韓明洋 周勝杰 楊蕊 胡靜 馬振華
摘要:【目的】探究不同養(yǎng)殖水溫對(duì)卵形鯧鲹仔魚骨骼組織病理和分子表征的影響,為進(jìn)一步闡明魚類骨骼發(fā)育的分子機(jī)理和骨骼畸形發(fā)生可能的機(jī)制提供參考依據(jù)。【方法】采用蘇木精—伊紅(HE)染色技術(shù)對(duì)分別在24、28和32 ℃水溫下養(yǎng)殖一周后的卵形鯧鲹仔魚頭部和脊柱的骨骼組織進(jìn)行觀察,并利用原位雜交技術(shù)探究不同溫度處理下骨骼發(fā)育相關(guān)基因的表達(dá)規(guī)律?!窘Y(jié)果】隨著水溫的升高,卵形鯧鲹仔魚頭部軟骨的細(xì)胞增大,軟骨基質(zhì)增多;高溫下更多仔魚的脊索向脊柱轉(zhuǎn)變,軟骨組織增多增大。頭部骨骼中BMP2、BMP4、RUNX2、MMP9、MMP13和OCN的原位雜交信號(hào)均隨水溫的升高而有所增強(qiáng);而在脊柱中,BMP2和BMP4的原位雜交信號(hào)隨水溫的升高而增強(qiáng),RUNX2、MMP9和OCN在不同處理組之間的差異不明顯,MMP13的信號(hào)則先增強(qiáng)后減弱。【結(jié)論】水溫的升高會(huì)影響一系列骨骼發(fā)育相關(guān)基因的表達(dá),進(jìn)而促進(jìn)卵形鯧鲹仔魚頭部骨骼的發(fā)育,在促進(jìn)脊柱軟骨組織增殖肥大的同時(shí)抑制脊柱的礦化。
關(guān)鍵詞: 卵形鯧鲹;溫度脅迫;骨骼發(fā)育;HE染色;原位雜交
中圖分類號(hào): S917.4? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)11-3147-10
Histopathology and molecular characterization of the skeletal tissues of golden pompano (Trachinotus ovatus) larvae
under temperature stress
HAN Ming-yang1,2,3,4, ZHOU Sheng-jie1,2,3, YANG Rui1,2,3, HU Jing1,2,3, MA Zhen-hua1,2,3*
(1South China Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences, Guangzhou? 510300, China; 2Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs,Guangzhou? 510300, China; 3Sanya Tropical Fisheries Research Institute, Sanya, Hainan? 572018, China; 4College of Fisheries and Life Science, Shanghai Ocean University, Shanghai? 201306,China)
Abstract:【Objective】 This study was conducted to investigate the histopathological effects and molecular regulatory characterization of bone development of golden pompano (Trachinotus ovatus) larvae under different breeding temperatures, and to provide support for further elucidations of the internal molecular mechanisms of bone development and malformation in fish. 【Method】 Skeletal tissues of the head and spine of the larvae were observed using hematoxylin-eosin (HE) staining after a week of farming at 24 ℃, 28 ℃, and 32 ℃. In situ hybridization was used to observe the expression of bone development-related genes. 【Result】 With an increase in temperature, enlarged chondrocytes and increased cartilage matrix were observed in the head. At the highest temperature, 32 ℃, more larval notochords transformed into spine and more spinal cartilaginous tissues were formed. The in situ hybridization signals of BMP2,BMP4,RUNX2,MMP9,MMP13 and OCN in the head were enhanced with an increase in water temperature. In the spine,the in situ hybri-dization signals of BMP2 and BMP4 were enhanced with an increase in water temperature,while the differences of RUNX2,MMP9 and OCN were not obvious between the different treatment groups. The signal of MMP13 was the strongest in the middle temperature group. 【Conclusion】 The increase in water temperature may promote the development of bone in the head of the larvae by changing the expression of bone-related genes,and inhibit the mineralization of the spine while promoting the development of the spinal cartilaginous tissues.
Key words: Trachinotus ovatus; temperature stress; skeletal development; hematoxylin-eosin staining; in situ hybridization
Foundation item:Hainan Natural Science Foundation(2019CXTD418,319QN339,319MS102); Fundamental Research Funds of Chinese Academy of Fishery Sciences(2020TD55)
0 引言
【研究意義】卵形鯧鲹(Trachinotus ovatus)又稱金鯧,隸屬于硬骨魚綱(Osteichthyes)鱸形目(Perciformes)鲹科(Carangidae)鯧鲹屬(Trachinotus),是一種廣鹽暖水性中上層魚類(許曉娟等,2009)。由于肉嫩味美,營(yíng)養(yǎng)價(jià)值較高,且養(yǎng)殖周期短,可全程使用配合飼料,卵形鯧鲹已成為我國(guó)華南沿海重要的海水養(yǎng)殖魚類之一,生產(chǎn)規(guī)模不斷加大且暢銷海內(nèi)外(劉錫強(qiáng)等,2014;黃倩倩等,2019;孫莘溢等,2019)。但在人工育苗過(guò)程中的畸形率較高,甚至達(dá)到33%,是制約卵形鯧鲹苗種培育和養(yǎng)殖規(guī)模進(jìn)一步擴(kuò)大的主要因素(鄭攀龍,2015)。仔、稚魚骨骼畸形是魚類苗種繁育過(guò)程中的常見(jiàn)問(wèn)題之一。相對(duì)成魚而言,仔、稚魚的發(fā)育對(duì)外界因素更加敏感,環(huán)境和營(yíng)養(yǎng)等因素均可能導(dǎo)致高畸形率的發(fā)生,在人工養(yǎng)殖條件下魚苗骨骼畸形發(fā)生更為常見(jiàn)(劉康等,2011;鄭珂等,2016)。骨骼發(fā)育異常會(huì)降低仔魚的運(yùn)動(dòng)和進(jìn)食能力并提高其應(yīng)激敏感性,從而導(dǎo)致魚苗質(zhì)量下降,死亡率上升(Cahu et al.,2003;張書劍,2008)。溫度能影響魚類等變溫動(dòng)物的存活、生長(zhǎng)、攝食和繁殖,在魚體的新陳代謝等所有生理生化過(guò)程中起著重要的控制作用(李文龍等,2017;Sun et al.,2019;Zhou et al.,2019),是影響魚類苗種培育重要的環(huán)境因素之一。相關(guān)研究認(rèn)為,水溫會(huì)影響魚的骨骼發(fā)育,過(guò)高或過(guò)低的水溫均會(huì)增加骨骼畸形率和死亡率(Ludwig and Lochmann,2009;Yang et al.,2016)。加強(qiáng)對(duì)卵形鯧鲹骨骼發(fā)育的研究,探討?zhàn)B殖水溫等環(huán)境因素對(duì)骨骼發(fā)育的影響,可豐富脊椎動(dòng)物骨骼發(fā)育生物學(xué)的基礎(chǔ)理論,對(duì)優(yōu)化養(yǎng)殖方案以減少骨骼畸形帶來(lái)的經(jīng)濟(jì)損失具有重要意義。【前人研究進(jìn)展】目前,國(guó)內(nèi)外學(xué)者已對(duì)大黃魚(La-rimichthys crocea)(王秋榮等,2010)、塞內(nèi)加爾鰨(Solea senegalensis)(Boglino et al.,2012)、刀鱭(Coilia nasus)(張宗鋒等,2015)、美洲鰣(Alosa sapidissima)(鄧平平等,2017)、鞍帶石斑魚(Epinephelus lanceolatus)(呂雪嬌等,2018)、尖吻鱸(Lates calcarifer)(周勝杰等,2018)和銀鱈魚(Anoplopoma fimbria)(Deary et al.,2019)等不同魚類的骨骼形態(tài)和發(fā)育進(jìn)行了研究,并揭示了影響骨骼發(fā)育的因素,主要包括遺傳、營(yíng)養(yǎng)和環(huán)境因素等(Cobcroft et al.,2004;黃超等,2013;鄭珂等,2016)。溫度作為水產(chǎn)養(yǎng)殖的重要環(huán)境因素之一,不適宜的溫度可能導(dǎo)致魚體生理機(jī)能的紊亂,造成生長(zhǎng)異常及疾病發(fā)生,因此溫度與魚類骨骼發(fā)育的關(guān)系受到重視(Chen et al.,2002)。大西洋鮭魚(Salmo salar)在高溫下飼養(yǎng)脊椎畸形率超過(guò)28%(Ytteborg et al.,2010a);不同的溫度變化會(huì)造成金頭鯛(Sparus aurata)的鰓蓋、脊柱、尾鰭和背鰭的畸形(Georgakopoulou et al.,2010);溫度高于18 ℃會(huì)導(dǎo)致塞內(nèi)加爾鰨的脊柱畸形率升高(Dionisio et al.,2012)。【本研究切入點(diǎn)】骨骼形成是一個(gè)通過(guò)涉及細(xì)胞外基質(zhì)成分、信號(hào)分子和轉(zhuǎn)錄因子高度調(diào)節(jié)的分子途徑的復(fù)雜過(guò)程(Karsenty,2000)。目前,關(guān)于卵形鯧鲹的骨骼發(fā)育和畸形已有一些研究,如鄭攀龍等(2014)、鄭攀龍(2015)對(duì)卵形鯧鲹的骨骼發(fā)育時(shí)序以及溫度和營(yíng)養(yǎng)對(duì)卵形鯧鲹骨骼畸形的影響進(jìn)行了研究;Ma等(2016,2017b)對(duì)不同水溫或營(yíng)養(yǎng)條件下卵形鯧鲹的頜骨畸形發(fā)生以及骨形態(tài)發(fā)生蛋白基因進(jìn)行了研究,Sox家族等骨骼發(fā)育相關(guān)的基因也被初步了解(Ma et al.,2017a);Sun等(2020)評(píng)估了在集約化養(yǎng)殖系統(tǒng)中,卵形鯧鲹早期發(fā)育階段骨骼畸形的類型和頻率。然而,未見(jiàn)卵形鯧鲹在溫度脅迫下骨骼組織病理學(xué)的相關(guān)報(bào)道,溫度調(diào)控卵形鯧鲹骨骼發(fā)育的分子機(jī)制尚不明確?!緮M解決的關(guān)鍵問(wèn)題】采用蘇木精—伊紅(HE)染色探討溫度對(duì)卵形鯧鲹仔魚骨骼組織的影響,采用原位雜交技術(shù)觀察不同溫度處理下骨骼發(fā)育調(diào)控基因的表達(dá),旨在揭示卵形鯧鲹仔魚骨骼發(fā)育的分子機(jī)理及溫度對(duì)仔魚骨骼發(fā)育的內(nèi)在調(diào)控機(jī)制,進(jìn)一步豐富脊椎動(dòng)物骨骼發(fā)育生物學(xué)理論。
1 材料與方法
1. 1 試驗(yàn)材料
同批卵形鯧鲹的受精卵從海南省陵水縣某養(yǎng)殖場(chǎng)取得,運(yùn)至中國(guó)水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所熱帶水產(chǎn)研究開發(fā)中心孵化。孵化后第2 d將仔魚轉(zhuǎn)至9個(gè)500 L循環(huán)海水玻璃纖維缸中,密度為60尾/L,鹽度保持在(32±1)‰,溶解氧保持在6.7±0.2 mg/L,pH 7.7~8.1,每天投喂2次,及時(shí)吸污清底以保持水體清潔。
主要試劑包括無(wú)水乙醇、二甲苯、蘇木素—伊紅染液、鹽酸、氨水、中性樹膠、4%多聚甲醛(DEPC水)、石蠟、甲醇、雙氧水、PBS緩沖液(由DEPC水配制)、20×SSC洗脫液、BSA、10×蛋白酶K儲(chǔ)存液、雜交緩沖液、鼠抗地高辛標(biāo)記過(guò)氧化物酶(anti-DIG-HRP)和DAB顯色劑。
主要儀器設(shè)備:脫水機(jī)(JJ-12J,武漢俊杰電子有限公司)、包埋機(jī)(JB-P5,武漢俊杰電子有限公司)、病理切片機(jī)(RM2016,上海徠卡儀器有限公司)、凍臺(tái)(JB-L5,武漢俊杰電子有限公司)、組織攤片機(jī)(KD-P,浙江省金華市科迪儀器設(shè)備有限公司)、烤箱(DHG-9140A,上?;厶﹥x器制造有限公司)、正置光學(xué)顯微鏡(NIKON ECLIPSE CI,日本尼康)、成像系統(tǒng)(NIKON DS-U3,日本尼康)、搖床(鐘擺式,TSY-B,Servicebio)、渦旋混勻器(MX-F,Servicebio)、Gene tech pen(GT1001,Gene tech)、恒溫箱(LGF-070A,武漢奧普森試驗(yàn)設(shè)備有限公司)和高壓滅菌鍋(SYQ-DSX-280B,上海申安醫(yī)療器械廠)。
1. 2 試驗(yàn)設(shè)計(jì)
分為3個(gè)試驗(yàn)組,分別為低溫組(LT,24 ℃)、中溫組(MT,28 ℃)和高溫組(HT,32 ℃),每個(gè)試驗(yàn)組設(shè)3個(gè)平行。養(yǎng)殖一周后對(duì)3組分別取樣,每缸各取10尾仔魚分別置于4%多聚甲醛中用于組織病理切片,另各取10尾通過(guò)液氮速凍后置于超低溫冰箱 -80 ℃保存用于原位雜交。
1. 3 組織切片制備及觀察
用4%多聚甲醛將仔魚固定24 h以上,經(jīng)脫水和常規(guī)石蠟包埋后進(jìn)行切片,片厚4 μm。脫蠟后采用蘇木精—伊紅進(jìn)行染色,即切片入Harris蘇木素染色3~8 min,自來(lái)水沖洗,1%鹽酸酒精分化數(shù)秒,自來(lái)水沖洗,0.6%氨水返藍(lán),流水沖洗,入伊紅染液中染色1~3 min,脫水封片后進(jìn)行顯微鏡鏡檢和圖像采集分析。染色結(jié)果中細(xì)胞核藍(lán)色,細(xì)胞質(zhì)紅色。
1. 4 顯色原位雜交檢測(cè)
將樣品取出洗凈后立即放入固定液(DEPC水配制)中固定12 h,完成后經(jīng)梯度酒精脫水,進(jìn)行浸蠟包埋和切片;依次將切片放入二甲苯Ⅰ 15 min、二甲苯Ⅱ 15 min、無(wú)水乙醇Ⅰ 5 min、無(wú)水乙醇Ⅱ 5 min、85%酒精5 min、75%酒精5 min、DEPC水洗,滴加蛋白酶K(20 μg/mL)37 ℃消化30 min,純水沖洗后PBS洗3次,每次5 min;滴加3%甲醇-H2O2,室溫避光孵育15 min,將玻片置于PBS中,在脫色搖床上晃動(dòng)洗滌3次,每次5 min;滴加預(yù)雜交液,37 ℃孵育1 h后傾去預(yù)雜交液,滴加含探針雜交液,恒溫箱37 ℃雜交過(guò)夜;用SSC洗去雜交液,滴加BSA,室溫30 min后傾去,滴加鼠抗地高辛標(biāo)記過(guò)氧化物酶,37 ℃孵育40 min后,PBS洗4次,每次5 min;切片稍甩干后,在圈內(nèi)滴加新鮮配制的DAB顯色液,顯微鏡下控制顯色時(shí)間,陽(yáng)性為棕黃色,純水沖洗切片終止顯色。加Harris蘇木素復(fù)染3 min左右,自來(lái)水沖洗,1%鹽酸酒精分化數(shù)秒,自來(lái)水沖洗,氨水返藍(lán),流水沖洗。最后脫水封片,進(jìn)行顯微鏡檢和圖像采集分析。根據(jù)前期轉(zhuǎn)錄組測(cè)序數(shù)據(jù)所得卵形鯧鲹的骨形態(tài)發(fā)生蛋白(BMP2和BMP4)、鈣骨素(OCN)、侏儒相關(guān)轉(zhuǎn)錄因子2(RUNX2)和基質(zhì)金屬蛋白(MMP9和MMP13)基因序列設(shè)計(jì)雜交所用探針(表1)。
2 結(jié)果與分析
2. 1 組織病理學(xué)觀察結(jié)果
由圖1可知,低溫組中,部分卵形鯧鲹仔魚頭部的軟骨基質(zhì)染色較淺(圖1-A),脊索處未出現(xiàn)明顯軟骨組織分化(圖1-B);中溫組中,頭部的軟骨基質(zhì)增多,染色較深(圖1-C),而錐體后部存在少量脈棘軟骨組織,軟骨細(xì)胞較小,軟骨基質(zhì)較少(圖1-D);高溫組中,頭部的軟骨基質(zhì)染色最深,軟骨骨膜增厚(圖1-E),錐體存在較多軟骨組織,細(xì)胞增大增多,軟骨基質(zhì)明顯增多且顏色較深(圖1-F)。
2. 2 骨骼發(fā)育相關(guān)基因在仔魚骨系組織中的表達(dá)
原位雜交結(jié)果顯示,BMP2在卵形鯧鲹仔魚頭部軟骨的軟骨膜和軟骨基質(zhì)中觀察到陽(yáng)性雜交信號(hào),當(dāng)溫度從24 ℃升至32 ℃時(shí),棕黃色陽(yáng)性信號(hào)加強(qiáng)(圖2-A~圖2-C);在脊椎中的陽(yáng)性信號(hào)同樣隨著溫度的升高而增強(qiáng)(圖3-A~圖3-C)。頭部軟骨中BMP4的雜交信號(hào)在低溫組和中溫組中較弱且差異不明顯,在高溫組中雜交信號(hào)有所增強(qiáng)(圖2-D~圖2-F);在脊柱中BMP4的雜交信號(hào)隨著溫度的升高而增強(qiáng)(圖3-D~圖3-F)。RUNX2在頭部軟骨的軟骨膜中存在陽(yáng)性信號(hào),中溫組和高溫組的陽(yáng)性信號(hào)較低溫組稍強(qiáng)(圖2-G~圖2-I);脊柱中RUNX2的雜交信號(hào)較弱,且在不同溫度處理組之間差異不明顯(圖3-G~圖3-I)。MMP9在頭部軟骨中陽(yáng)性信號(hào)明顯,在高溫組中的信號(hào)稍強(qiáng)于低溫組和中溫組(圖4-A~圖4-C);其在脊柱中的信號(hào)在不同溫度組之間差異并不明顯,且在高溫組中稍弱(圖5-A~圖5-C)。對(duì)于MMP13而言,頭部軟骨中高溫組的陽(yáng)性信號(hào)稍強(qiáng)于低溫組和中溫組(圖4-D~圖4-F),而在脊柱中中溫組的陽(yáng)性信號(hào)最強(qiáng),在低溫組和高溫組中信號(hào)則較弱(圖5-D~圖5-F)。OCN在頭部軟骨中陽(yáng)性信號(hào)隨著溫度的升高而增強(qiáng)(圖4-G~圖4-I),而在脊柱中陽(yáng)性信號(hào)在不同處理組之間無(wú)明顯區(qū)別(圖5-G~圖5-I)。
3 討論
3. 1 不同溫度處理對(duì)卵形鯧鲹仔魚骨骼組織病理變化的影響
魚類骨骼發(fā)育主要涉及軟骨細(xì)胞、成骨細(xì)胞和破骨細(xì)胞的綜合作用。骨形成包括膜內(nèi)成骨和軟骨內(nèi)成骨2種方式,胚胎時(shí)期大多數(shù)骨以軟骨內(nèi)成骨方式發(fā)生,軟骨組織逐漸被骨組織替代,涉及軟骨的生長(zhǎng)與退化以及成骨和破骨的平衡過(guò)程等(孫冬梅,2009)。由于軟骨細(xì)胞和成骨細(xì)胞在軟骨形成過(guò)程中具有交互作用,使得骨和軟骨發(fā)育中遺傳相互作用的研究復(fù)雜化。通常人們通過(guò)直接觀察法、micro CT、X光透視和茜素紅—阿利新藍(lán)雙染色等方法對(duì)魚類骨骼進(jìn)行觀察研究(張寧等,2012;萬(wàn)世明等,2014;鄭攀龍等,2014;周勝杰等,2018),尤其是茜素紅—阿利新藍(lán)雙染色法的出現(xiàn)和不斷完善,對(duì)魚類早期軟、硬骨發(fā)育研究起到了極大的促進(jìn)作用(陳淵戈等,2011)?,F(xiàn)代細(xì)胞和分子生物學(xué)、組織學(xué)和組織化學(xué)等學(xué)科及技術(shù)不斷發(fā)展,為深入研究仔魚骨骼發(fā)育和探索各種因素對(duì)骨骼發(fā)育的調(diào)控機(jī)制等提供了新思路和條件。
針對(duì)哺乳動(dòng)物的研究已表明,脊柱畸形發(fā)生過(guò)程中伴隨骨形態(tài)和骨細(xì)胞密度改變、成骨細(xì)胞變薄及細(xì)胞增殖和細(xì)胞死亡等形態(tài)學(xué)變化(Urban and Roberts,2003)。觀察仔魚骨骼組織形態(tài)的變化,是研究骨骼生長(zhǎng)和骨骼畸形發(fā)生的重要方法。鄭攀龍(2015)對(duì)卵形鯧鲹仔魚骨骼發(fā)育的研究表明,其頜骨在孵化后第3 d已開始分化,在孵化后11 d頜骨基本完成礦化;而脊柱在孵化后7~9 d開始發(fā)育,出現(xiàn)髓棘和脈棘等并逐漸礦化,脊柱畸形的發(fā)生率也開始增多。本研究中,卵形鯧鲹仔魚孵化后8 d,在中溫組和高溫組中仔魚椎體血液區(qū)出現(xiàn)脈棘軟骨組織,在32 ℃條件下,部分仔魚軟骨細(xì)胞肥大且排列無(wú)序,軟骨基質(zhì)鈣化更明顯;頭部的軟骨鈣化也隨溫度升高而加強(qiáng)。Ytteborg等(2010b)發(fā)現(xiàn)高溫導(dǎo)致大西洋鮭魚椎體融合畸形的增加,脊柱觀察結(jié)果表明其軟骨細(xì)胞呈現(xiàn)增殖旺盛且排列無(wú)序等特點(diǎn),成骨細(xì)胞生長(zhǎng)區(qū)與軟骨細(xì)胞區(qū)之間的邊界不明顯,椎間隙出現(xiàn)礦化。本研究結(jié)果與其存在相似,表明溫度的升高可能對(duì)卵形鯧鲹頭部骨骼的發(fā)育起到促進(jìn)作用,在促進(jìn)椎體軟骨發(fā)育的同時(shí)抑制其骨化進(jìn)程,改變?cè)械墓趋腊l(fā)育順序進(jìn)程。這可能是異常溫度誘導(dǎo)仔、稚魚骨骼畸形發(fā)生的原因之一。
3. 2 不同溫度處理對(duì)卵形鯧鲹仔魚骨骼發(fā)育相關(guān)基因的影響
3. 2. 1 信號(hào)分子和轉(zhuǎn)錄因子 骨形態(tài)發(fā)生蛋白(BMPs)是一類屬于TGF-β超家族的多功能生長(zhǎng)因子,參與細(xì)胞增殖、存活、分化和凋亡的調(diào)控(Xiao et al.,2007),是骨骼發(fā)育的重要調(diào)控因子。BMP2通過(guò)誘導(dǎo)RUNX2等轉(zhuǎn)錄因子在未分化間質(zhì)細(xì)胞中的表達(dá),促進(jìn)軟骨和成骨細(xì)胞的分化,促使非骨系細(xì)胞逆分化為骨系細(xì)胞(郁衛(wèi)東和秦書儉,2000;Carreira et al.,2014),促進(jìn)基質(zhì)鈣化。BMP2對(duì)于軟骨內(nèi)骨形成是不可或缺的,被認(rèn)為是軟骨內(nèi)骨發(fā)育過(guò)程中軟骨細(xì)胞增殖和成熟的主要因素(Shu et al.,2011)。軟骨細(xì)胞特異性敲除BMP2會(huì)導(dǎo)致嚴(yán)重的軟骨發(fā)育不良表型,如通過(guò)對(duì)斑馬魚(Danio rerio)BMP2基因進(jìn)行敲降后發(fā)現(xiàn),RUNX2等成骨相關(guān)基因的表達(dá)降低,斑馬魚的骨發(fā)育受到抑制(姜宇等,2019)。BMP4可誘導(dǎo)未分化間質(zhì)干細(xì)胞向軟骨細(xì)胞的分化成熟,促使軟骨基質(zhì)的增多(Nishimura et al.,2012;葉娜等,2017),影響骨骼的發(fā)育和重塑。在羅非魚(Oreochromis mossambicus)和鯉魚(Cyprinus carpio)肌肉中,BMP4的表達(dá)會(huì)影響肌間骨的分布(Su and Dong,2018)。Ytteborg等(2010a)探究了大西洋鮭魚脊柱中骨骼發(fā)育相關(guān)基因在不同飼養(yǎng)溫度下的表達(dá)差異,結(jié)果表明高飼養(yǎng)水溫下BMP2和BMP4的表達(dá)增強(qiáng)。Ma等(2016)的研究結(jié)果表明,BMP2和BMP4在卵形鯧鲹仔魚的轉(zhuǎn)錄水平同樣會(huì)隨著溫度的升高而增強(qiáng),仔魚的頜骨畸形發(fā)生率也隨之增加。本研究結(jié)果表明,溫度的升高會(huì)導(dǎo)致卵形鯧鲹仔魚頭部和脊柱軟骨組織中BMP2和BMP4的表達(dá)增強(qiáng)。該結(jié)果進(jìn)一步驗(yàn)證了Ma等(2016)的推測(cè),溫度可能通過(guò)上調(diào)BMP2和BMP4的表達(dá)而影響仔魚的頭部和脊柱骨骼發(fā)育。RUNX2的表達(dá)可影響軟骨細(xì)胞的增殖和成熟以及成骨細(xì)胞的分化(徐婧等,2016)。在本研究中,RUNX2在卵形鯧鲹仔魚頭部骨骼中的表達(dá)同樣隨著溫度的升高而增強(qiáng),與BMPs的表達(dá)相一致。
3. 2. 2 細(xì)胞外基質(zhì)成分 細(xì)胞外基質(zhì)(ECM)主要由膠原、蛋白多糖、糖蛋白、糖胺多糖和彈力纖維等五大類物質(zhì)組成,其動(dòng)態(tài)變化與魚類發(fā)育、組織修復(fù)等生理過(guò)程密切相關(guān)(袁發(fā)煥,2000;Pedersen et al.,2015)?;|(zhì)金屬蛋白酶(MMPs)是一類生物發(fā)育所必需的因子,也是參與ECM降解的重要蛋白酶,可幫助細(xì)胞遷移、增殖和細(xì)胞間的交流(Rajaram et al.,2016)。MMP9和MMP13是MMPs家族中的2個(gè)重要成員。MMP9是肥大軟骨細(xì)胞生長(zhǎng)板血管生成和細(xì)胞凋亡的關(guān)鍵調(diào)節(jié)因子,MMP13則能調(diào)節(jié)肥大軟骨基質(zhì)重塑,缺失會(huì)導(dǎo)致軟骨內(nèi)骨化延遲(Vu et al.,1998;Stickens et al.,2004)。本研究中,MMP9和MMP13在高溫組卵形鯧鲹仔魚頭部軟骨中的表達(dá)信號(hào)較強(qiáng),說(shuō)明溫度可能會(huì)增強(qiáng)卵形鯧鲹仔魚頭部骨骼的重塑過(guò)程。對(duì)哺乳動(dòng)物研究發(fā)現(xiàn),MMP13與骨性關(guān)節(jié)炎等疾病有關(guān),該基因在患關(guān)節(jié)炎的動(dòng)物中表達(dá)上調(diào),進(jìn)而增加骨重塑和細(xì)胞外基質(zhì)降解(Takaishi et al.,2008)。Wargelius等(2010)研究認(rèn)為,MMP13的表達(dá)可能是養(yǎng)殖大西洋鮭魚ECM重塑增加和脊椎壓縮的早期跡象,其表達(dá)的增加會(huì)導(dǎo)致錐體結(jié)構(gòu)和礦物質(zhì)含量的改變,導(dǎo)致壓縮脊椎的發(fā)生。Ytteborg等(2010a)研究則表明,高的養(yǎng)殖水溫會(huì)導(dǎo)致大西洋鮭魚脊柱中MMP9和MMP13表達(dá)的下調(diào)。本研究中,卵形鯧鲹仔魚脊柱中MMP13在高溫組中的信號(hào)弱于中溫組,表明高溫可能抑制了脊柱的軟骨內(nèi)骨化進(jìn)程。脊柱中MMP13在高溫下的低表達(dá)還可能與BMP4的負(fù)向調(diào)節(jié)有關(guān)(Otto et al.,2007)。OCN是骨代謝的標(biāo)志物之一,與骨基質(zhì)的礦化有關(guān)(Al Rifai et al.,2017;蘇曉慧和李維辛,2020)。本研究中,卵形鯧鲹仔魚頭部骨骼中OCN的信號(hào)隨著溫度的升高而增強(qiáng),脊柱中OCN的信號(hào)在不同處理組間差異不明顯。同樣表明溫度可能促進(jìn)頭部骨骼的礦化,同時(shí)抑制脊柱的軟骨內(nèi)骨化進(jìn)程。頭部骨骼與脊柱中骨骼發(fā)育相關(guān)基因呈現(xiàn)不同的表達(dá)規(guī)律,可能與骨骼發(fā)育時(shí)序有關(guān),而溫度的改變會(huì)導(dǎo)致仔魚骨骼發(fā)育時(shí)序發(fā)生變化(鄭珂等,2016)。
4 結(jié)論
水溫升高可能通過(guò)改變一系列骨骼發(fā)育相關(guān)基因的表達(dá),進(jìn)而促進(jìn)卵形鯧鲹仔魚頭部骨骼的發(fā)育,在促進(jìn)脊柱軟骨組織發(fā)育的同時(shí)抑制脊柱的礦化。
參考文獻(xiàn):
陳淵戈,夏冬,鐘俊生,趙盛龍,張宇. 2011. 刀鱭仔稚魚脊柱和附肢骨骼發(fā)育[J]. 上海海洋大學(xué)學(xué)報(bào),20(2):217-223. [Chen Y G,Xia D,Zhong J S,Zhao S L,Zhang Y. 2011. Development of the vertebral column and the appendicular skeleton in the larvae and juveniles of Coilia nasus[J]. Journal of Shanghai Ocean University,20(2):217-223.]
鄧平平,施永海,徐嘉波,嚴(yán)銀龍,謝永德,劉永士,張宗鋒. 2017. 美洲鰣仔稚魚脊柱及附肢骨骼系統(tǒng)的早期發(fā)育[J]. 中國(guó)水產(chǎn)科學(xué),24(1):73-81. [Deng P P,Shi Y H,Xu J B,Yan Y L,Xie Y D,Liu Y S,Zhang Z F. 2017. Early development of the vertebral column and appendi-cular skeleton of Alosa sapidissima[J]. Journal of Fishery Sciences of China,24(1):73-81.] doi:10.3724/SP.J.1118. 2017.16080.
黃超,譚肖英,羅智. 2013. 魚類仔稚魚骨骼發(fā)育的研究進(jìn)展[J]. 當(dāng)代水產(chǎn),38(3):74-76. [Huang C,Tan X Y,Luo Z. 2013. Research progress on skeletal development of juvenile and juvenile fishes[J]. Current Fisheries,38(3):74-76.] doi:10.3969/j.issn.1674-9049.2013.03.017.
黃倩倩,林黑著,周傳朋,黃忠,楊育凱,虞為,黃小林,何嘉奇. 2019. 卵形鯧鲹幼魚對(duì)維生素B2的需要量[J]. 南方水產(chǎn)科學(xué),15(1):69-76. [Huang Q Q,Lin H Z,Zhou C P,Huang Z,Yang Y K,Yu W,Huang X L,He J Q. 2019. Vitamin B2 requirement of juvenile golden pompano (Trachinotus ovatus)[J]. South China Fisheries Science,15(1):69-76.] doi:10.12131/20180065.
姜宇,王亮,朱國(guó)興,徐又佳. 2019. 斑馬魚中骨形態(tài)發(fā)生蛋白2a敲降對(duì)骨代謝的影響[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志,12(2):165-171. [Jiang Y,Wang L,Zhu G X,Xu Y J. 2019. Effects on osteoblasts by bone morphgenetic protein 2a knoched down in zebrafish[J]. Chinese Journal of Osteoporosis and Bone Mineral Research,12(2):165-171.] doi:10.3969/j.issn.1674-2591.2019.02.010.
李文龍,梁興明,梁萌青,張?zhí)鞎r(shí),孫德強(qiáng). 2017. 溫度對(duì)大菱鲆幼魚生長(zhǎng)及免疫相關(guān)酶活性的影響[J]. 水產(chǎn)科學(xué),36(3):311-316. [Li W L,Liang X M,Liang M Q,Zhang T S,Sun D Q. 2017. Effects of temperature on growth and enzyme activity related to immunity in juvenile turbot Scophthalmus maximus[J]. Fisheries Science,36(3):311-316.] doi:10.16378/j.cnki.1003-1111.2017.03.009.
劉康,張璐,劉麗燕,馬學(xué)坤,劉賢敏,劉晉,龐觀宏,曾凡歸. 2011. 簡(jiǎn)述魚類骨骼畸形及其誘因[J]. 廣東飼料,20(4):46-48. [Liu K,Zhang L,Liu L Y,Ma X K,Liu X M,Liu J,Pang G H,Zeng F G. 2011. Description of fish skeletal deformities and its incentives[J]. Guangdong Feed,20(4):46-48.] doi:10.3969/j.issn.1005-8613.2011.04.016.
劉錫強(qiáng),馬學(xué)坤,劉康,蔣煥超. 2014. 華南地區(qū)金鯧魚養(yǎng)殖報(bào)告[J]. 當(dāng)代水產(chǎn),39(2):26-29. [Liu X Q,Ma X K,Liu K,Jiang H C. 2014. Report on golden pompano farming in South China[J]. Current Fisheries, 39(2):26-29.] doi:10.3969/j.issn.1674-9049.2014.02.002.
呂雪嬌,王雨濃,劉清華,翟介明,李軍. 2018. 鞍帶石斑魚仔稚幼魚骨骼發(fā)育與生長(zhǎng)特性研究[J]. 海洋科學(xué),42(5):116-121. [Lü X J,Wang Y N,Liu Q H,Zhai J M,Li J. 2018. Research on skeletal development and allometric growth in larval and juvenile Epinephelus lanceolatus[J]. Marine Sciences,42(5):116-121.] doi:10.11759//hykx20180308002.
蘇曉慧,李維辛. 2020. 骨鈣素在老年2型糖尿病患者中的血糖調(diào)控作用及其影響因素研究[J]. 中國(guó)全科醫(yī)學(xué),23(17):2157-2163. [Su X H,Li W X. 2020. Actions of osteocalcin in glucose metabolism and influencing factors in elderly patients with type 2 diabetes[J]. Chinese Ge-neral Practice,23(17):2157-2163.] doi:10.12114/j.issn. 1007-9572.2020.00.333.
孫冬梅. 2009. 決定骨骼發(fā)育的轉(zhuǎn)錄因子的轉(zhuǎn)錄調(diào)控機(jī)制的研究[D]. 長(zhǎng)春:東北師范大學(xué). [Sun D M. 2009. The study of the transcriptional regulatory mechanisms of transcription factors that determine bone development[D]. Changchun:Northeast Normal University.]
孫莘溢,黃小林,黃忠,曹曉聰,周婷,林黑著,舒琥,虞為,楊育凱,李濤. 2019. 卵形鯧鲹攝食、耗氧節(jié)律和胃腸排空時(shí)間的研究[J]. 南方水產(chǎn)科學(xué),15(5):77-83. [Sun X Y,Huang X L,Huang Z,Cao X C,Zhou T,Lin H Z,Shu H,Yu W,Yang Y K,Li T. 2019. Diet feeding,oxygen consumption rhythm and gastrointestinal evacuation time of Trachinotus ovatus[J]. South China Fisheries Science,15(5):77-83.] doi:10.12131/20190072.
萬(wàn)世明,易少奎,仲嘉,王衛(wèi)民,蔣恩明,陳柏湘,高澤霞. 2014. 團(tuán)頭魴肌間骨發(fā)育的形態(tài)學(xué)觀察[J]. 水生生物學(xué)報(bào),38(6):1143-1151. [Wan S M,Yi S K,Zhong J,Wang W M,Jiang E M,Chen B X,Gao Z X. 2014. Developmental and morphological observation of intermuscular bones in Megalobrama amblycephala[J]. Acta Hydrobiologica Sinica,38(6):1143-1151.] doi:10.7541/2014. 166.
王秋榮,倪玥瑩,林利民,王志勇. 2010. 大黃魚仔稚魚脊柱、胸鰭及尾鰭骨骼系統(tǒng)的發(fā)育觀察[J]. 水生生物學(xué)報(bào),34(3):467-472. [Wang Q R,Ni Y Y,Lin L M,Wang Z Y. 2010. Development of the vertebral column and the pectoral and caudal fins in larvae of the large yellow croa-ker Larimichthys crocea(Richardson)[J]. Acta Hydrobiologica Sinica,34(3):467-472.] doi:10.3724/SP.J.1035.2010. 00467.
徐婧,李蜀光,王麗艷,施亮. 2016. 骨形成相關(guān)基因的研究進(jìn)展[J]. 醫(yī)學(xué)綜述,22(18):3572-3575. [Xu J,Li S G,Wang L Y,Shi L. 2016. Research development of bone formation related genes[J]. Medical Recapitulate,22(18):3572-3575.] doi:10. 3969/j.issn.1006-2084.2016.18.010.
許曉娟,李加兒,區(qū)又君. 2009. 鹽度對(duì)卵形鯧鲹胚胎發(fā)育和早期仔魚的影響[J]. 南方水產(chǎn),5(6):31-35. [Xu X J,Li J E,Ou Y J. 2009. Effects of salinity on embryonic development and early larvae in ovate pompano Trachinotus ovatus[J]. South China Fisheries Science,5(6):31-35.] doi:10.3969/j.issn.1673-2227.2009.06.006.
葉娜,戚基萍,吳鶴. 2017. 骨形態(tài)發(fā)生蛋白4的相關(guān)研究進(jìn)展[J]. 醫(yī)學(xué)綜述,23(5):872-876. [Ye N,Qi J P,Wu H. 2017. Research progress of bone morphogenetic protein 4[J]. Medical Recapitulate,23(5):872-876.] doi:10.3969/j.issn. 1006-2084.2017.05.009.
郁衛(wèi)東,秦書儉. 2000. 骨形態(tài)發(fā)生蛋白-2在骨形成過(guò)程中的作用機(jī)制[J]. 中國(guó)臨床解剖學(xué)雜志,18(1):82-83. [Yu W D,Qin S J. 2000. The functional mechanism of BMP-2 in osteogentic process[J]. Chinese Journal of Clinical Anatomy,18(1):82-83.] doi:10.3969/j.issn.1001-165X. 2000.01.036.
袁發(fā)煥. 2000. 細(xì)胞外基質(zhì)、基質(zhì)金屬蛋白酶及其抑制因子的研究進(jìn)展[J]. 國(guó)外醫(yī)學(xué)(臨床生物化學(xué)與檢驗(yàn)學(xué)分冊(cè)),21(2):62-65. [Yuan F H. 2000. Research progress of extracellular matrix,matrix metalloproteinases and their inhibitors[J]. Foreign Medical Sciences,21(2):62-65.] doi:10.3969/j.issn.1673-4130.2000.02.003.
張寧,蘇勝?gòu)诮?,馬慶男,袁新華. 2012. 基于micro CT掃描技術(shù)的鯉骨骼和顯微結(jié)構(gòu)分析[J]. 南方水產(chǎn)科學(xué),8(6):44-49. [Zhang N,Su S Y,Dong Z J,Ma Q N,Yuan X H. 2012. Study on bone and microstructure of common carp using micro CT scanning[J]. South China Fi-sheries Science,8(6):44-49.] doi:10.3969/j.issn.2095-0780.2012.06.007.
張書劍. 2008. 各種營(yíng)養(yǎng)素對(duì)魚類骨骼健康的影響[J]. 飼料研究,(1):7-10. [Zhang S J. 2008. Effects of various nutrients on bone health of fish[J]. Feed Research,(1):7-10.] doi:10.13557/j.cnki.issn1002-2813.2008.01.022.
張宗鋒,施永海,張根玉,張海明,嚴(yán)銀龍,劉永士. 2015. 刀鱭脊柱及附肢骨骼早期發(fā)育研究[J]. 水產(chǎn)科技情報(bào),42(4):175-178. [Zhang Z F,Shi Y H,Zhang G Y,Zhang H M,Yan Y L,Liu Y S. 2015. Study on the early deve-lopment of spine and appendage bone of Coilia nasus[J]. Fisheries Science & Technology Information,42(4):175-178.] doi:10.16446/j.cnki.1001-1994.2015.04.002.
鄭珂,岳昊,鄭攀龍,馬振華. 2016. 海水養(yǎng)殖魚類仔、稚魚骨骼發(fā)育與畸形發(fā)生[J]. 中國(guó)水產(chǎn)科學(xué),23(1):250-261. [Zheng K,Yue H,Zheng P L,Ma Z H. 2016. Skeletal ontogeny and deformities in commercially cultured marine fish larvae[J]. Journal of Fishery Sciences of China,23(1):250-261.] doi:10.3724/SP.J.1118.2016.15226.
鄭攀龍,馬振華,郭華陽(yáng),李有寧,張殿昌,江世貴. 2014. 卵形鯧鲹尾部骨骼胚后發(fā)育研究[J]. 南方水產(chǎn)科學(xué),10(5):45-50. [Zheng P L,Ma Z H,Guo H Y,Li Y N,Zhang D C,Jiang S G. 2014. Ontogenetic development of caudal skeletons in Trachinotus ovatus larvae[J]. South China Fisheries Science,10(5):45-50.] doi:10.3969/j.issn.2095- 0780.2014.05.007.
鄭攀龍. 2015. 卵形鯧鲹仔稚魚骨骼發(fā)育及骨骼畸形研究 [D]. 上海:上海海洋大學(xué). [Zheng P L. 2015. Skeletal ontogeny and malformation of golden pompano Trachinotus ovatus larvae[D]. Shanghai:Shanghai Ocean University.]
周勝杰,馬婷,胡靜,馬振華,楊其彬,陳旭,楊蕊,劉亞娟,孟祥君. 2018. 尖吻鱸仔魚骨骼發(fā)育觀察[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(3):592-598. [Zhou S J,Ma T,Hu J,Ma Z H,Yang Q B,Chen X,Yang R,Liu Y J,Meng X J. 2018. Skeleton development observation of Lates calcarifer larva fish[J]. Journal of Southern Agriculture,49(3):592-598.] doi:10.3969/j.issn.2095-1191.2018.03.27.
Al Rifai O,Chow J,Lacombe J,Julien C,F(xiàn)aubert D,Susan-Resiga D,Essalmani R,Creemers J W M,Seidah N G,F(xiàn)erron M. 2017. Proprotein convertase furin regulates osteocalcin and bone endocrine function[J]. Journal of Clinical Investigation,127(11):4104-4117. doi:10.1172/jci93437.
Boglino A,Jose Darias M,Ortiz-Delgado J B,Oezcan F,Estevez A,Andree K B,Hontoria F,Sarasquete C,Gisbert E. 2012. Commercial products for Artemia enrichment affect growth performance,digestive system maturation,ossification and incidence of skeletal deformities in Senegalese sole(Solea senegalensis) larvae[J]. Aquaculture,324-325:290-302. doi:10.1016/j.aquaculture.2011.11.018.
Cahu C,Infante Z J,Takeuchi T. 2003. Nutritional components affecting skeletal development in fish larvae[J]. Aquaculture,227(1-4):245-258. doi:10.1016/s0044-8486(03)00507-6.
Carreira A C,Lojudice F H,Halcsik E,Navarro R D,Sogayar M C,Granjeiro J M. 2014. Bone morphogenetic proteins:Facts,challenges,and future perspectives[J]. Journal of Dental Research,93(4):335-345. doi:10.1177/002203 4513518561.
Chen W H,Sun L T,Tsai C L,Song Y L,Chang C F. 2002. Cold-stress induced the modulation of catecholamines,cortisol,immunoglobulin M, and leukocyte phagocytosis in tilapia[J]. General and Comparative Endocrinology,126(1):90-100. doi:10.1006/gcen.2001.7772.
Cobcroft J M,Pankhurst P M,Poortenaar C,Hickman B,Tait M. 2004. Jaw malformation in cultured yellowtail kingfish (Seriola lalandi) larvae[J]. New Zealand Journal of Marine and Freshwater Research,38(1):67-71. doi:10. 1080/00288330.2004.9517218.
Deary A L,Porter S M,Dougherty A B,Duffy-Anderson J T. 2019. Preliminary observations of the skeletal development in pre-flexion larvae of sablefish Anoplopoma fimbria[J]. Ichthyological Research,66(1):177-182. doi:10.1007/s10228-018-0657-0.
Dionisio G,Campos C,Valente L M P,Conceicao L E C,Cancela M L,Gavaia P J. 2012. Effect of egg incubation temperature on the occurrence of skeletal deformities in Solea senegalensis[J]. Journal of Applied Ichthyology,28(3):471-476. doi:10.1111/j.1439-0426.2012.01996.x.
Georgakopoulou E,Katharios P,Divanach P,Koumoundouros G. 2010. Effect of temperature on the development of skeletal deformities in Gilthead seabream(Sparus aurata Linnaeus,1758)[J]. Aquaculture,308(1-2):13-19. doi:10.1016/j.aquaculture.2010.08.006.
Karsenty G. 2000. Bone formation and factors affecting this process[J]. Matrix Biology,19(2):85-89. doi:10.1016/S0945-053X(00)00053-6.
Ludwig G M,Lochmann S E. 2009. Effect of temperature on larval sunshine bass growth and survival to the fingerling stage[J]. North American Journal of Aquaculture,71(3):260-266. doi:10.1577/a08-057.1.
Ma Z H,F(xiàn)u M J,Peng X Y,Qin J G. 2017a. Expression of Sox5,Sox8 and Sox9 genes in golden pompano Trachinotus ovatus(Linnaeus 1758) larvae during ontogeny and in response to water temperature[J]. Israeli Journal of Aquaculture-Bamidgeh,69. doi:10.46989/001c.20891.
Ma Z H,Hu J,Yu G,Qin J G. 2017b. Gene expression of bone morphogenetic proteins and jaw malformation in golden pompano Trachinotus ovatus larvae in different feeding regimes[J]. Journal of Applied Animal Research,46(1):164-177. doi:10.1080/09712119.2017.1282371.
Ma Z H,Zhang N,Qin J G,F(xiàn)u M J,Jiang S G. 2016. Water temperature induces jaw deformity and bone morphogenetic proteins (BMPs) gene expression in golden pompano Trachinotus ovatus larvae[J]. Springerplus,5(1):1475. doi:10.1186/s40064-016-3142-0.
Nishimura R,Hata K,Matsubara T,Wakabayashi M,Yoneda T. 2012. Regulation of bone and cartilage development by network between BMP signalling and transcription factors[J]. Journal of Biochemistry,151(3):247-254. doi:10.1093/ jb/mvs004.
Otto T C,Bowers R R,Lane M D. 2007. BMP-4 treatment of C3H10T1/2 stem cells blocks expression of MMP-3 and MMP-13[J]. Biochemical and Biophysical Research Communications,353(4):1097-1104. doi:10.1016/j.bbrc.2006. 12.170.
Pedersen M E,Vuong T T,Ronning S B Kolset S O. 2015. Matrix metalloproteinases in fish biology and matrix turnover[J]. Matrix Biology,44-46:86-93. doi:10.1016/j.matbio.2015.01.009.
Rajaram S,Murawala H,Buch P,Patel S,Balakrishnan S. 2016. Inhibition of BMP signaling reduces MMP-2 and MMP-9 expression and obstructs wound healing in regene-rating fin of teleost fish Poecilia latipinna[J]. Fish Phy-siology and Biochemistry,42(2):787-794. doi:10.1007/s10695-015-0175-1.
Shu B,Zhang M,Xie R,Wang M N,Jin H T,Hou W,Tang D Z,Harris S E,Mishina Y,O'Keefe R J,Hilton M J,Wang Y,Chen D. 2011. BMP2,but not BMP4,is crucial for chondrocyte proliferation and maturation during endochondral bone development[J]. Journal of Cell Science,124(20):3428-3440. doi:10.1242/jcs.083659.
Stickens D,Behonick D J,Ortega N,Heyer B,Hartenstein B,Yu Y,F(xiàn)osang A J,Schorpp-Kistner M,Angel P,Werb Z. 2004. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice[J]. Development,131(23):5883-5895. doi:10.1242/dev.01461.
Su S Y,Dong Z J. 2018. Comparative expression analyses of bone morphogenetic protein 4(BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner[J]. Gene Expression Patterns,27:106-113. doi:10.1016/j.gep.2017.11.005.
Sun J H,Liu G D,Guo H Y,Zhu K C,Guo L,Liu B S,Zhang N,Zhang D C. 2020. Skeletal anomalies in cultured golden pompano Trachinotus ovatus at early stages of development[J]. Diseases of Aquatic Organisms,137(3):195-204. doi:10.3354/dao03436.
Sun J L,Zhao L L,Wu H,Lian W Q,Cui C,Du Z J,Luo W,Li M Z,Yang S. 2019. Analysis of miRNA-seq in the li-ver of common carp(Cyprinus carpio L.) in response to different environmental temperatures[J]. Functional & Integrative Genomics,19(2):265-280. doi:10.1007/s10142- 018-0643-7.
Takaishi H,Kimura T,Dalal S,Okada Y,D'Armiento J. 2008. Joint diseases and matrix metalloproteinases:A role for MMP-13[J]. Current Pharmaceutical Biotechnology,9(1) 47-54. doi:10.2174/138920108783497659.
Urban J P G,Roberts S. 2003. Degeneration of the intervertebral disc[J]. Arthritis Research & Therapy,5(3):120-130. doi:10.1186/ar629.
Vu T H,Shipley J M,Bergers G,Berger J E,Helms J A,Hanahan D,Shapiro S D,Senior R M,Werb Z. 1998. MMP-9/gelatinase B is a key regulator of growth plate angioge-nesis and apoptosis of hypertrophic chondrocytes[J]. Cell,93(3):411-422. doi:10.1016/s0092-8674(00)81169-1.
Wargelius A,F(xiàn)jelldal P G,Grini A,Gil-Martens L,Kvamme B O,Hansen T. 2010. MMP-13(Matrix MetalloProteinase 13) expression might be an indicator for increased ECM remodeling and early signs of vertebral compression in farmed Atlantic salmon(Salmo salar L.)[J]. Journal of Applied Ichthyology,26(2):366-371. doi:10.1111/j.1439-0426.2010.01436.x.
Xiao Y T,Xiang L X,Shao J Z. 2007. Bone morphogenetic protein[J]. Biochemical and Biophysical Research Communications,362(3):550-553. doi:10.1016/j.bbrc.2007. 08.045.
Yang Q B,Ma Z H,Zheng P L,Jiang S G,Qin J G,Zhang Q. 2016. Effect of temperature on growth,survival and occurrence of skeletal deformity in the golden pompano Trachinotus ovatus larvae[J]. Indian Journal of Fisheries,63(1):74-82. doi:10.21077/ijf.2016.63.1.51490-10.
Ytteborg E,Baeverfjord G,Torgersen J,Hjelde K,Takle H. 2010a. Molecular pathology of vertebral deformities in hyperthermic Atlantic salmon(Salmo salar)[J]. BMC physiology,10:12. doi:10.1186/1472-6793-10-12.
Ytteborg E,Torgersen J,Baeverfjord G,Takle H. 2010b. Morphological and molecular characterization of developing vertebral fusions using a teleost model[J]. BMC Physio-logy,10:13. doi:10.1186/1472-6793-10-13.
Zhou T,Gui L,Liu M L,Li W H,Hu P,Duarte D F C,Niu H B,Chen L B. 2019. Transcriptomic responses to low temperature stress in the Nile tilapia,Oreochromis niloticus[J]. Fish & Shellfish Immunology,84:1145-1156. doi:10.1016/j.fsi.2018.10.023.
收稿日期:2020-12-14
基金項(xiàng)目:海南省自然科學(xué)基金項(xiàng)目(2019CXTD418,319QN339,319MS102);中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2020TD55)
通訊作者:馬振華(1981-),https://orcid.org/0000-0003-3112-3153,博士,副研究員,主要從事海水魚類繁育與發(fā)育研究工作,E-mail: zhenhua.ma@hotmail.com
第一作者:韓明洋(1995-),https://orcid.org/0000-0002-0587-4124,主要從事海水魚類繁育與發(fā)育研究工作,E-mail:myhan2019@163.com
2111501186301