岳寧波 李云洲 李玉龍 潘鵬程 潘寅濤 王勇 須文 吳浪 閆見敏
摘要:【目的】克隆番茄促分裂原活化蛋白激酶(MAPK)基因SlMAPK6,并分析其在不同非生物脅迫及信號物質(zhì)處理下的表達(dá)模式,為深入探究SlMAPK6基因在番茄逆境響應(yīng)中調(diào)控機(jī)制提供理論參考?!痉椒ā坎捎猛纯寺〖夹g(shù)從矮番茄中克隆SlMAPK6基因cDNA全長序列,并進(jìn)行生物信息學(xué)分析,采用實時熒光定量PCR檢測矮番茄幼苗在干旱(20% PEG-6000)、鹽(300 mmol/L NaCl)及信號物質(zhì)[0.50 mmol/L水楊酸(SA)和0.10 mmol/L 2,1,3-苯并噻二唑(BTH)]處理下SlMAPK6基因的表達(dá)模式?!窘Y(jié)果】克隆獲得SlMAPK6基因cDNA全長序列為1360 bp,開放閱讀框(ORF)為1131 bp,編碼376個氨基酸殘基,其編碼蛋白理論等電點(diǎn)(pI)6.76,不穩(wěn)定指數(shù)44.36,脂肪系數(shù)90.00,為不穩(wěn)定的強(qiáng)脂溶性蛋白,親水性平均值(GRAVY)-0.396,親水性氨基酸均勻分布在整個肽鏈中,故該蛋白為親水性蛋白;亞細(xì)胞定位于細(xì)胞核及胞漿質(zhì)中,無跨膜區(qū),含有36個磷酸化位點(diǎn),其中絲氨酸(Ser)磷酸位點(diǎn)19個、蘇氨酸(Thr)磷酸位點(diǎn)9個。SlMAPK6蛋白二級結(jié)構(gòu)中,α-螺旋占38.03%,延伸鏈占10.37%,無規(guī)則卷曲占51.60%。SlMAPK6蛋白與馬鈴薯StMAPK4、風(fēng)鈴辣椒CbMAPK4和中華辣椒CcMAPK4蛋白同源性均為99.47%。SlMAPK6和SlMAPK5蛋白的親緣關(guān)系最近,與擬南芥MAPK家族B亞族成員AtMAPK4、AtMPK5、AtMPK11、AtMPK12和AtMPK13蛋白的親緣關(guān)系也較近。經(jīng)SA、BTH、NaCl和PEG-6000處理后,SlMAPK6基因均出現(xiàn)抑制表達(dá),說明SlMAPK6基因負(fù)向調(diào)控番茄植株的逆境響應(yīng)。【結(jié)論】SlMAPK6基因可能參與負(fù)調(diào)控番茄植株的抗病和抗逆脅迫機(jī)制。SlMAPK6蛋白通過Ser或Thr磷酸化識別細(xì)胞信號的傳導(dǎo)功能,在矮番茄逆境脅迫響應(yīng)中發(fā)揮重要作用。
關(guān)鍵詞: 番茄;促分裂原活化蛋白激酶6(MAPK6);基因克隆;信號物質(zhì);非生物脅迫;表達(dá)特性
中圖分類號: S641.203.6? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2020)07-1625-09
Abstract:【Objective】 To clone the tomato mitogen-activated protein kinase(MAPK) gene SlMAPK6, to analyze its expression level under different abiotic stresses and signal substances, which? provided theoretical reference for exploration of the regulatory mechanism of the SlMAPK6 gene in tomato stress response. 【Method】Using homologous cloning technology to clone the full-length cDNA sequence of SlMAPK6 gene from dwarf tomato, conducting bioinformatics analysis, and real-time fluorescent quantitative PCR was used to detect the expression pattern of SlMAPK6 gene under the drought(20% PEG-6000), salt(300 mmol/L NaCl), signal substances[0.50 mmol/L salicylic acid (SA) and 0.10 mmol/L 2,1,3-benzothiadiazole(BTH)] treatments. 【Result】The full-length cDNA of SlMAPK6 was 1360 bp and contained an open reading frame(ORF) of 1131 bp that encoded 376 amino acids residues, the theoretical isoelectric point(pI) was 6.76, instability index? 44.36, and the fat coefficient 90.00,it was an unstable strong fat-soluble protein. The average hydrophilicity(GRAVY) was -0.396, hydrophilic amino acids were evenly distributed in the entire peptide chain, so the protein was a hydrophilic protein, subcellularly located in the nucleus and cytoplasm, without a transmembrane region.It contained 36 phosphorylation sites, including 19 serine(Ser) phosphate sites and 9 threonine(Thr) phosphate sites. In the secondary structure of SlMAPK6 protein, α-helix accounted for 38.03%, extended chain accounted for 10.37%, and random coil accounted for 51.60%. The homology of SlMAPK6 protein with potato StMAPK4, capsicum CbMAPK4 and Chinese capsicum CcMAPK4 were all 99.47%. SlMAPK6 and SlMAPK5 had the closest relationship, and it was also closely related to members of the arabidopsis MAPK family B subfamily: AtMAPK4, AtMPK5, AtMPK11, AtMPK12 and AtMPK13 proteins. After SA, BTH, NaCl and PEG-6000 treatments, the expression of SlMAPK6 gene was suppressed, indicating that SlMAPK6 gene negatively regulated the stress response of tomato plants. 【Conclusion】The SlMAPK6 gene may be involved in negatively regulating the disease resistance and stress resistance of tomato plants. The SlMAPK6 protein recognizes the transduction function of cell signals through Ser or Thr phosphorylation, and plays an important role in the response of dwarf tomato to stress.
Key words: tomato; mitogen-activated protein kinase 6(MAPK6);gene cloning; signal substance response; abio-tic stress; expression characters
Foundation item: National Natural Science Foundation of China(31960604); Guizhou Science and Technology Plan Project(QKHPTRC〔2017〕5788-28); Research Project on Talent Introduction of Guizhou University(KDRJHZ〔2017〕50); Laboratory Open Project of Guizhou University(SYSKF2019-55)
0 引言
【研究意義】番茄(Solanum lycopersicum L.)為茄科番茄屬一年生或多年生蔬菜作物,是我國重要的園藝蔬菜,其富含維生素、蘿卜素及具有抗氧化作用的番茄紅素等營養(yǎng)物質(zhì),可減緩衰老和預(yù)防癌癥(Perveen et al.,2015;Petyaev,2016;Crowe-White et al.,2019)。番茄在生長過程中常受到不利生長環(huán)境的影響,包括病原微生物侵染、干旱及鹽等生物和非生物脅迫,對番茄生產(chǎn)造成嚴(yán)重危害(李翠,2014)。經(jīng)研究發(fā)現(xiàn),促分裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPK)在植物的生長、發(fā)育和脅迫應(yīng)答中發(fā)揮重要作用(Xu and Zhang,2015),因此,克隆番茄MAPK基因并分析其表達(dá)特性,深入探究其在番茄響應(yīng)生物和非生物脅迫中的調(diào)控機(jī)制,對提高番茄植株抗逆境脅迫能力具有重要意義?!厩叭搜芯窟M(jìn)展】MAPK在真核生物中普遍存在且高度保守,是一類絲氨酸(Ser)/蘇氨酸(Thr)蛋白激酶,能將外源或內(nèi)源信號分子導(dǎo)入細(xì)胞內(nèi)(Smekalova et al.,2013;Lee et al.,2016)。MAPK級聯(lián)信號傳導(dǎo)由MAPK、MAPK激酶(MAPKK)和MAPKK激酶(MAPKKK)3級信號傳導(dǎo)組成(de Zelicourt et al.,2016)。MAPK是末端級聯(lián)反應(yīng)信號激酶,通過上游MAPKK和MAPKKK對Ser和Thr殘基進(jìn)行磷酸化來傳遞信號(Chen et al.,2001;Hame et al.,2006;Rodriguez et al.,2010),從而參與植物的信號轉(zhuǎn)導(dǎo)應(yīng)答過程(Kalapos et al.,2019)。目前,已有大量的MAPK家族成員從不同植物物種中被鑒定出來,其中擬南芥、水稻、玉米和小麥分別鑒定出20、17、21和15個MAPK蛋白(Lian et al.,2012;Liu et al.,2013;Min and Zhao,2018)。番茄中已鑒定出16個MAPK蛋白(Wang et al.,2018a,2018b)。根據(jù)MAPK結(jié)構(gòu)差異,可將其分為A、B、C和D 4個亞族(Mohanta et al.,2015;王潔等,2016),其中,A、B和C亞族含TEY磷酸化位點(diǎn),D亞族含TDY磷酸化位點(diǎn)。在擬南芥中,A亞族以AtMPK3、AtMPK6和AtMPK10等為代表,主要與環(huán)境和激素反應(yīng)相關(guān),其中,AtMAPK3和AtMPK6在植株發(fā)育過程中發(fā)揮協(xié)同作用,MAPK3突變體和MAPK6突變體表現(xiàn)為胚胎異常,且AtMAPK3和AtMAPK6還參與脫落酸(ABA)、茉莉酸(JA)等激素響應(yīng)(Ortiz-Masia et al.,2007;Mine et al.,2017);B亞族以AtMPK4、AtMPK5、AtMPK11、AtMPK12和AtMPK13等為代表,主要參與細(xì)胞分裂和環(huán)境應(yīng)激反應(yīng),其中,AtMPK4還參與調(diào)節(jié)先天免疫(Ichimura et al.,2000;Petersen et al.,2000;Kosetsu et al.,2011);C亞族以AtMPK1、AtMPK2、AtMPK7和AtMPK14等為代表,主要參與應(yīng)激反應(yīng);D亞族包含AtMPK8、AtMPK9、AtMPK15、AtMPK16、AtMPK17、AtMPK18、AtMPK19和AtMPK20,主要參與逆境脅迫響應(yīng)和生長發(fā)育(孔福苓,2012)??梢?,各MAPK亞族均有成員參與非生物和生物應(yīng)激反應(yīng)(Wang et al.,2018a)?!颈狙芯壳腥朦c(diǎn)】在番茄MAPK家族中,以A亞族如SlMAPK1、SlMAPK2和SlMAPK3研究相對較多(Singh et al.,2018;Zhang et al.,2018),而B亞族如SlMAPK6(Kong et al.,2012)等研究甚少,其功能尚不清楚,至今鮮見有關(guān)SlMAPK6基因克隆及表達(dá)的研究報道?!緮M解決的關(guān)鍵問題】采用同源克隆技術(shù)從矮番茄中克隆SlMAPK6基因cDNA全長序列,并進(jìn)行生物信息學(xué)分析,采用實時熒光定量PCR檢測矮番茄幼苗在干旱、鹽脅迫及信號物質(zhì)處理下SlMAPK6基因的表達(dá)模式,為深入探究SlMAPK6基因在番茄逆境中的響應(yīng)調(diào)控機(jī)制提供理論參考。
1 材料與方法
1. 1 試驗材料
以矮番茄為供試材料,引自西北農(nóng)林科學(xué)大學(xué)園藝學(xué)院,現(xiàn)保存于貴州大學(xué)農(nóng)學(xué)院番茄種質(zhì)資源庫。RNA isolater Total RNA Extraction Reagent細(xì)胞/組織中總RNA提取試劑盒、HiScript II 1st Strand cDNA Synthesis Kit試劑盒、Taq DNA聚合酶和SYBR Master Mix(2×)購自南京諾維贊生物科技有限公司;水楊酸(SA)、PEG-6000和NaCl購自生工生物工程(上海)股份有限公司;2,1,3-苯并噻二唑(BTH)購自上海源葉生物科技有限公司。
主要儀器設(shè)備:人工智能光照培養(yǎng)箱(寧波市科技園區(qū)新江南儀器有限公司)、CFX96TM Real-time System熒光定量PCR儀(美國Bio-Rad公司)、T100TM PCR儀(美國Bio-Rad公司)、Tannon3500凝膠成像儀(上海天能科技有限公司)、低溫離心機(jī)(德國Eppendorf公司)和NanoDrop One微量核酸蛋白濃度測定儀[賽默飛世爾科技(中國)有限公司]。
1. 2 樣品脅迫處理
挑選飽滿的矮番茄種子,經(jīng)1.0% NaClO消毒15 min后,用無菌水沖洗殘留的NaClO,播種在裝有滅菌土壤的營養(yǎng)缽中,置于人工智能光照培養(yǎng)箱進(jìn)行育苗培養(yǎng)[光照強(qiáng)度240 mol/(m?s),光/暗條件16 h 28 ℃/8 h 18 ℃,相對濕度70%],待苗長至5片真葉時進(jìn)行非生物脅迫(干旱、鹽脅迫)及信號物質(zhì)處理。其中,干旱和鹽脅迫處理,分別采用20% PEG-6000溶液和300 mmol/L NaCl溶液澆灌幼苗根部,以無菌水澆灌的幼苗根部為對照;信號物質(zhì)處理:分別用0.10 mmol/L BTH和0.50 mmol/L SA噴灑幼苗葉面,以無菌水噴灑幼苗葉面為對照。每處理設(shè)3次重復(fù),分別于0、1、3、6、12和24 h采集0.50 g葉片組織,用液氮速凍后,置于-80 ℃保存?zhèn)溆谩?/p>
1. 3 總RNA提取
采用RNA Isolater Total RNA Extraction Reagent細(xì)胞/組織中總RNA提取試劑盒提取矮番茄葉片總RNA,分別用1.0%瓊脂糖凝膠電泳和核酸濃度檢測儀檢測RNA完整性和濃度,采用HiScript II 1st Strand cDNA Synthesis Kit試劑盒以DNA酶處理的1.0 μg總RNA為模板反轉(zhuǎn)錄合成cDNA,-80 ℃保存?zhèn)溆谩?/p>
1. 4 基因克隆
根據(jù)Sol Genomics Network網(wǎng)站公布的SlMAPK6基因序列(登錄號Solyc05G049970),利用Primer Premier 5.0設(shè)計其全長序列擴(kuò)增引物SlMAPK6-F和SlMAPK6-R(表1),委托生工生物工程(上海)股份有限公司合成。以cDNA為模板,用Taq DNA聚合酶克隆SlMAPK6基因cDNA全長序列。反應(yīng)體系20.0 μL:2×Taq PCR Master Mix 10.0 μL,10 μmol/L正、反向引物各1.0 μL,cDNA模板2.0 μL,ddH2O補(bǔ)足至20.0 μL。擴(kuò)增程序:94 ℃預(yù)變性2 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 10 min,進(jìn)行35個循環(huán);72 ℃延伸10 min。PCR產(chǎn)物送往北京諾賽基因組研究中心有限公司測序。
1. 5 生物信息學(xué)分析
將測序結(jié)果提交至NCBI數(shù)據(jù)庫進(jìn)行BLAST比對,以獲得SlMAPK6蛋白的同源氨基酸序列。采用ProtParam對SlMAPK6蛋白進(jìn)行理化性質(zhì)分析;分別利用PSIPRED和SWISS-MOODEL預(yù)測SlMAPK6蛋白二、三級結(jié)構(gòu);采用Softberry-Protcomp進(jìn)行SlMAPK6蛋白亞細(xì)胞定位;采用TMHMM預(yù)測SlMAPK6蛋白跨膜區(qū);采用NetPhos 3.1預(yù)測SlMAPK6蛋白磷酸化位點(diǎn);通過ProtScale預(yù)測SlMAPK6蛋白親/疏水性;使用DNAMAN進(jìn)行氨基酸序列多重比對?;赟lMAPK6蛋白、番茄MAPK家族成員和擬南芥MAPK家族成員的氨基酸序列,用MEGA 7.0的鄰接法(Neighbor-joining,NJ)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,Booststrap參數(shù)為1000。
1. 6 實時熒光定量PCR檢測
根據(jù)擴(kuò)增獲得的SlMAPK6基因序列設(shè)計定量引物qSlMAPK6-F和qSlMAPK6-R(表1)。以矮番茄葉片cDNA為模板,采用CFX96TM Real-time System熒光定量PCR儀檢測SlMAPK6基因在干旱、鹽脅迫及信號物質(zhì)處理下的相對表達(dá)量。反應(yīng)體系20.0 μL:SYBR Master Mix(2×) 10.0 μL,10 μmol/L正、反向引物各0.8 μL,cDNA模板4.0 μL,DEPC H2O補(bǔ)足至20.0 μL。每個樣品設(shè)3個重復(fù)。擴(kuò)增程序:95 ℃預(yù)變性10 min;95 ℃ 15 s,60 ℃ 15 s,進(jìn)行40個循環(huán);95 ℃ 10 s,65 ℃ 10 s,95 ℃ 5 s。以SlEF1α基因為內(nèi)參,其引物見表1。
1. 7 統(tǒng)計分析
使用Excel 2010整理處理數(shù)據(jù),采用2-△△Ct法計算目的基因的相對表達(dá)量(Livak and Schmittegen,2001),并以O(shè)rigin 2017制圖。
2 結(jié)果與分析
2. 1 SlMAPK6基因克隆結(jié)果
以矮番茄葉片cDNA為模板進(jìn)行PCR擴(kuò)增,獲得1條長度約1300 bp的條帶(圖1),與預(yù)期結(jié)果相符。測序結(jié)果顯示,該片段全長1360 bp,開放閱讀框(ORF)為1131 bp,編碼376個氨基酸殘基。
2. 2 SlMAPK6蛋白氨基酸序列同源性分析結(jié)果
根據(jù)克隆獲得的SlMAPK6基因核苷酸序列推導(dǎo)其編碼蛋白(SlMAPK6)的氨基酸序列,通過NCBI數(shù)據(jù)庫的BLAST獲得其同源蛋白氨基酸序列,經(jīng)同源性分析發(fā)現(xiàn),SlMAPK6蛋白與馬鈴薯(Solanum tuberosum)StMAPK4、風(fēng)鈴辣椒(Capsicum baccatum)CbMAPK4和中華辣椒(C. chinense)CcMAPK4蛋白的同源性均為99.47%。對這4種同源蛋白進(jìn)行氨基酸序列多重比對分析,結(jié)果(圖2)顯示,SlMAPK6蛋白僅第149和311位氨基酸與StMAPK4蛋白存在差異,但與CbMAPK4和CcMAPK4蛋白無差異;CbMAPK4蛋白僅第43和226位氨基酸與CcMAPK4蛋白存在差異,但CcMAPK4蛋白第43位氨基酸與StMAPK4和SlMAPK6無差異;StMAPK4蛋白第138位氨基酸與其他3種蛋白均存在差異。綜上所述,SlMAPK6蛋白與馬鈴薯、風(fēng)鈴辣椒和中華辣椒MAPK4蛋白的同源性極高,序列高度保守。
2. 3 SlMAPK6蛋白理化性質(zhì)預(yù)測結(jié)果
SlMAPK6蛋白由376個氨基酸組成,分子量43.09 kD,總原子數(shù)6040,理論等電點(diǎn)(pI)6.76,帶負(fù)電荷氨基酸殘基總數(shù)[天冬氨酸(Asp)+谷氨酸(Glu)]47個,帶正電荷氨基酸殘基總數(shù)[精氨酸(Arg)+賴氨酸(Lys)]45個,不穩(wěn)定指數(shù)44.36,為不穩(wěn)定蛋白;脂肪系數(shù)為90.00,為強(qiáng)脂溶性蛋白。SlMAPK6蛋白親水性平均值(GRAVY)-0.396,多肽鏈第114位的Lys為最低分值(-2.578),親水性最強(qiáng);第234位亮氨酸(Leu)為最高分值(2.111),疏水性最強(qiáng),從整體來看,親水性氨基酸均勻分布在整個肽鏈中,故該蛋白為親水性蛋白(圖3)。Softberry-Protcomp亞細(xì)胞定位預(yù)測結(jié)果顯示,SlMAPK6蛋白可能存在于細(xì)胞核及胞漿質(zhì)中。TMHMM預(yù)測結(jié)果顯示,SlMAPK6蛋白無跨膜區(qū)(圖4)。
MAPK作為末端級聯(lián)反應(yīng)信號激酶,磷酸化位點(diǎn)預(yù)測分析有助于了解其在細(xì)胞信號傳導(dǎo)過程中的作用。NetPhos 3.1預(yù)測結(jié)果顯示,SlMAPK6蛋白含有36個磷酸化位點(diǎn),其中,Ser磷酸位點(diǎn)19個,Thr磷酸位點(diǎn)9個(圖5)。
2. 4 SlMAPK6蛋白二、三級結(jié)構(gòu)預(yù)測結(jié)果
SlMAPK6蛋白二級結(jié)構(gòu)預(yù)測結(jié)果(圖6)顯示,α-螺旋占38.03%,延伸鏈占10.37%,無規(guī)則卷曲占51.60%,說明α-螺旋和無規(guī)則卷曲是SlMAPK6蛋白的主要結(jié)構(gòu)部件。SlMAPK6蛋白三級結(jié)構(gòu)預(yù)測結(jié)果(圖7)與二級結(jié)構(gòu)預(yù)測結(jié)果基本相符。圖6和圖7均顯示,SlMAPK6蛋白中無規(guī)則卷曲的占比最高。由于酶的功能部位常位于無規(guī)則卷曲中,可能是SlMAPK6在MAPK級聯(lián)反應(yīng)中發(fā)揮功能的主要原因。
2. 5 系統(tǒng)發(fā)育進(jìn)化樹分析結(jié)果
由圖8可知,SlMAPK6蛋白與SlMAPK5蛋白的親緣關(guān)系最近,與擬南芥MAPK家族成員AtMAPK4、AtMPK5、AtMPK11、AtMPK12和AtMPK13蛋白等親緣關(guān)系也較近。據(jù)前人報道,AtMAPK4蛋白在免疫調(diào)節(jié)中起負(fù)反饋調(diào)節(jié)(Ichimura et al.,2000),故推測SlMAPK6蛋白在番茄的免疫調(diào)節(jié)中發(fā)揮相似功能。
2. 6 SlMAPK6基因在非生物脅迫及信號物質(zhì)處理下的表達(dá)模式
對矮番茄幼苗進(jìn)行干旱(PEG-6000)、鹽(NaCl)及信號物質(zhì)(SA和BTH)處理,并采用實時熒光定量PCR檢測不同處理下SlMAPK6基因的表達(dá)模式。由圖9-A和圖9-B可知,SA處理后1和3 h,SlMAPK6基因表達(dá)量均較對照顯著升高(P<0.05,下同);BTH處理后3 h,SlMAPK6基因表達(dá)量較對照顯著升高,但SA和BTH處理后6~24 h,SlMAPK6基因的表達(dá)趨勢相似,均為抑制表達(dá)。由圖9-C可知,NaCl處理后,SlMAPK6基因表達(dá)較對照整體上無明顯變化,僅在處理后1和12 h與對照存在顯著差異,但處理后1 h為誘導(dǎo)表達(dá),處理后12 h為抑制表達(dá)。由圖9-D可知,PEG-6000處理后,SlMAPK6基因的整體表達(dá)趨勢為抑制表達(dá),僅在處理后6 h為誘導(dǎo)表達(dá)。綜上所述,經(jīng)SA、BTH、NaCl和PEG-6000處理后,SlMAPK6基因均出現(xiàn)抑制表達(dá),表明SlMAPK6基因負(fù)向調(diào)控番茄植株的逆境脅迫響應(yīng)。
3 討論
MAPK級聯(lián)信號參與調(diào)控植物的多種生命活動,如生長增殖、分化、運(yùn)動和凋亡及抗病、抗逆防御反應(yīng)(Abdukhi,2014)。MAPK處于MAPK級聯(lián)信號系統(tǒng)的下游,在整個信號傳導(dǎo)中發(fā)揮關(guān)鍵作用。番茄生長過程中常遭遇多種逆境脅迫,嚴(yán)重影響其生長發(fā)育而導(dǎo)致大幅減產(chǎn),因此研究MAPK級聯(lián)信號相關(guān)基因在番茄逆境中的調(diào)控功能尤為重要。目前,已從番茄中鑒定出16個MAPK家族成員,其中,A亞族的SlMAPK1、SlMAPK2和SlMAPK3基因研究較多,研究結(jié)果顯示,三者參與調(diào)控番茄植株的抗病、抗逆防御反應(yīng)(Li et al.,2017a,2017b;Wang et al.,2018b;楊楊等,2018)。經(jīng)研究證實,SlMAPK1和SlMAPK2蛋白與擬南芥AtMAPK6蛋白同源,而SlMAPK3蛋白與擬南芥AtMAPK3蛋白同源(孔福苓,2012)。AtMAPK3和AtMAPK6蛋白參與調(diào)控擬南芥多種生物與非生物脅迫(Beckers et al.,2009;Yu et al.,2010;Meng et al.,2013),即上述研究相互印證結(jié)論的準(zhǔn)確性。迄今,有關(guān)B亞族成員的研究報道極少,僅證實SlMAPK6屬于B亞族成員(Kong et al.,2012),而鮮見有關(guān)SlMAPK6基因克隆及表達(dá)的研究報道。本研究通過同源克隆技術(shù)獲得SlMAPK6基因序列,并對其進(jìn)行同源性分析,結(jié)果顯示,SlMAPK6蛋白與擬南芥AtMAPK4蛋白高度同源,推測SlMAPK6蛋白與擬南芥AtMAPK4蛋白功能相似。前人研究表明,AtMAPK4基因負(fù)調(diào)控擬南芥的自然免疫系統(tǒng)(Ichimura et al.,2000;Petersen et al.,2000;Kosetsu et al.,2011),故推測SlMAPK6基因負(fù)調(diào)控番茄植株的自然免疫系統(tǒng)。
本研究通過生物信息學(xué)分析發(fā)現(xiàn),SlMAPK6是一個親水性蛋白,存在于細(xì)胞核及胞漿質(zhì)中,含有36個磷酸化位點(diǎn),其中Ser磷酸位點(diǎn)19個,Thr磷酸位點(diǎn)9個。經(jīng)前人研究證實,MAPK級聯(lián)反應(yīng)的磷酸化過程中絲氨酸和蘇氨酸發(fā)揮重要功能(Min and Zhao,2018),故推測SlMAPK6通過Ser磷酸位點(diǎn)和Thr磷酸位點(diǎn)激活下游蛋白發(fā)揮作用,后續(xù)可通過Western blotting技術(shù)進(jìn)行驗證。
本研究對矮番茄幼苗分別進(jìn)行干旱(PEG-6000)、鹽(NaCl)及信號物質(zhì)(SA和BTH)處理,結(jié)果發(fā)現(xiàn)SlMAPK6蛋白參與番茄植株的多種非生物脅迫及信號物質(zhì)響應(yīng)。BTH是SA類似物,屬于人工合成的植物誘抗劑(于力等,2013),在SA和BTH的誘導(dǎo)下,SlMAPK6基因的表達(dá)趨勢整體相似,但又存在差異,暗示SlMAPK6基因參與SA和BTH誘導(dǎo)抗逆境響應(yīng)的作用機(jī)制存在差異。前人研究結(jié)果顯示,BTH能誘導(dǎo)植物抵抗多種逆境(Ramasamy et al.,2015;Frackowiak et al.,2019),而SA是植物體內(nèi)普遍存在的內(nèi)源信號分子,在植物的多種逆境信號中發(fā)揮重要作用(Rivas-San and Plasencia,2011;Oracz and Karpinski,2016;Li et al.,2017b;Wu et al.,2019),暗示SA和BTH誘導(dǎo)的SlMAPK6通路參與調(diào)控植物的抗逆響應(yīng)。經(jīng)NaCl處理后,SlMAPK6基因表達(dá)較對照整體上無明顯變化,僅在處理后1和12 h與對照存在顯著差異,但處理后1 h為誘導(dǎo)表達(dá),處理后12 h為抑制表達(dá),其原因可能是NaCl對植物的滲透脅迫需要時間,處理后12 h基因下調(diào)表達(dá)可能是植物對高濃度滲透脅迫的反饋調(diào)節(jié);同樣,PE-G6000處理6 h為誘導(dǎo)表達(dá),其他時間點(diǎn)均為抑制表達(dá),推測處理后6 h基因高效表達(dá)是植株對PEG-6000模擬干旱的逆境反饋調(diào)節(jié)。結(jié)合生物信息學(xué)分析結(jié)果,推測SlMAPK6基因可能受SA和BTH信號調(diào)節(jié)參與番茄的抗逆向應(yīng),且在番茄植株非生物逆境脅迫中發(fā)揮負(fù)調(diào)控作用。
4 結(jié)論
SlMAPK6基因可能參與負(fù)調(diào)控番茄植株的抗病和抗逆脅迫機(jī)制。SlMAPK6蛋白可能通過Ser或Thr磷酸化識別細(xì)胞信號的傳導(dǎo)功能,在矮番茄逆境脅迫響應(yīng)中發(fā)揮重要作用。
參考文獻(xiàn):
孔福苓. 2012. 番茄促分裂原活化蛋白激酶(SlMAPK)家族基因的分離及表達(dá)特征分析[D]. 杭州:浙江大學(xué). [Kong F L. 2012. Genome-wide identification and expression profiles analysis of mitogen-activated protein kinase family genes in Solanum lycopersicum[D]. Hangzhou:Zhejiang University.]
李翠. 2014.番茄SpMPKs基因響應(yīng)非生物脅迫的功能分析[D]. 楊凌:西北農(nóng)林科技大學(xué). [Li C. 2014. The function of SpMPKs on tomato tolerance to abiotic stresses[D]. Yangling:Northwest A & F University.]
王潔,王燕,潘長田,何艷軍,劉雪,盧鋼. 2016. 番茄SlMAPK9-2基因分離及表達(dá)分析[J]. 核農(nóng)學(xué)報,30(8):1480-1490. [Wang J,Wang Y,Pan C T,He Y J,Liu X,Lu G. 2016. Cloning and expression analysis of SlMAPK9-2 in Solanum lycopersicum L[J]. Journal of Nuclear Agricultural Sciences,30(8):1480-1490.]
楊楊,劉燦,鄭鄢燕,生吉萍,申琳. 2018. SlMAPK1/2/3和SlACS2參與NO對抗病酶CHI和PAL的誘導(dǎo)[J]. 中國食品學(xué)報,18(7):18-25. [Yang Y,Liu C,Zheng Y R,Sheng J P,Shen L. 2018. SlMAPK1/2/3 and SlACS2 involved in NO-induced activity of phenylalnine ammonialyase and chitinase[J]. Journal of Chinese Institute of Food Science and Technology,18(7):18-25.]
于力,孫錦,郭世榮,閻君,朱為民. 2013. 苯并噻二唑誘導(dǎo)番茄對番茄黃化曲葉病毒病的抗性[J]. 江蘇農(nóng)業(yè)學(xué)報, 29(1):71-75. [Yu L,Sun J,Guo S R,Yan J,Zhu W M. 2013. Resistance to tomato yellow leaf curl virus in tomato induced by benzothiadiazole[J]. Jiangsu Journal of Agricultural Sciences,29(1):71-75.]
Abdukhi N. 2014. Functional analysis of MAP kinase pathways in plant defense responses in Solanum lycopersicum[D]. Ottawa:Carleton University.
Beckers G J M,Jaskiewicz M,Liu Y D,Underwood W R,He S Y,Zhang S Q,Conrath U. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana[J]. The Plant Cell,21(3):944-953.
Chen Z,Gibson T B,Robinson F,Silvestro L,Pearson G, Xu B E,Wright A,Vanderbilt C,Cobb M H. 2001. MAP kinases[J]. Chemical Reviews,101(8):2449-2476.
Crowe-White K M,Phillips T A,Ellis A C. 2019. Lycopene and cognitive function[J]. Journal of Nutritional Science.doi:10.1017/jns.2019.16.
de Zelicourt A,Colcombet J,Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science,21(8):677-685.
Frackowiak P,Pospieszny H,Smiglak M,Obrepalska-Steplowska A. 2019. Assessment of the efficacy and mode of action of Benzo(1,2,3)-thiadiazole-7-carbothioic acid s-methyl ester(BTH) and its derivatives in plant protection against viral disease[J]. International Journal of Molecular Scien-ces,20(7):1-27.
Hame L P,Nicole M C,Sritubtim S,Morency M J,Ellis M,Ehlting J,Beaudoin N,Barbazuk B,Klessig D,Lee J,Martin G,Mundy J,Ohashi Y,Scheel D,Sheen J,Xing T,Zhang S Q,Seguin A,Brian E,Ellis B E. 2006. Ancient signals:Comparative genomics of plant MAPK and MAPKK gene families[J]. Trends in Plant Science,11(4):1360-1385.
Ichimura K,Mizoguchi T,Yoshida R,Yuasa T,Shinozaki K. 2000. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. The Plant Journal,24(5):655-665.
Kalapos B,Hlavová M,Nádai T V,Galiba G, Bi?ová K,Dóczi R. 2019. Early evolution of the mitogen-activated protein kinase family in the plant kingdom[J]. Scientific Reports,9:1-14.
Kong F L,Wang J,Cheng L,Liu S Y,Wu J,Peng Z,Lu G. 2012. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum[J]. Gene,499(1):108-120.
Kosetsu K,Matsunaga S,Nakagami H,Colcombet J,Sasabe M,Soyano T,Takahashi Y,HirtH,Machida Y. 2011. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana[J]. The Plant Cell,22(11):3778-3790.
Lee Y, Kim Y J,Kim M H,Kwak J M. 2016. MAPK cascades in guard cell signal transduction[J]. Frontiers in Plant Science. doi:10.3389/fpls.2016.00080.
Li Y Z,Qin L,Zhao J J,Muhammad T,Cao H H,Li H L,Zhang Y,Liang Y. 2017a. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus(TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato(Solanum lycopersicum)[J]. PLoS One,12(2):e0172466.
Li Z,Yu J J,Peng Y,Huang B R. 2017b. Metabolic pathways regulated by abscisic acid,salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass(Agrostis stolonifera)[J]. Physiologia Plantarum,159(1):42-58.
Lian W W,Tang Y M,Gao S Q,Zhang Z,Zhao X,Zhao C P. 2012. Phylogenetic analysis and expression patterns of the MAPK gene family in wheat(Triticum aestivum L.)[J]. Agricultural Sciences in China,11(8):1227-1235.
Liu Y K,Zhang D,Wang L,Li D Q. 2013. Genome-wide analysis of mitogen-activated protein kinase gene family in maize[J]. Plant Molecular Biology Reporter,31(6):1446-1460.
Livak K J,Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods,25(4):402-408.
Meng X Z,Xu J,He Y X,Yang K Y,Mordorski B,Liu Y D,Zhang S Q. 2013. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance[J]. The Plant Cell,25(3):1126-1142.
Min J, Zhao Q C. 2018. Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation[J]. BMC Genomics,19(1):407-424.
Mine A,Berens M L,Nobori T,Anver S,F(xiàn)ukumoto K,Winkelmuller T M,Takeda A,Becker D,Tsuda K. 2017. Pathogen exploitation of an abscisic acid- and jasmonate-inducible MAPK phosphatase and its interception by Arabidopsis immunity[J]. Proceedings of the National Aca-demy of Sciences of the United States of America,114(28):7456-7461.
Mohanta T K,Arora P K,Mohanta N,Parida P,Bae H. 2015. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants[J]. BMC Genomics,16(1):58-77.
Oracz K,Karpinski S. 2016. Phytohormones signaling pathways and ROS involvement in seed germination[J]. Frontiers in Plant Science,7:864. doi:10.3389/fpls.2016.00864.
Ortiz-Masia D,Perez-Amador M A,Carbonell J,Marcote M J. 2007. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis[J]. FEBS Letters,581(9):1834-1840.
Perveen R,Suleria H A R,Anjum F M,Butt M S,Pasha I,Ahmad S. 2015. Tomato(Solanum lycopersicum) carote-noids and lycopenes chemistry; metabolism,absorption,nutrition,and allied health claims—A comprehensive review[J]. Critical Reviews in Food Sicence and Nutrition,55(7):919-929.
Petersen M,Brodersen P,Naested H,Andreasson E,Lindhart U,Johansen B,Nielsen H B,Lacy M,Austin M J,Parker J E,Sharma S B,Klessig D F,Martienssen R,Mattsson O,Jensen A B,Mundy J. 2000. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance[J]. Cell,103(7):1111-1120.
Petyaev I M. 2016. Lycopene deficiency in ageing and cardiovascular disease[J]. Oxidative Medicine and Cellular Longevity. doi:10.1155/2016/3218605.
Ramasamy A D,Bokshi A I,Phan-Thien K,Mcconchie R M. 2015. Seed treatment with benzothiadiazole induces resistance against powdery mildew disease caused by sphaerotheca fuliginea and increases the activities of pathogenesis-related enzymes in cucumber plants[J]. Journal of Horticultural Science & Biotechnology,90(1):63-70.
Rivas-San V M,Plasencia J. 2011. Salicylic acid beyond defence:Its role in plant growth and development[J]. Journal of Experimental Botany,62(10):3321-3338.
Rodriguez M C S,Petersen M,Mundy J. 2010. Mitogen-activated protein kinase signaling in plants[J]. Annual Review of Plant Biology,61:621-649. doi:10.1146/annure-varplant-042809-112252.
Singh A,Nath O,Singh S,Kumar S,Singh I K. 2018. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response[J]. Plant Gene,13:25-35. doi:10.1016/j.plgene.2017.12.001.
Smekalova V,Doskocilova A,Komis G,Samaj J. 2013. Crosstalk between secondary messengers,hormones and MAPK modules during abiotic stress signalling in plants[J]. Biotechnology Advances,32(1):2-11.
Wang H,Gong M,Guo J Y,Xin H,Gao Y,Chao Liu C,Dai D Q,Tang L Z. 2018. Genome-wide identification of Jatropha curcas MAPK,MAPKK,and MAPKKK gene fa-milies and their expression profile under cold stress[J]. Scientific Reports,8(1):16163. doi:10.1038/s41598-018-34614-1.
Wang L,Zhao R R,Li R,Yu W Q,Yang M J,Sheng J P,Shen L. 2018. Enhanced drought tolerance in tomato plants by overexpression of SlMAPK1[J]. Plant Cell Ti-ssue and Organ Culture,133(1):27-38.
Wu Z J,Han S M,Zhou H D,Tuang Z H,Wang Y Z, Jin Y, Shi H Z, Yang W N. 2019. Cold stress activates disease resistance in Arabidopsis thaliana through a salicylic acid dependent pathway[J]. Plant Cell and Environment,42(9):2645-2663.
Xu J,Zhang S Q. 2015. Mitogen-activated protein kinase cascades in signaling plant growth and development[J]. Trends in Plant Science,20(1):56-64.
Yu L J,Nie J N,Cao C Y,Jin Y K,Yan M,Wang F Z,Liu J,Xiao Y,Liang Y H,Zhang W H. 2010. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist,188(3):762-773.
Zhang S J,Wang L,Zhao R R,Yu W Q,Li R,Li Y J,Sheng J P,Shen L. 2018. Knockout of SlMAPK3 reduced di-sease resistance to botrytis cinerea in tomato plants[J]. Journal of Agricultural and Food Chemistry,66(34):8949-8956.
(責(zé)任編輯 陳 燕)