shortcomings of the existing doped-graphene materials are summarized and their future development directions are forecasted.
graphene;doping;photoelectric device;research progress
Supported by the National Natural Science Funds for Distinguished Young Scholars(No.51425306),the National Natural Science Foundation of China(No.51633007).
O63
A
0493-2137(2020)05-0467-08
10.11784/tdxbz201903041
2019-03-20;
2019-06-05.
韓軍凱(1986—??),男,博士,junkaih86@126.com.
封?偉,weifeng@tju.edu.cn.
國家杰出青年基金資助項(xiàng)目(51425306);國家自然科學(xué)基金重點(diǎn)項(xiàng)目(51633007).
(責(zé)任編輯:田?軍)