明道貴 邱明喜 殷立靜
摘 要:微生物誘導(dǎo)成礦技術(shù)已被證實(shí)可用于沙漠化治理,而鈣源直接影響固化效果。為了確定最佳鈣源,使用多種鈣源用于風(fēng)積沙固化研究,基于力學(xué)性能測(cè)試和微觀(guān)形貌觀(guān)測(cè)等手段,分析不同鈣源作用下固化效果及相應(yīng)作用機(jī)理。結(jié)果表明:氯化鈣與醋酸鈣均可有效固化風(fēng)積沙,氯化鈣作用效果優(yōu)于醋酸鈣,而乳酸鈣作為鈣源時(shí)易出現(xiàn)滲流不暢現(xiàn)象、固沙效果較差。氯化鈣對(duì)應(yīng)的微生物成礦過(guò)程能在風(fēng)積沙顆粒間產(chǎn)生大量方解石晶體,晶體間的有效嵌合保證了固化體具有良好的力學(xué)性能與滲透能力;醋酸鈣對(duì)應(yīng)的碳酸鈣晶體形狀不規(guī)則且顆粒較小,致使其對(duì)應(yīng)試樣的力學(xué)強(qiáng)度及滲透系數(shù)均較氯化鈣作為鈣源的低。
關(guān)鍵詞:風(fēng)積沙固化;微生物誘導(dǎo)成礦;鈣源;滲透性;力學(xué)性質(zhì)
中圖分類(lèi)號(hào):S157.9 ? 文獻(xiàn)標(biāo)志碼:A
doi:10.3969/j.issn.1000-1379.2020.04.017
Abstract:The technique of microbial induced calcite precipitation has been proved to be useful for desertification control, and calcium sources directly affect the curing effect. A variety of calcium sources were used for the study of aeolian sand solidification to examine which kind of calcium source corresponds to the best sand-fixing effect.Based on the mechanical properties test and microscopic morphology observation, the solidification effect and the corresponding mechanism of action of different calcium sources were analyzed. The results show that both calcium chloride and calcium acetate can effectively solidify aeolian sand. The effect of calcium chloride is better than that of calcium acetate. Weak seepage occurs when calcium lactate is used as calcium source, which leads to poor sand fixation effect. The microbial mineralization process corresponding to calcium chloride can produce a large amount of calcite crystals between sand particles. The effective chimerism formed between the crystals ensures the good mechanical properties and permeability of the solidified specimen. Calcium carbonate crystals formed by calcium acetate are more irregular in shape and smaller in particle size, resulting in lower mechanical strength and end-point permeability of the sample than calcium chloride.
Key words: aeolian sand solidification; microbial induced calcite precipitation; calcium sources; permeability; mechanical property
土地沙漠化將造成土地生產(chǎn)力下降、生態(tài)環(huán)境惡化并威脅江河安全,如何有效緩解土地沙漠化是當(dāng)前生態(tài)保護(hù)領(lǐng)域的研究熱點(diǎn)之一。傳統(tǒng)固沙方法可分為工程固沙、化學(xué)固沙和植物固沙[1],這些方法普遍存在施工繁瑣、維護(hù)成本高昂、耗能高等缺點(diǎn),綜合來(lái)看,植物固沙附屬價(jià)值最高、長(zhǎng)期效益顯著,是防治土地沙漠化的有效途徑[2],但植物栽種成活率低、見(jiàn)效遲緩等,需同時(shí)采取其他固沙手段方能有效實(shí)現(xiàn)固沙目的。
微生物誘導(dǎo)成礦(Microbial Induced Calcite Precipitation,簡(jiǎn)稱(chēng)MICP)廣泛存在于自然界中[3],這種自然作用非常緩慢,人們希望通過(guò)人為干預(yù),合理調(diào)控MICP過(guò)程以提升反應(yīng)效率,使之能夠滿(mǎn)足各類(lèi)工程需求,如土體加固、混凝土裂縫修補(bǔ)、石質(zhì)文物修復(fù)、堤岸防護(hù)、抑制揚(yáng)塵等[4],應(yīng)用該技術(shù)進(jìn)行風(fēng)積沙固化正逐漸成為固沙領(lǐng)域研究新方向。Maleki等[5]基于風(fēng)蝕損失量和貫入阻力探究微生物成礦技術(shù)固沙可行性,結(jié)果表明高濃度微生物處理劑作用下的沙土可有效抵御風(fēng)力侵蝕;Pakbaz等[6]考察了MICP作用下沙土抗剪強(qiáng)度的變化情況,結(jié)果顯示經(jīng)MICP技術(shù)處理15 d后的沙土抗剪強(qiáng)度提高了44%~86%;Bahmani等[7]研究了溫度與土壤壓實(shí)度對(duì)微生物成礦作用的影響,發(fā)現(xiàn)微生物在60 ℃時(shí)具有較高活性,對(duì)應(yīng)的固化效果較好,土密度為2.1 g/cm3時(shí)固化體的抗壓強(qiáng)度最高;Khaleghi等[8]使用產(chǎn)脲酶微生物混合其他種類(lèi)微生物作用于沙土,固沙效果明顯優(yōu)于單一產(chǎn)脲酶微生物的固沙效果;Duo等[9]探究了不同固化液濃度對(duì)MICP風(fēng)積沙固化效果的影響,發(fā)現(xiàn)高濃度固化液更有利于改性土力學(xué)性能的提升;Sotoudehfar等[10]使用優(yōu)化的正交試驗(yàn)法,探究MICP作用過(guò)程中各參數(shù)對(duì)固化效果的影響,結(jié)果表明固化時(shí)間對(duì)固化效果影響最大,細(xì)菌細(xì)胞濃度、營(yíng)養(yǎng)液摩爾濃度比和注液流速對(duì)固化效果影響程度相近;李馳等[11]在大量室內(nèi)試驗(yàn)的基礎(chǔ)上開(kāi)展了微生物礦化覆膜現(xiàn)場(chǎng)試驗(yàn),發(fā)現(xiàn)對(duì)沙漠土進(jìn)行礦化覆膜具有良好的效果。
3 結(jié) 論
(1)采用MICP技術(shù)能有效固化風(fēng)積沙。相同濃度條件下,使用氯化鈣作為鈣源能大幅提升固化體力學(xué)性能,可作為風(fēng)積沙生物固化的有效鈣源。
(2)不同鈣源生成的碳酸鈣礦物具有顯著差異。氯化鈣源生成的碳酸鈣晶型多為方解石,醋酸鈣生成的碳酸鈣晶型多為不規(guī)則形狀且晶體尺寸較小。
(3)基于MICP技術(shù)固化風(fēng)積沙,能較好地保持固化體滲透性,為植物栽種提供有利條件。
參考文獻(xiàn):
[1] 龔偉,臧運(yùn)曉,謝浩,等.現(xiàn)有固沙材料結(jié)構(gòu)與性能內(nèi)在關(guān)系的研究進(jìn)展[J].材料導(dǎo)報(bào),2015,29(21):47-52.
[2] 王禮先.我國(guó)荒漠化土地成因及其防治對(duì)策[J].世界林業(yè)研究,2000,13(6):32-37.
[3] BOQUET E, BORONAT A, RAMOS C A. Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon[J]. Nature, 1973, 246: 527-529.
[4] PHILLIPS A J, GERLACH R, LAUCHNOR E, et al. Engineered Applications of Ureolytic Biomineralization: a Review[J]. Biofouling, 2013, 29(6): 715-733.
[5] MALEKI M, EBRAHIMI S, ASADZADEH F, et al. Performance of Microbial-Induced Carbonate Precipitation on Wind Erosion Control of Sandy Soil[J]. International Journal of Environmental Science and Technology, 2016, 13(3): 937-944.
[6] PAKBAZ M S, BEHZADIPOUR H, GHEZELBASH G R. Evaluation of Shear Strength Parameters of Sandy Soils upon Microbial Treatment[J]. Geomicrobiology Journal, 2018, 35(8): 721-726.
[7] BAHMANI M, NOORZAD A, HAMEDI J, et al. The Role of Bacillus Pasteurii on the Change of Parameters of Sands According to Temperatur Compresion and Wind Erosion Resistance[J]. Journal Clean WAS, 2017, 1(2): 1-5.
[8] KHALEGHI M, ROWSHANZAMIR M A. Biologic Improvement of a Sandy Soil Using Single and Mixed Cultures: a Comparison Study[J]. Soil and Tillage Research, 2019, 186: 112-119.
[9] DUO L, KAN L T, HUI L Z, et al. Experimental Investigation of Solidifying Desert Aeolian Sand Using Microbially Induced Calcite Precipitation[J]. Construction and Building Materials, 2018, 172: 251-262.
[10] SOTOUDEHFAR A R, MIRMOHAMMAD S M, MOKHTARI E, et al. Assessment of the Parameters Influencing Microbial Calcite Precipitation in Injection Experiments Using Taguchi Methodology[J]. Geomicrobiology Journal, 2016, 33(2): 163-172.
[11] 李馳,王碩,王燕星,等.沙漠微生物礦化覆膜及其穩(wěn)定性的現(xiàn)場(chǎng)試驗(yàn)研究[J].巖土力學(xué),2019,40(4):1291-1298.
[12] DHAMI N K, ALSUBHI W R, ELIZABETH W, et al. Bacterial Community Dynamics and Biocement Formation During Stimulation and Augmentation: Implications for Soil Consolidation[J]. Frontiers in Microbiology, 2017, 8: 1267.
[13] DE M W, COX K, DE B N, et al. Bacterial Carbonate Precipitation as an Alternative Surface Treatment for Concrete[J]. Construction and Building Materials, 2008, 22(5): 875-885.
[14] GOROSPE C M, HAN S H, KIM S G, et al. Effects of Different Calcium Salts on Calcium Carbonate Crystal Formation by Sporosarcina Pasteurii KCTC 3558[J]. Biotechnology and Bioprocess Engineering, 2013, 18(5): 903-908.
[15] ACHAL V, PAN X. Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp CR2[J]. Applied Biochemistry and Biotechnology, 2014, 173(1): 307-317.
[16] ZHANG Y, GUO H X, CHENG X H. Role of Calcium Sources in the Strength and Microstructure of Microbial Mortar[J]. Construction and Building Materials, 2015, 77: 160-167.
[17] 韓智光,程曉輝.營(yíng)養(yǎng)鹽對(duì)微生物加固可液化砂土效果的探討[J].工業(yè)建筑,2015(7):19-22.
[18] 李成杰,魏桃員,季斌,等.不同鈣源及Ca2+濃度對(duì)MICP的影響[J].環(huán)境科學(xué)與技術(shù),2018,41(3):30-34.
[19] JONKERS H M. Self Healing Concrete: A Biological Approach[M]//Self Healing Materials. Dordrecht: Springer, 2007: 195-204.
[20] 新疆地理學(xué)會(huì).新疆地理手冊(cè)[M].烏魯木齊:新疆人民出版社,1993:130-134.
[21] 李多.微生物誘導(dǎo)碳酸鈣沉淀固化沙漠風(fēng)積沙的研究[D].楊凌:西北農(nóng)林科技大學(xué),2018:34-37.
[22] 成亮,錢(qián)春香,王瑞興,等.碳酸鹽礦化菌調(diào)控碳酸鈣結(jié)晶動(dòng)力學(xué)、形態(tài)學(xué)的研究[J].功能材料,2007,38(9):1511-1515.
[23] 王瑞興,錢(qián)春香,王劍云.微生物沉積碳酸鈣研究[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,35(增刊1):191-195.
[24] 成亮,錢(qián)春香,王瑞興,等.碳酸巖礦化菌誘導(dǎo)碳酸鈣晶體形成機(jī)理研究[J].化學(xué)學(xué)報(bào),2007,65(19):2133-2138.
【責(zé)任編輯 張智民】