• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?

      2021-06-17 13:58:56楊月英
      關(guān)鍵詞:張宏偉

      (楊月英)

      School of Mechanical and Electrical Engineering,Huzhou Vocational&Technical College,Huzhou 313000,China

      E-mail:yyy1008@163.com

      Weimao QIAN(錢偉茂)

      School of Continuing Education,Huzhou Vocational&Technical College,Huzhou 313000,China

      E-mail:qwm661977@126.com

      Hongwei ZHANG(張宏偉)

      School of Mathematics and Statistics,Changsha University of Science&Technology,Changsha 410014,China

      E-mail:hwzhang2018@163.com

      Yuming CHU(褚玉明)?

      Department of Mathematics,Huzhou University,Huzhou 313000,China

      E-mail:chuyuming2005@126.com;chuyuming@zjhu.edu.cn

      Abstract In the article,we prove that the double inequalities hold for all a,b>0 with ab if and only if λ1 and

      Key words Geometric mean;arithmetic mean;Toader mean;ontraharmonic mean;complete elliptic integral

      1 Introduction

      Let a,b>0 and r∈(0,1).Then the geometric mean G(a,b),arithmetic mean A(a,b),quadratic mean Q(a,b),contraharmonic mean C(a,b),Toader mean T(a,b)[1,2],complete elliptic integrals K(r)and E(r)[3–18]of the first and second kinds are given by

      respectively.

      From(1.2)and(1.3)we clearly see that

      It is well known that K(r)is strictly increasing from(0,1)onto(π/2,∞),that E(r)is strictly decreasing from(0,1)onto(1,π/2),and that they satisfy the following formulae[19]:

      Recently,the bounds for the Toader mean have attracted the attention of many researchers.Vuorinen,in[22],conjectured that

      is the p-th H?lder mean.Inequality(1.5)was proved by Barnard,Pearce and Richards in[23],and they proved that H2(a,b)is an upper H?lder mean bound for T(a,b).

      In[24],Alzer and Qiu proved that p0=log2/(logπ?log2)=1.5349...is the best possible constant such that the inequality T(a,b)<(a,b)holds for all a,b>0 with a/=b,and proposed that

      for all a,b>0 with a/=b.

      Inequality(1.6)was proved by Kazi and Neuman[25]by using the two-point Gauss-Chebyshev quadrature formula with the remainder given in[26].

      is the generalized Seiffert mean.

      In[28,29],the authors proved that the double inequalities

      hold for all a,b>0 with a/=b if and only if α1≤1/2,β1≥(4?π)/[(√2?1)π]=0.659...,α2≤1/2,β2≥4?2logπ/log2=0.697...,α3≤0 and β3≥1/4,where Lp(a,b)=(ap+1+bp+1)/(ap+bp)is the p-th Lehmer mean.

      Wang et al.[30]established the double inequality

      hold for all a,b>0 with a/=b and p∈[1/2,2].The special cases p=1 and p=1/2 of inequality(1.8)were also proved in[32]and[33],respectively.

      In[34],Chu et al.proved that the double inequalities

      Let p≥1,s≥1/2,λ∈(0,1/2)andμ∈(1/2,1).Then the two-parameter geometricarithmetic mean GAλ,p(a,b)and two-parameter contraharmonic-arithmetic mean CAμ,s(a,b)are defined by

      respectively.

      From(1.1),(1.7),(1.11)and(1.12),we clearly see that

      The aim of the article is to find the best possible parameters λ1=λ1(p),μ1=μ1(p)∈(0,1/2)and λ2=λ2(s),μ2=μ2(s)∈(1/2,1)such that the double inequalities

      hold for all p≥1,s≥1/2 and a,b>0 with a/=b.

      2 Lemmas

      In order to prove our main results,we need four lemmas,which we present in this section.

      Lemma 2.1The following statements are true:

      ProofParts(1)–(5)can be found in[19,Theorem 3.21(1)and(8),and Exercises 3.43(11),(16)and(32)].

      Part(6)follows easily from part(3)and the monotonicity of E(r)on the interval(0,1),together with the facts that

      Lemma 2.3Let u∈[0,1],r∈(0,1),p≥1 and

      Then one has that

      (1)fu,p(r)>0 for all r∈(0,1)if and only if u≤1/(2p);

      (2)fu,p(r)<0 for all r∈(0,1)if and only if u≥1?(2/π)2/p.

      ProofIt follows from(2.5)that

      From Lemma 2.1(5)and(6),together with(2.9),we know that the function r→fp(r)is strictly increasing on(0,1)and that

      It follows from Lemma 2.2 that the interval[0,1]can be expressed by

      We divide the proof into three cases.

      Case 1:u≤1/(2p).Then,from(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),we get that the function r→fu,p(r)is strictly increasing on(0,1).Therefore,fu,p(r)>0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

      Case 2:u=1.Then equations(2.8)and(2.10),together with the monotonicity of the function r→fp(r)on the interval(0,1),lead to the conclusion that the function r→fu,p(r)is strictly decreasing on(0,1).Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and the monotonicity of the function r→fu,p(r)on the interval(0,1).

      Case 3:1/(2p)

      We divide the proof into two subcases.

      Subcase 3.1:1?(2/π)2/p≤u<1.Then(2.7)leads to

      Therefore,fu,p(r)<0 for all r∈(0,1)follows from(2.6)and(2.11),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1).

      Subcase 3.2:1/(2p)

      Therefore,there exists u?∈(u0,1)such that fu,p(r)<0 for u∈(0,u?)and fu,p(r)>0 for u∈(u?,1)follows from(2.6)and(2.12),together with the piecewise monotonicity of the function r→fu,p(r)on the interval(0,1). □

      We divide the proof into three cases.

      3 Main Results

      Theorem 3.1Let λ1,μ1∈(0,1/2)and p≥1.Then the double inequality

      Therefore,Theorem 3.3 follows from Lemma 2.4 and(3.2). □

      Remark 3.4Let s=1/2,1.Then,from(1.14)and(1.15),we clearly see that inequalities(1.9)and(1.10)can be derived from Theorem 3.3.

      The following Corollary 3.5 also can be derived directly from(1.1),(1.4),(1.11)and(1.12),as well as Theorems 3.1 and 3.3:

      Corollary 3.5Let λ1,μ1∈(0,1/2),λ2,μ2∈(1/2,1),p≥1 and s≥1/2.Then the double inequalities

      猜你喜歡
      張宏偉
      Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
      倒立哥,換個(gè)角度看世界
      金秋(2021年12期)2021-10-06 04:07:30
      育學(xué)子之德行 潤桃李共芬芳
      交通肇事案,收留親戚惹禍
      莫愁(2018年16期)2018-11-14 06:15:41
      交通肇事案,收留親戚惹禍
      張宏偉 危難時(shí)刻顯身手
      忘不了,“流浪愛情狂人”千轉(zhuǎn)百回
      幸福(2016年16期)2016-07-25 12:03:10
      忘不了,“流浪愛情狂人”千轉(zhuǎn)百回
      遇上一個(gè)輸不起的創(chuàng)業(yè)者
      遇上一個(gè)輸不起的創(chuàng)業(yè)者
      上虞市| 白朗县| 恭城| 紫金县| 东阳市| 苍梧县| 武威市| 温州市| 左云县| 合水县| 泰兴市| 巴南区| 深泽县| 奎屯市| 岐山县| 泸水县| 信丰县| 鲁山县| 双辽市| 防城港市| 电白县| 土默特左旗| 长丰县| 宽甸| 锦州市| 嵊泗县| 阜宁县| 平塘县| 永济市| 海兴县| 新营市| 鄂伦春自治旗| 威信县| 郁南县| 新闻| 麟游县| 绥江县| 即墨市| 宁明县| 罗城| 淳安县|