楊開鋒 李蘭 周虹 肖小芹 劉慧萍
〔摘要〕 卵巢早衰是導(dǎo)致女性不孕的主要原因,研究證實(shí)氧化應(yīng)激與卵巢早衰密切相關(guān)。氧化應(yīng)激可以通過(guò)不同途徑介導(dǎo)細(xì)胞自噬和凋亡的發(fā)生,在卵巢當(dāng)中,正常濃度的活性氧的有助于卵巢的發(fā)育和排卵,而過(guò)多的活性氧則會(huì)導(dǎo)致卵巢顆粒細(xì)胞和卵母細(xì)胞的過(guò)度凋亡,從而引發(fā)卵巢早衰。因此,減少卵巢的氧化應(yīng)激,防止顆粒細(xì)胞過(guò)度凋亡,可為臨床防治卵巢早衰提供重要的研究方向。Nrf2-ARE信號(hào)通路是目前發(fā)現(xiàn)的最為重要的內(nèi)源性抗氧化應(yīng)激通路,通過(guò)對(duì)Nrf2-ARE信號(hào)通路與卵巢早衰關(guān)系的總結(jié),為卵巢早衰發(fā)病機(jī)制的進(jìn)一步研究提供參考。
〔關(guān)鍵詞〕 卵巢早衰;氧化應(yīng)激;Nrf2-ARE信號(hào)通路;細(xì)胞自噬;細(xì)胞凋亡
〔中圖分類號(hào)〕R285;R711? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2021.05.031
Advances on Regulation of Premature Ovarian Failure by Oxidative Stress and
Autophagy Apoptosis
YANG Kaifeng, LI Lan, ZHOU Hong, XIAO Xiaoqin*, LIU Huiping*
(Hunan University of Chinese Medicine, Changsha, Hunan 410208, China)
〔Abstract〕 Premature ovarian failure is the main cause of female infertility. It has been confirmed that oxidative stress is closely related to premature ovarian failure. Oxidative stress can mediate autophagy and apoptosis through different pathways. In the ovary, normal concentration of reactive oxygen species contributes to ovarian development and ovulation, while excessive reactive oxygen species will lead to excessive apoptosis of ovarian granulosa cells and oocytes, thus triggering premature ovarian failure. Therefore, reducing oxidative stress and preventing excessive apoptosis of granulosa cells in the ovary can provide an important research direction for clinical prevention and treatment of premature ovarian failure. Nrf2-ARE signaling pathway is the most important endogenous anti-oxidative stress pathway found at present, and the relationship between Nrf2-ARE signaling pathway and premature ovarian failure is summarized to provide a reference for further study of the pathogenesis of premature ovarian failure.
〔Keywords〕 premature ovarian failure; oxidative stress; Nrf2-ARE signaling pathway; autophagy; apoptosis
隨著社會(huì)節(jié)奏的加快、女性心理壓力的增大及腫瘤放化療諸多不良因素的增加,卵巢早衰(premature ovarian failure, POF)患者數(shù)量逐年增加,且呈年輕化趨勢(shì)[1]。目前,遺傳、免疫、氧化應(yīng)激、化學(xué)因素等是造成POF的最常見的影響因素,但其具體機(jī)制尚不清楚[2]。其中,氧化應(yīng)激被認(rèn)為是啟動(dòng)或促進(jìn)女性生殖疾病的關(guān)鍵因素[3]。其可能的機(jī)制為氧化應(yīng)激誘導(dǎo)哺乳動(dòng)物卵巢卵泡自噬、凋亡和壞死等多種細(xì)胞死亡途徑,導(dǎo)致卵巢多種退行性改變而造成POF[4-5]。通過(guò)闡明POF與Nrf2-ARE抗氧化通路和自噬凋亡通路之間的聯(lián)系,為POF的發(fā)病機(jī)制提供新思路。
1 POF與卵巢顆粒細(xì)胞的自噬、凋亡
自噬是真核生物通過(guò)降解多余或受損的細(xì)胞內(nèi)物質(zhì)來(lái)維持細(xì)胞穩(wěn)態(tài)的高度保守的生物途徑[6]。在各種細(xì)胞應(yīng)激條件下,自噬通過(guò)高度保守的分解代謝途徑,在能量或營(yíng)養(yǎng)缺乏的情況下防止細(xì)胞損傷并促進(jìn)存活,并對(duì)各種細(xì)胞毒性損傷作出反應(yīng)[7]。因此,自噬主要具有細(xì)胞保護(hù)功能[8],需要嚴(yán)格調(diào)節(jié)以正確響應(yīng)細(xì)胞經(jīng)歷的不同刺激,從而適應(yīng)不斷變化的環(huán)境。自噬通過(guò)包裹一部分胞內(nèi)物質(zhì)形成自噬小體,在溶酶體的作用下進(jìn)行降解并作為細(xì)胞內(nèi)物質(zhì)循環(huán)利用的重要途徑,這不僅有利于細(xì)胞的存活,而且在卵巢發(fā)育和疾病中也有著重要意義[9-10]。在某些情況下,自噬的過(guò)度激活亦會(huì)導(dǎo)致卵巢顆粒細(xì)胞的死亡。實(shí)驗(yàn)證明,大鼠卵巢顆粒細(xì)胞中自噬體的積累可以降低B淋巴細(xì)胞瘤-2基因(B-cell lymphoma-2, Bcl-2)的表達(dá)而誘導(dǎo)顆粒細(xì)胞的凋亡,導(dǎo)致卵泡閉鎖并誘導(dǎo)POF的發(fā)生[11-13];此外,自噬亦可通過(guò)自噬誘導(dǎo)引起二型細(xì)胞程序性死亡,獨(dú)立于凋亡介導(dǎo)的一型細(xì)胞程序性死亡[14],所以顆粒細(xì)胞自噬性死亡(二型細(xì)胞程序性死亡)亦有可能是導(dǎo)致POF的另一因素。
2 氧化應(yīng)激與卵巢顆粒細(xì)胞的凋亡自噬
2.1? 氧化應(yīng)激與卵巢顆粒細(xì)胞凋亡
氧化應(yīng)激指機(jī)體內(nèi)活性氧(reactive oxygen species, ROS)與抗氧化成分失衡而引起的一系列適應(yīng)性的反應(yīng)。在無(wú)外界刺激源的條件下,機(jī)體內(nèi)ROS的產(chǎn)生和清除處于一種動(dòng)態(tài)平衡,而當(dāng)機(jī)體ROS含量相對(duì)升高,機(jī)體對(duì)其清除能力相對(duì)不足時(shí),會(huì)使組織當(dāng)中過(guò)氧化水平明顯升高,并導(dǎo)致機(jī)體受到損害。ROS由正常的生理過(guò)程產(chǎn)生,在細(xì)胞信號(hào)傳導(dǎo)和組織穩(wěn)態(tài)中起著重要作用[15]。然而,過(guò)多的自由基物種也會(huì)對(duì)細(xì)胞成分產(chǎn)生不利的修飾,一是各種細(xì)胞成分的破壞,如蛋白質(zhì)、脂類、DNA的損傷,二是觸發(fā)特定信號(hào)通路的激活,這兩種效應(yīng)都可以導(dǎo)致細(xì)胞凋亡[16-18]?,F(xiàn)有研究[19]表明,ROS在細(xì)胞信號(hào)傳導(dǎo)以及線粒體、死亡受體和內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum, ER)介導(dǎo)的凋亡主要途徑的調(diào)控中起著核心作用;實(shí)驗(yàn)研究[20-21]證明,H2O2可以誘導(dǎo)內(nèi)源性促凋亡相關(guān)分子(Bax、Bak)升高和抗凋亡分子(Bcl-2、Bcl-xL)的降低,并通過(guò)ROS-JNK-p53途徑調(diào)節(jié)卵巢顆粒細(xì)胞的細(xì)胞凋亡。
2.2? 氧化應(yīng)激與卵巢顆粒細(xì)胞自噬
在生理狀態(tài)下,自噬對(duì)機(jī)體具有保護(hù)作用,ROS和氧化應(yīng)激可以激活自噬,自噬通過(guò)負(fù)反饋?zhàn)饔帽Wo(hù)細(xì)胞,有選擇地消除ROS的來(lái)源[22-24],從而維持顆粒細(xì)胞的穩(wěn)定。線粒體是機(jī)體內(nèi)發(fā)生氧化反應(yīng)的主要場(chǎng)所,這個(gè)過(guò)程伴隨著ROS的產(chǎn)生,然而過(guò)量的ROS會(huì)引起線粒體損傷[25-26],釋放出凋亡因子引起細(xì)胞死亡。選擇性自噬通過(guò)去除受損的卵巢顆粒細(xì)胞當(dāng)中損傷的線粒體,不僅可以幫助卵巢顆粒細(xì)胞生存,而且可以使ROS維持在一個(gè)相對(duì)較低的水平[27-29]。但是,在某些情況下,ROS引起的過(guò)度自噬也會(huì)導(dǎo)致自噬性細(xì)胞死亡。研究[30-33]表明,脂質(zhì)過(guò)氧化可以加合到特定的線粒體和自噬相關(guān)蛋白中,以自噬細(xì)胞死亡的方式導(dǎo)致細(xì)胞功能障礙,而且脂質(zhì)過(guò)氧化物還可誘導(dǎo)溶酶體功能障礙和脂褐素合成,導(dǎo)致自噬活性降低。脂質(zhì)過(guò)氧化物可能通過(guò)不同的信號(hào)途徑觸發(fā)自噬細(xì)胞死亡。首先,脂質(zhì)過(guò)氧化物可能通過(guò)AMP依賴的蛋白激酶(adenosine monophosphate activated protein kinase, AMPK)抑制哺乳動(dòng)物雷帕霉素靶蛋白復(fù)合物1(mammalian target of rapamycin complex 1, mTORC1)的活性啟動(dòng)自噬,AMPK作為mTOR途徑的上游調(diào)節(jié)劑,可感知營(yíng)養(yǎng)和能量消耗,激活結(jié)節(jié)性硬化復(fù)合物(tuberous sclerosis complex, TSC),抑制mTOR活性,并且提高微管相關(guān)蛋白2輕鏈3(microtubule-associated protein 2-light chain 3, LC3-II)的水平導(dǎo)致自噬[34-36];其次,脂質(zhì)過(guò)氧化物可以使Bcl-2與c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)的相互作用,從而通過(guò)JNK途徑促進(jìn)自噬[37],JNK介導(dǎo)Bcl-2磷酸化,使得Bcl-2從Bcl-2/Beclin1復(fù)合體解離出來(lái),參與自噬的溶酶體降解途徑,該途徑不會(huì)使mTOR通路失活,在Bcl-2依賴的自噬過(guò)程中起重要作用。生理性自噬可以抑制細(xì)胞凋亡,促進(jìn)細(xì)胞存活;而病理性自噬會(huì)導(dǎo)致細(xì)胞程序性死亡,而不利于細(xì)胞存活,這主要取決于機(jī)體內(nèi)氧化應(yīng)激的程度和抗氧化水平。
3 Nrf2-ARE通路對(duì)POF防治的積極意義
3.1? Nrf2-ARE信號(hào)通路與氧化應(yīng)激
Nrf2-ARE信號(hào)通路是目前認(rèn)為最為重要的內(nèi)源性抗氧化通路[38]。其中,抗氧化反應(yīng)元件(antioxidant response element, ARE)是一種能編碼啟動(dòng)子區(qū)域的多種解毒酶和細(xì)胞保護(hù)蛋白基因的增強(qiáng)子序列[39]。核因子NF-E2相關(guān)因子(nuclear factor erythroid 2 related factor 2, Nrf2)靶基因編碼的蛋白具有廣泛的細(xì)胞保護(hù)作用,包括抗氧化、解毒和抗炎,而Nrf2缺失或失活會(huì)使細(xì)胞對(duì)各種刺激的敏感性顯著上升[40-41]。Kelch樣ECH相關(guān)蛋白1(Kelch-like ECH-associated protein 1, Keap1)被鑒定為是一個(gè)Nrf2的E3泛素連接酶底物接頭,可導(dǎo)致蛋白酶體的快速降解[42]。Keap1確保了正常生理狀態(tài)下Nrf2蛋白的低水平,其半衰期僅為15~40 min。更重要的是,Keap1為含有高活性的半胱氨酸,一旦被親電分子修飾,就會(huì)阻止對(duì)Nrf2進(jìn)行蛋白酶體降解,從而導(dǎo)致Nrf2蛋白在氧化應(yīng)激下迅速積累,激活后的Nrf2進(jìn)入細(xì)胞核,并與小肌肉腱膜纖維肉瘤癌基因同源物(sMAF)蛋白結(jié)合形成二聚體,并與順式作用元件ARE相結(jié)合,誘導(dǎo)基因表達(dá),調(diào)節(jié)相關(guān)抗氧化物質(zhì)保護(hù)細(xì)胞[43]。此外,蛋白激酶c、促分裂原活化蛋白激酶、磷脂酰肌醇激酶通過(guò)誘導(dǎo)Nrf2磷酸化也參與了Nrf2-ARE的通路激活[44]。
3.2? Nrf2-ARE通路抑制顆粒細(xì)胞凋亡
POF的一個(gè)主要原因是卵泡過(guò)度閉鎖,而卵泡過(guò)度閉鎖是由卵巢顆粒細(xì)胞凋亡所致,因此,顆粒細(xì)胞的正常生理功能對(duì)卵母細(xì)胞的發(fā)育起著至關(guān)重要的作用[45]。氧化應(yīng)激可以通過(guò)不同途徑導(dǎo)致卵巢顆粒細(xì)胞凋亡,而Nrf2-ARE通路通過(guò)表達(dá)抗氧化相關(guān)產(chǎn)物如血紅素加氧酶-1、γ-谷氨酰半胱氨酸合成酶[46]等,通過(guò)降低ROS水平抑制細(xì)胞凋亡,促進(jìn)顆粒細(xì)胞存活。其次,一旦Nrf2-ARE通路激活,便會(huì)誘導(dǎo)P62蛋白表達(dá),從而降解Keap1蛋白,減少Bcl-2/Keapl相互作用,增加Bcl-2/Bax異二聚體,抑制顆粒細(xì)胞凋亡,保護(hù)卵巢功能[47-48]。Keapl在ROS誘導(dǎo)的細(xì)胞凋亡中發(fā)揮著重要的作用,Keapl不僅可以通過(guò)線粒體絲氨酸/蘇氨酸蛋白磷酸酶(PGAM5)與Bcl-xL結(jié)合形成Keapl/PGAM5/Bcl-xL的復(fù)合體,而且還可以與Bcl-2蛋白結(jié)合形成Keapl/Bcl-2復(fù)合體,導(dǎo)致Bax的積累,增加線粒體細(xì)胞色素c的釋放,激活Caspase-3/7,增加了DNA的碎片化和凋亡[49-51]??寡趸瘎┢茐牧薑eap1/PGAM5/Bcl-xL及Keap1/Bcl-2復(fù)合體的穩(wěn)定性,促使Bcl-2、Bcl-xL的釋放,減少細(xì)胞凋亡。Nrf2信號(hào)通路在氧化應(yīng)激誘導(dǎo)的細(xì)胞凋亡中發(fā)揮著重要的抗凋亡作用,而Nrf2信號(hào)通路在POF的治療中發(fā)揮的作用可進(jìn)一步深入研究,為POF治療提供新依據(jù)。
3.3? Nrf2-ARE通路對(duì)顆粒細(xì)胞自噬的雙重調(diào)節(jié)作用
P62作為一種自噬銜接蛋白,結(jié)合泛素化蛋白聚集體并將它們傳遞給自噬體[52-53]。氧化應(yīng)激誘導(dǎo)P62基因的表達(dá)是由NRF2-ARE通路介導(dǎo)的,P62與Keap1的相互作用,將Keap1固定到自噬體中,從而損害由Keap1介導(dǎo)的Nrf2的泛素化作用,導(dǎo)致Nrf2信號(hào)通路的激活[54-55],形成了一個(gè)由自噬和keap1/Nrf2/ARE通路組合而成的抗氧化損傷的正反饋循環(huán)。線粒體自噬通過(guò)清除受損的線粒體,對(duì)維持卵巢顆粒細(xì)胞的正常功能至關(guān)重要,而Nrf2-ARE信號(hào)通路誘導(dǎo)P62表達(dá),在介導(dǎo)線粒體自噬中有著重要的作用,通過(guò)降解老化或者受損的線粒體,不僅可以降低ROS水平,而且可以防止線粒體損傷而導(dǎo)致的顆粒細(xì)胞凋亡。此外,Nrf2-ARE信號(hào)通路通過(guò)表達(dá)相關(guān)抗氧化蛋白,抑制氧化應(yīng)激導(dǎo)致的脂質(zhì)過(guò)氧化而引起的病理性自噬[56-57],防止卵巢顆粒細(xì)胞自噬性死亡。由于Nrf2信號(hào)通路和自噬相關(guān)通路的復(fù)雜性,目前尚不能完全理解所有的分子機(jī)制,但是通過(guò)調(diào)節(jié)氧化還原水平以達(dá)到自噬的穩(wěn)態(tài)對(duì)POF的治療意義重大。
3.4? 中藥復(fù)方通過(guò)干預(yù)Nrf2-ARE通路治療POF的潛力
中醫(yī)學(xué)雖無(wú)卵巢早衰之病名,但可歸屬為“月經(jīng)病”“不孕癥”范疇。目前,研究認(rèn)為腎虛為POF的決定因素,血瘀為發(fā)病的關(guān)鍵環(huán)節(jié),心肝脾為發(fā)病的重要環(huán)節(jié)?!饵S帝內(nèi)經(jīng)·上古天真論》中指出:“二七而天癸至,任脈通……故有子”“七七,任脈虛,太沖脈衰少,天癸竭,……故形壞而無(wú)子也”。天癸作為女性生育的關(guān)鍵物質(zhì)基礎(chǔ),而其充盈源于腎中之先天之精,并賴于后天水谷之精的滋養(yǎng)。正如《醫(yī)宗金鑒》所言“先天天癸始父母,后天精血水谷生”,所以治療POF最常用的方法是補(bǔ)腎健脾法。中醫(yī)學(xué)治療疾病往往通過(guò)扶正和祛邪兩個(gè)方面,而中醫(yī)藥治療POF“扶正”的分子機(jī)制尚不清楚,該機(jī)制有可能是通過(guò)調(diào)節(jié)Nrf2-ARE信號(hào)通路達(dá)到增強(qiáng)機(jī)體正氣的目的?,F(xiàn)代藥理研究[58-61]表明,治療POF常用補(bǔ)腎健脾的基礎(chǔ)藥物,如黃芪、黃精、巴戟天、鐵皮石斛等,都具有抗氧化作用,其抗氧化的“扶正”作用機(jī)制極有可能與Nrf2-ARE信號(hào)通路的保護(hù)作用有關(guān)。中醫(yī)藥具有多靶點(diǎn),對(duì)機(jī)體進(jìn)行全面調(diào)控以維持穩(wěn)態(tài)的作用,而目前對(duì)Nrf2-ARE信號(hào)通路與中醫(yī)藥的研究較少,加大這方面的研究可以更好地理解中醫(yī)藥及Nrf2-ARE信號(hào)通路在POF中的防治作用。
3.5? 其他
目前,研究認(rèn)為導(dǎo)致POF的最可能的機(jī)制是氧化應(yīng)激,然而使卵母細(xì)胞的數(shù)量減少和質(zhì)量降低的具體分子機(jī)制仍值得探索,這種機(jī)制可能是通過(guò)氧化應(yīng)激通路和自噬凋亡相關(guān)通路的相互交叉串?dāng)_導(dǎo)致的[62]。Nrf2可以作為卵巢細(xì)胞化學(xué)穩(wěn)態(tài)的重要傳感器和調(diào)節(jié)劑,通過(guò)控制代謝排毒、ROS防御來(lái)保護(hù)細(xì)胞免受有毒化學(xué)物質(zhì)的侵害[63]。且有研究[64]表明,通過(guò)口服富馬酸二甲酯(DMF)激活Nrf2-ARE信號(hào)通路來(lái)提高顆粒細(xì)胞的抗氧化能力,減少氧化應(yīng)激和DNA損傷,從而改善小鼠卵巢中的卵巢儲(chǔ)備,保護(hù)卵巢功能。Nrf2信號(hào)通路的激活可以減輕卵巢顆粒細(xì)胞中氧化壓力[65],這可以為克服年齡相關(guān)的生育能力下降提供新的見解。
4 展望
POF當(dāng)前臨床治療主要方法是雌、孕激素人工周期替代療法,但臨床使用雌、孕激素有局限性,且不良反應(yīng)較多。針對(duì)于POF在氧化應(yīng)激、自噬、凋亡的復(fù)雜病因病機(jī),可以通過(guò)對(duì)轉(zhuǎn)錄因子Nrf2的調(diào)控進(jìn)行干預(yù),Nrf2的激活可以產(chǎn)生有益的、全面的、多靶點(diǎn)的和持久的細(xì)胞保護(hù)效應(yīng)。盡管目前還不能排除NRF2激活劑的致癌風(fēng)險(xiǎn),但令人鼓舞的是,DMF的3期試驗(yàn)的薈萃分析顯示,安慰劑組和DMF治療組之間的癌癥發(fā)病率沒有差異[66]。由于NRF2系統(tǒng)的特殊性使得藥物研發(fā)在監(jiān)測(cè)參與靶點(diǎn)和靶外效應(yīng)方面仍然具有挑戰(zhàn)性,而中醫(yī)藥在Nrf2信號(hào)通路與POF機(jī)制當(dāng)中研究甚少,加大中醫(yī)藥與Nrf2信號(hào)通路的研究,毫無(wú)疑問(wèn)可以為POF的防治提供一種新的思路。
參考文獻(xiàn)
[1] 李? 娟,徐? 琳,高? 洋.卵巢早衰病因機(jī)制與治療研究進(jìn)展及現(xiàn)狀[J].中國(guó)醫(yī)藥科學(xué),2021,11(2):58-61.
[2] SHEIKHANSARI G, AGHEBATI-MALEKI L, NOURI M, et al. Current approaches for the treatment of premature ovarian failure with stem cell therapy[J]. Biomedecine & Pharmacotherapie, 2018, 102: 254-262.
[3] LU J Y, WANG Z X, CAO J, et al. A novel and compact review on the role of oxidative stress in female reproduction[J]. Reproductive Biology and Endocrinology, 2018, 16(1): 1-18.
[4] 梁程程,楊? 紅,齊? 聰,楊愛仲.氧化應(yīng)激對(duì)卵巢儲(chǔ)備功能下降的影響及中西醫(yī)抗氧化治療研究進(jìn)展[J/OL].中國(guó)中西醫(yī)結(jié)合雜志:1-5[2021-04-02].http://kns-cnki-net-https.cnki.hnucm.qfclo.com:2222/kcms/detail/11.2787.R.20201228.1440.006.html.
[5] 劉浩浩.MC-LR通過(guò)氧化應(yīng)激調(diào)控小鼠卵巢細(xì)胞ERs及自噬[D]. 鄭州:鄭州大學(xué),2019.
[6] LAHIRI V, HAWKINS W D, KLIONSKY D J. Watch what You (self-) eat: Autophagic mechanisms that modulate metabolism[J]. Cell Metabolism, 2019, 29(4): 803-826.
[7] DIKIC I, ELAZAR Z. Mechanism and medical implications of mammalian autophagy[J]. Nature Reviews Molecular Cell Biology, 2018, 19(6): 349-64.
[8] 張? 慧,張? 宏.自噬:細(xì)胞自身物質(zhì)更新代謝的重要機(jī)制[J].科學(xué)通報(bào),2016,61(36):3903-3906.
[9] 王? 燦,廖海燕,劉慧萍,等.自噬機(jī)制與卵巢早衰的關(guān)系[J].生殖與避孕,2016,36(8):637-641.
[10] 黃姍姍,劉慧萍,張韞玉,等.卵巢顆粒細(xì)胞自噬與PI3K/AKT/FOXO3a信號(hào)通路的相關(guān)性[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2019,39(6): 775-780.
[11] CHOI J, JO M, LEE E, et al. Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells[J]. Fertility and Sterility, 2011, 95(4): 1482-1486.
[12] 蔡? 靚,李? 麗,趙以琳,等.卵巢早衰的細(xì)胞凋亡機(jī)制及針灸干預(yù)研究進(jìn)展[J].生殖醫(yī)學(xué)雜志,2020,29(3):407-411.
[13] MIZUSHIMA N, LEVINE B, CUERVO A M, et al. Autophagy fights disease through cellular self-digestion[J]. Nature, 2008, 451(7182): 1069-1075.
[14] NOGUCHI M, HIRATA N, TANAKA T, et al. Autophagy as a modulator of cell death machinery[J]. Cell Death & Disease, 2020, 11(7): 517.
[15] FERREIRA C A, NI D L, ROSENKRANS Z T, et al. Scavenging of reactive oxygen and nitrogen species with nanomaterials[J]. Nano Research, 2018, 11(10): 4955-4984.
[16] SU L J, ZHANG J H, GOMEZ H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 5080843.
[17] LUNDGREN C A K, SJ?STRAND D, BINER O, et al. Scavenging of superoxide by a membrane-bound superoxide oxidase[J]. Nature Chemical Biology, 2018, 14(8): 788-793.
[18] FINKEL T, HOLBROOK N J. Oxidants, oxidative stress and the biology of ageing[J]. Nature, 2000, 408(6809): 239-247.
[19] REDZA-DUTORDOIR M, AVERILL-BATES D A. Activation of apoptosis signalling pathways by reactive oxygen species[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2016, 1863(12): 2977-2992.
[20] YANG H Y, XIE Y, YANG D Y, et al. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma[J]. Oncotarget, 2017, 8(15): 25310-25322.
[21] 李烈川.氧化應(yīng)激誘導(dǎo)豬卵巢顆粒細(xì)胞自噬及其對(duì)凋亡的作用[D].南京:南京農(nóng)業(yè)大學(xué),2016.
[22] ROCA-AGUJETAS V, DE DIOS C, LESTóN L, et al. Recent insights into the mitochondrial role in autophagy and its regulation by oxidative stress[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 3809308.
[23] YADAV A K, YADAV P K, CHAUDHARY G R, et al. Autophagy in hypoxic ovary[J]. Cellular and Molecular Life Sciences: CMLS, 2019, 76(17): 3311-3322.
[24] WIBLE D J, BRATTON S B. Reciprocity in ROS and autophagic signaling[J]. Current Opinion in Toxicology, 2018, 7: 28-36.
[25] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological Reviews, 2014, 94(3): 909-950.
[26] 何子甜,白? 潔.氧化應(yīng)激與自噬相互作用的分子機(jī)制[J].中國(guó)老年學(xué)雜志,2016,36(6):1505-1507.
[27] SCHERZ-SHOUVAL R, ELAZAR Z. Regulation of autophagy by ROS: Physiology and pathology[J]. Trends in Biochemical Sciences, 2011, 36(1): 30-38.
[28] 吳艷萍,王? 陽(yáng),李雅麗,等.氧化應(yīng)激與自噬[J].動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2016,28(9):2673-2680.
[29] YUAN H, PERRY C N, HUANG C Q, et al. LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection[J]. American Journal of Physiology Heart and Circulatory Physiology, 2009, 296(2): H470-H479.
[30] SU L J, ZHANG J H, GOMEZ H, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 5080843.
[31] CHEN Y F, LIU H, LUO X J, et al. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells[J]. Critical Reviews in Oncology/Hematology, 2017, 112: 21-30.
[32] DODSON M, WANI W Y, REDMANN M, et al. Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons[J]. Autophagy, 2017, 13(11): 1828-1840.
[33] ORRENIUS S, KAMINSKYY V O, ZHIVOTOVSKY B. Autophagy in toxicology: Cause or consequence?[J]. Annual Review of Pharmacology and Toxicology, 2013, 53: 275-297.
[34] EISENBERG-LERNER A, KIMCHI A. The paradox of autophagy and its implication in cancer etiology and therapy[J]. Apoptosis, 2009, 14(4): 376-391.
[35] DUNLOP E A, TEE A R. mTOR and autophagy: A dynamic relationship governed by nutrients and energy[J]. Seminars in Cell & Developmental Biology, 2014, 36: 121-129.
[36] ITO M, YURUBE T, KAKUTANI K, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction[J]. Osteoarthritis and Cartilage, 2017, 25(12): 2134-2146.
[37] HABERZETTL P, HILL B G. Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic Reticulum stress response[J]. Redox Biology, 2013, 1(1): 56-64.
[38] 陳燕霞.補(bǔ)腎促卵方調(diào)控PI3K和Nrf2信號(hào)通路保護(hù)卵巢儲(chǔ)備功能低下的機(jī)制研究[D].北京:中國(guó)中醫(yī)科學(xué)院,2020.
[39] LEE J M, JOHNSON J A. An important role of Nrf2-ARE pathway in the cellular defense mechanism[J]. Journal of Biochemistry and Molecular Biology, 2004, 37(2): 139-143.
[40] 陳光海,劉曉平.Keap1-Nrf2信號(hào)通路與細(xì)胞氧化應(yīng)激反應(yīng)相關(guān)性研究進(jìn)展[J].醫(yī)學(xué)理論與實(shí)踐,2016,29(15):2012-2015.
[41] CUADRADO A, ROJO A I, WELLS G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]. Nature Reviews Drug Discovery, 2019, 18(4): 295-317.
[42] ZHANG D D, LO S C, CROSS J V, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex[J]. Molecular and Cellular Biology, 2004, 24(24): 10941-10953.
[43] CUADRADO A, MANDA G, HASSAN A, et al. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine approach[J]. Pharmacological Reviews, 2018, 70(2): 348-383.
[44] 李? 航,段惠軍.Nrf2/ARE信號(hào)通路及其調(diào)控的抗氧化蛋白[J]. 中國(guó)藥理學(xué)通報(bào),2011,27(3):300-303.
[45] 楊? 陽(yáng),陶仕英,趙丕文,等.卵巢早衰顆粒細(xì)胞凋亡調(diào)控機(jī)制的研究進(jìn)展[J].醫(yī)學(xué)研究雜志,2018,47(1):16-19.
[46] 陳? 菁,盧曉聲,呂杰強(qiáng).Nrf2/ARE信號(hào)通路及其在卵巢中的作用研究進(jìn)展[J].國(guó)際婦產(chǎn)科學(xué)雜志,2016,43(6):665-668.
[47] JAIN A, LAMARK T, SJ?TTEM E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription[J]. The Journal of Biological Chemistry, 2010, 285(29): 22576-22591.
[48] 蔡? 靚,李? 麗,趙以琳,等.卵巢早衰的細(xì)胞凋亡機(jī)制及針灸干預(yù)研究進(jìn)展[J].生殖醫(yī)學(xué)雜志,2020,29(3):407-411.
[49] 李? 煒,李? 冰.細(xì)胞凋亡與Nrf2信號(hào)通路研究進(jìn)展[J].國(guó)外醫(yī)學(xué)(醫(yī)學(xué)地理分冊(cè)),2013,34(1):60-64.
[50] NITURE S K, JAISWAL A K. INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis[J]. Cell Death & Differentiation, 2011, 18(3): 439-451.
[51] STEPKOWSKI T M, KRUSZEWSKI M K. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis[J]. Free Radical Biology and Medicine, 2011, 50(9): 1186-1195.
[52] JOHANSEN T, LAMARK T. Selective autophagy mediated by autophagic adapter proteins[J]. Autophagy, 2011, 7(3): 279-296.
[53] KOMATSU M, WAGURI S, KOIKE M, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice[J]. Cell, 2007, 131(6): 1149-1163.
[54] JAIN A, LAMARK T, SJ?TTEM E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription[J]. Journal of Biological Chemistry, 2010, 285(29): 22576-22591.
[55] JIANG T, HARDER B, ROJO DE LA VEGA M, et al. p62 links autophagy and Nrf2 signaling[J]. Free Radical Biology & Medicine, 2015, 88(Pt B): 199-204.
[56] 章? 緯.基于Nrf2/p62通路介導(dǎo)的的抗氧化及自噬研究補(bǔ)烏煎劑對(duì)氧化應(yīng)激模型下黑素細(xì)胞的保護(hù)機(jī)制[D].合肥:安徽中醫(yī)藥大學(xué),2020.
[57] 葉玉枝,王? 昕,劉明輝,等.一貫煎對(duì)卵巢早衰大鼠模型脂質(zhì)過(guò)氧化狀態(tài)的影響[J].中華中醫(yī)藥學(xué)刊,2016,34(10):2431-2434.
[58] 張東霞.黃芪中黃酮類化合物藥理作用研究進(jìn)展[J].內(nèi)蒙古中醫(yī)藥,2021,40(2):148-149.
[59] 沈? 杰,馬恩耀,趙志敏,等.巴戟天多糖的提取、分離及生物活性研究進(jìn)展[J].中藥新藥與臨床藥理,2020,31(2):246-250.
[60] 陶澤鑫,陸寧姝,吳曉倩,等.石斛的化學(xué)成分及藥理作用研究進(jìn)展[J].藥學(xué)研究,2021,40(1):44-51.
[61] 陶愛恩,趙飛亞,錢金栿,等.黃精屬植物治療腎精虧虛相關(guān)疾病的本草學(xué)和藥理作用與藥效物質(zhì)研究進(jìn)展[J].中草藥,2021,52(5): 1536-1548.
[62] TAMURA H, KAWAMOTO M, SATO S, et al. Long-term melatonin treatment delays ovarian aging[J]. Journal of Pineal Research, 2017, 62(2): e12381.
[63] HU X M, ROBERTS J R, APOPA P L, et al. Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice[J]. Molecular and Cellular Biology, 2006, 26(3): 940-954.
[64] AKINO N, WADA-HIRAIKE O, ISONO W, et al. Activation of Nrf2/Keap1 pathway by oral Dimethylfumarate administration alleviates oxidative stress and age-associated infertility might be delayed in the mouse ovary[J]. Reproductive Biology and Endocrinology: RB&E, 2019, 17(1): 23.
[65] AKINO N, WADA-HIRAIKE O, TERAO H, et al. Activation of Nrf2 might reduce oxidative stress in human granulosa cells[J]. Molecular and Cellular Endocrinology, 2018,470: 96-104.
[66] PAKPOOR J, DISANTO G, ALTMANN D R, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine[J]. Neurology(R) Neuroimmunology & Neuroinflammation, 2015, 2(6): e158.
湖南中醫(yī)藥大學(xué)學(xué)報(bào)2021年5期