• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      酶法脫乙?;苽錃す烟堑难芯窟M(jìn)展

      2021-07-15 22:31:55周勇
      安徽農(nóng)學(xué)通報(bào) 2021年11期
      關(guān)鍵詞:甲殼素

      周勇

      摘 要:殼寡糖是甲殼素脫除乙酰基和降解后的低分子聚合物,因其具有黏度低、水溶性好、保濕性強(qiáng)、吸收能力強(qiáng)及生物相容性好等特性而具有廣泛的應(yīng)用價值。傳統(tǒng)生產(chǎn)殼寡糖工藝存在能耗高、污染重且脫乙酰度不均勻等問題,而酶法制備殼寡糖能有效避免上述問題。當(dāng)前,酶法制備殼寡糖的關(guān)鍵酶在于甲殼素脫乙酰酶。該文介紹了甲殼素脫乙酰酶的來源與酶學(xué)性質(zhì),結(jié)構(gòu)與催化機(jī)理以及其生產(chǎn)菌株的選育,以期為后續(xù)產(chǎn)業(yè)化應(yīng)用提供參考。

      關(guān)鍵詞:甲殼素;殼寡糖;甲殼素脫乙酰酶;脫乙酰

      中圖分類號 TS201.2文獻(xiàn)標(biāo)識碼 A文章編號 1007-7731(2021)11-0027-06

      Research Progress of Enzymatic Deacetylation to Make Chitosan Oligosaccharides

      ZHOU Yong

      (COFCO Biochemical Co., Ltd., Bengbu 233010, China)

      Abstract: Chitosan oligosaccharides (COS) is a kind of low molecular polymer after deacetylation and degradation of chitin.It has a wide range of application value because of its low viscosity, good water solubility, strong moisture retention, strong absorption capacity and good biocompatibility. The traditional COS preparation process has some problems, such as high energy consumption, heavy pollution and uneven deacetylation degree, while the enzymatic method can effectively avoid the above problems.At present, chitin deacetylase is the key enzyme for enzymatic preparation of COS.This paper mainly introduces the source, enzymatic properties, structure and catalytic mechanism of chitin deacetylase, as well as the screening of its producing strains, in order to provide reference for the subsequent industrial application.

      Key words: Chitin; Chitosan oligosaccharides (COS); Chitin deacetylase; Deacetylation

      近年來,隨著人們生活水平的提高,膳食結(jié)構(gòu)和生活方式發(fā)生了一系列改變,導(dǎo)致代謝性疾病的患病率迅猛增長,因此人們更加重視身心健康、自身免疫力提升以及營養(yǎng)健康等高品質(zhì)生活與環(huán)境。從淀粉、肝糖、菊粉、纖維素、幾丁質(zhì)中提取的多種聚合物已經(jīng)被廣泛應(yīng)用于生物、醫(yī)學(xué)、美容、保健等領(lǐng)域[1,2]。殼寡糖(Chitosan oligosaccharides,COS),又稱為低聚葡萄糖胺、低聚氨基葡萄糖、低聚殼聚糖等,因具有黏度低、水溶性好、保濕性強(qiáng)、吸收能力強(qiáng)和生物相容性好等特性而被廣泛關(guān)注[3]。目前,COS已被廣泛應(yīng)用于保健品、食品添加劑、植物生長調(diào)節(jié)劑及飼料添加劑等領(lǐng)域。已有研究表明,殼寡糖具有增強(qiáng)免疫力,調(diào)節(jié)血糖、血壓和血脂,排除體內(nèi)毒素、重金屬和多余自由基,抗腫瘤、肥胖、阿爾茨海默病和通風(fēng)等效果[4-7]。

      來自蝦蟹等節(jié)肢動物、昆蟲外殼或真菌細(xì)胞壁的甲殼素(又稱幾丁質(zhì)),經(jīng)過脫乙酰處理后得到殼聚糖,經(jīng)過進(jìn)一步水解反應(yīng)破壞殼聚糖分子中的糖苷鍵可制備獲得殼寡糖[8]。其中,脫乙?;^程主要有化學(xué)法、物理法和酶法。化學(xué)法是用強(qiáng)酸處理甲殼素上的乙?;玫讲煌酆隙鹊姆肿?,該方法存在環(huán)境污染嚴(yán)重、不同聚合度產(chǎn)物中副產(chǎn)物含量較高且反應(yīng)條件苛刻等問題;物理法是通過超聲波、γ射線或微波輻射使甲殼素分子內(nèi)的化學(xué)鍵斷鏈從而得到不同聚合度分子,該方法對設(shè)備的要求程度高、能耗高且降解效率低?;诩讱に孛撘阴C傅拿阜ㄖ苽錃す烟悄茌^好地避免這些問題,是行業(yè)發(fā)展趨勢[8,9]。

      甲殼素脫乙酰酶(Chitin deacetylase,簡稱CDA,E.C.3.5.1.41)是一種催化甲殼素中N-乙酰基-D-葡萄糖胺(GlcNAc)脫除乙?;D(zhuǎn)化為殼聚糖的酶[10]。CDA酶解甲殼素作為一種生物轉(zhuǎn)化法,其與傳統(tǒng)的化學(xué)法相比,不僅可以降低生產(chǎn)能耗,而且在生產(chǎn)過程中不需要強(qiáng)酸強(qiáng)堿處理,可解決生產(chǎn)過程中的環(huán)境污染問題。此外,通過生物轉(zhuǎn)化可獲得高品質(zhì)的殼聚糖和殼寡糖產(chǎn)品,表現(xiàn)均勻的乙?;潭纫约熬哂蟹植挤秶姆肿恿縖8]。因此,基于過甲殼素脫乙酰酶的酶法轉(zhuǎn)化生產(chǎn)殼寡糖是一種高品質(zhì)、低成本、節(jié)能環(huán)保的新型生產(chǎn)方法。本文重點(diǎn)介紹了甲殼素脫乙酰酶的來源與酶學(xué)性質(zhì)、結(jié)構(gòu)與催化機(jī)理以及編碼基因的克隆表達(dá),以期為后續(xù)研究與產(chǎn)業(yè)化應(yīng)用提供參考。

      1 CDA的來源及與酶學(xué)性質(zhì)

      早在1973年,Amki等[11]首次從接合菌綱(Zygonycetes)的魯氏毛霉(Mucor rouxii)中發(fā)現(xiàn)CDA。1982年,Kauss等[12]從植物病原菌菜豆炭疽菌(Colletotrichum lindemuthianum)中分離并得到部分純化的CDA。隨后,越來越多真菌被報(bào)道具有CDA活性,如曲霉(Aspergillus)[13, 14]、藍(lán)色犁頭霉(Absidia coerulea)[15]、釀酒酵母(Saccharomyces cerevisiae)[16]、粟酒裂殖酵母(Schizosaccharomyces pombe)[17]、短帚霉(Scopulariopsis brevicaulis)[18]、金針菇(Flammulina velutipes)[19]、灰蓋鬼傘(Coprinus cinereus)[20]、卵形孢球托霉(Gongronella butleri)[21]、卷柄根霉(Rhizopus circinans)[22]、黑根霉(R.nigricans)[23]、青霉(Penicillium)和尖孢鐮刀菌(Fusarium oxysporum)[24,25]等,其酶學(xué)特性見表1。目前為止,真菌來源的CDA基本是單肽鏈糖蛋白,表現(xiàn)出良好的熱穩(wěn)定性,但不同來源的CDA在細(xì)胞內(nèi)的存在位置、分子量、等電點(diǎn)以及發(fā)揮作用的最適pH值、最適溫度,對金屬離子和乙酸的反應(yīng)都有著較大的差異。例如,M.rouxii的產(chǎn)酶位置在周質(zhì)空間,而C.lindemuthianum產(chǎn)生的CDA分泌到細(xì)胞外,且酶活力不受乙酸的影響;分子量大小由25~150kDa;最適pH分布在4.5~8.0??傮w顯示,子囊菌門真菌(包括菜豆炭疽菌、曲霉、釀酒酵母、粟酒裂殖酵母和短帚霉)來源的CDA不受底物乙酸抑制,同時在Co2+存在的條件下,可激活該酶的活性,并且均為胞外酶,有利于提取,在工業(yè)化生產(chǎn)與應(yīng)用中具有廣泛的前景。此外,不同真菌來源CDA也在其生命活動中發(fā)揮了不同的功能。Mouyna等[26]研究顯示,并不是所有CDA均參與細(xì)胞壁合成或作為毒力因子。

      大量菌株篩選研究顯示,采用4′-硝基乙酰苯胺顯色法發(fā)現(xiàn)某些細(xì)菌也具有CDA活性,如嗜熱脂肪芽孢桿菌(Bacillus stearothermophilus)[33]、解淀粉芽孢桿菌(B. amyloliquefaciens)[34]、地衣芽孢桿菌(B. licheniformis)[35]、蠟樣芽孢桿菌(B. cereus M1)[36]、紅平紅球菌(Rhodococcus erythropolis)[37],以及近年來發(fā)現(xiàn)的海水硝酸鹽還原菌(Nitratireductor aquimarinus)[38]和馬紅球菌(Rhodococcus equi)[39]。其中,R. equi來源的CDA大小為36kDa,最適溫度和pH分別為30℃、8.0,同時在較寬溫度范圍(如4~25℃)和較寬pH范圍(如6.0~9.0)仍保持穩(wěn)定。此外,外源添加金屬離子,如Sr2+、Mg2+、Na+可提高酶活,而Co2+、Ba2+可抑制酶活[39]。近年來報(bào)道的基于醋酸鹽受體的熒光篩選法[40],為新環(huán)境中高通量篩選CDA產(chǎn)生菌提供了新的途徑。

      盡管大多數(shù)報(bào)道的CDA來自真菌或細(xì)菌,但昆蟲CDA是昆蟲幾丁質(zhì)代謝中重要酶系。研究發(fā)現(xiàn),CDA在昆蟲在其生長發(fā)育過程中,如器官形成、甲殼素修飾、幼蟲-蛹和蛹-成蟲蛻皮等結(jié)構(gòu)形成中有助于昆蟲外骨骼和其他結(jié)構(gòu)的完整性[41, 42]。隨著農(nóng)業(yè)領(lǐng)域生物殺蟲劑的廣泛關(guān)注,基于CDA的綠色殺蟲劑逐漸成為研究熱點(diǎn)。Wu等[41]通過RNA干擾技術(shù)使馬鈴薯甲蟲的CDA基因沉默,結(jié)果顯示幼蟲發(fā)育期延長,生長發(fā)育遲緩,甲殼素含量降低。棉花紅蜘蛛(Tetranychus cinnabarinus)來源的不太CDA序列比對顯示[43],TecCDA1和TecCDA2均由5個結(jié)構(gòu)域組成相似的催化位點(diǎn),但通過RT-PCR顯示它們在成蟲期的表達(dá)水平存在差異,表明它們具有不同的功能。

      2 CDA的結(jié)構(gòu)與催化機(jī)理

      甲殼素脫乙酰酶屬于糖酯酶家族4(carbohydrate esterase family 4,縮寫CE-4)成員之一[44]。該家族的成員具有保守的結(jié)構(gòu)域,命名為“NodB同源結(jié)構(gòu)域”或“多糖脫乙酰酶結(jié)構(gòu)域”,因此,除外CDA,該家族的其他蛋白包括NodB蛋白(EC 3.5.1.-)和肽聚糖脫乙酰酶(EC 3.1.1.-)[45, 46]。CE-4家族成員序列比對顯示該家族成員氨基酸序列具有高度一致性[47]。NodB同源域在NodB蛋白(根瘤蛋白)的基因序列中處于功能表達(dá)區(qū),推測其與根瘤蛋白的脫乙?;钚悦芮邢嚓P(guān)。同時,脫乙酰酶的編碼基因內(nèi)及Bacillus sp.的開放閱讀框中均存在相似基因片段,如乙酰木聚糖酯酶基因、木聚糖酶基因、肽聚糖脫乙酰酶以及許多未表征的開放閱讀框,且與CDA基因中保守片段相似,說明NodB同源域?qū)DA的脫乙酰基功能非常重要。

      CE-4家族蛋白含有5個保守的催化位點(diǎn)(MT1-5),構(gòu)成了乙酰脫氫酶結(jié)構(gòu)域的活性位點(diǎn),包括保守的組氨酸和天冬氨酸殘基[47]。其中,C.lindemuthianum來源的CDA活性位點(diǎn)結(jié)構(gòu)圖(圖1)[47]顯示,MT1包括2個天冬氨酸殘基(D),1個與鋅或者鈷離子反應(yīng)而另一個結(jié)合底物釋放出來的乙酸;MT2包括2個組氨酸(H)結(jié)合金屬離子和1個絲氨酸(S)或者蘇氨酸(T)與第2個組氨酸形成氫鍵用于穩(wěn)定環(huán)的結(jié)構(gòu);MT3形成一側(cè)的活性凹槽,同時具有多種功能,包括結(jié)合乙酸、結(jié)合鋅以及協(xié)調(diào)天冬氨酸殘基的催化;MT4利用色氨酸(W)形成另一側(cè)的活性凹槽;MT5包括亮氨酸(L)和組氨酸(H)構(gòu)成疏水性口袋結(jié)構(gòu)。CDA常見的脫乙?;J綖槎帱c(diǎn)進(jìn)攻模式,其過程如下:CDA先與底物鏈的任一序列結(jié)合,然后從結(jié)合位點(diǎn)的非還原端開始,催化脫去乙酰基,本次酶解完畢;然后酶與底物解離,與另一底物鏈結(jié)合進(jìn)行新一輪的脫乙?;磻?yīng)。這一作用方式也與其他CE-4家族成員相近[47, 48]。

      3 CDA基因的克隆表達(dá)

      目前,文獻(xiàn)報(bào)道并在NCBI公布的CDA基因來自18個屬,約29個種。因野生菌難以實(shí)現(xiàn)工業(yè)化應(yīng)用,來自C. lindemuthianum[49,32,50],F(xiàn). velutipes[19],R. circinans[22],A. nidulans[51],V. parahaemolyticus[52]和B. licheniformis[35]等物種的CDA序列已被克隆并在模式菌株中進(jìn)行異源表達(dá)。

      以大腸桿菌(Escherichia coli)為表達(dá)宿主,早在1999年,Tokuyasu等[49]將C.lindemuthianum 的CDA基因與變鉛青鏈霉菌(Streptomyces lividans)的甲殼素酶信號肽序列結(jié)合克隆到大腸桿菌內(nèi),得到分泌型CDA,其酶活力與野生型CDA無明顯區(qū)別。Wang等[51]將A. nidulans來源的CDA基因克隆到pET-28a(+)后轉(zhuǎn)入E.coli BL21中表達(dá),得到純化的CDA活性為4.17 U/mg,最適溫度和pH分別為50℃,pH8.0,但是該酶以包涵體的形式存在,同時其活性受金屬離子及乙二胺四乙酸的影響,不利于大規(guī)模工業(yè)化生產(chǎn)。Sun等[36]利用B. cereus M1的CDA基因序列構(gòu)建的重組表達(dá)載體pCT7-CHISP6H-BcCDA在大腸桿菌E. coli BL21體內(nèi)高效分泌表達(dá),重組BcCDA的分子量約23kDa,具有脫乙?;富钚?,上清液中的最大比活力為235.43U/mg,純化后該酶的比活力高達(dá)11608.31U/mg,提高49.31倍。危蓉萍等[53]將蜜蜂螺原體CH-1中的CDA基因克隆至pET-28a(+)表達(dá)載體上并在大腸桿菌中克隆表達(dá),測得該酶活力最高可達(dá)10.14U/mL,最適溫度為50℃左右。Raval等[35]將B. licheniformis來源的CDA基因克隆至pET22b載體后轉(zhuǎn)化至大腸桿菌細(xì)胞內(nèi)表達(dá),酶活為320μmol/min·mL。添加丙三醇可使生物量提高50%,酶活由90μmol/min·mL提高至343.14μmol/min·mL,同時純化后的CDA比活力為1142±43μmol/min·mL,較粗酶液提高221倍。

      以畢赤酵母(Pichia pastoris)為表達(dá)宿主,2008年Yamada等[19]將F. velutipes來源的CDA基因利用表達(dá)質(zhì)粒pPICZαA轉(zhuǎn)入P. pastoris X-33后,其重組基因的表達(dá)水平較低,約1mg/L培養(yǎng)液,重組蛋白大小為31kDa。Gauthier等[22]將R. circinans來源的含CDA序列的cDNAs克隆至P.pastoris內(nèi),在其體內(nèi)表達(dá)得到的蛋白酶具有和野生型相似的活性和大小,其中大小為75kDa,在37℃條件下最適pH為5.5~6,比活力為965.13U/mg。Kang等[50]將C. lindemuthianum來源的CDA基因裝入組成型表達(dá)載體pHMB905A后轉(zhuǎn)入P. pastoris GS115中,經(jīng)72h的甲醇誘導(dǎo)表達(dá)后,培養(yǎng)物上清液中CDA產(chǎn)量可達(dá)110mg/L,酶活為77.27U/mg,大小為33kDa。

      以昆蟲細(xì)胞為表達(dá)宿主是一種新興的表達(dá)系統(tǒng),因具有外源蛋白折疊修飾功能和避免密碼子的偏好性使其在表達(dá)昆蟲來源CDA時更具有天然的優(yōu)勢。趙盼等[54]利用昆蟲細(xì)胞昆蟲Sf9細(xì)胞表達(dá)飛蝗CDA基因,Western blot結(jié)果顯示其蛋白分子量61kD左右,酶活檢測顯示不同基因表達(dá)存在差異,最高可達(dá)0.354U/μL。因昆蟲細(xì)胞表達(dá)CDA基因成本較高,相較大腸桿菌和酵母表達(dá)系統(tǒng),培養(yǎng)條件苛刻,因此不適用于大規(guī)模工業(yè)化生產(chǎn)。

      4 討論

      隨著人們對美好生活的向往及高品質(zhì)生活的追求,以殼寡糖為代表的越來越多的高分子化合物已被廣泛應(yīng)用于醫(yī)藥、生物醫(yī)學(xué)、食品工業(yè)、衛(wèi)生、新型醫(yī)療器械和農(nóng)業(yè)等領(lǐng)域。我國在20世紀(jì)中葉發(fā)起了對殼寡糖的研究,到2000年時已經(jīng)有10余款保健食品上市,2004年將殼寡糖研究納入國家“十五”攻關(guān)計(jì)劃項(xiàng)目,2009年將殼寡糖產(chǎn)業(yè)列入“十二五”產(chǎn)業(yè)計(jì)劃,2014年正式批準(zhǔn)殼寡糖為新食品原料。目前市場上富含殼寡糖的保健品主要用于增強(qiáng)免疫產(chǎn)品約17種、降血糖產(chǎn)品4種、降血脂產(chǎn)品3種、保護(hù)肝臟類產(chǎn)品4種、增加骨密度類產(chǎn)品4種、抗氧化產(chǎn)品3種等8大類。這些產(chǎn)品的殼寡糖主要來源于甲殼類動物的外殼,采用傳統(tǒng)的化學(xué)降解法或物理降解法處理,存在能耗高、污染大、反應(yīng)條件苛刻、降解效率低下且產(chǎn)品品質(zhì)不佳的問題。

      為了深入貫徹落實(shí)綠色發(fā)展理念,加快推動綠色生物制造,全面提高資源利用效率,酶法制備殼寡糖已成為行業(yè)發(fā)展趨勢。當(dāng)前,針對不同制備原料和應(yīng)用領(lǐng)域,研發(fā)人員不斷篩選新型CDA,如從海洋環(huán)境篩選海洋細(xì)菌來源的脫乙酰酶、從昆蟲體內(nèi)篩選相關(guān)脫乙酰酶,以滿足不同應(yīng)用領(lǐng)域需求,提高酶的匹配性,同時為后續(xù)外源表達(dá)提供序列信息。但目前篩選的菌株仍存在菌株退化、CDA性能不穩(wěn)定及活力低等問題。因此,篩選高活性的CDA仍是工業(yè)化應(yīng)用中需要解決的重要問題。為了提高酶法制備殼寡糖的效率,研發(fā)人員不斷探索CDA的結(jié)構(gòu)及催化機(jī)理,但不同來源CDA其結(jié)構(gòu)類似,但在機(jī)體內(nèi)的基因表達(dá)情況及作用機(jī)制存在差異,可能存在不同的誘導(dǎo)因素或功能修飾。因此,將產(chǎn)生菌直接應(yīng)用于催化反應(yīng)中或利用其編碼基因進(jìn)行異源表達(dá),需要進(jìn)行進(jìn)一步基因分析和蛋白結(jié)構(gòu)分析,從而有針對性地進(jìn)行基因編輯以提高其表達(dá)量或者酶活。

      參考文獻(xiàn)

      [1]Baranwal A,Kumar A,Priyadharshini A,et al.Chitosan:An undisputed bio-fabrication material for tissue engineering and bio-sensing applications[J].Int J Biol Macromol,2018,110:110-123.

      [2]Wang Wenqian,Meng Qiuyu,Li Qi,et al.Chitosan derivatives and their application in biomedicine[J].International Journal of Molecular Sciences,2020,21(2):487-512.

      [3]Kim S K.Chitin,chitosan,oligosaccharides and their derivatives:Biological activities and applications[M].CRC Press,2010.

      [4]Parashar P,Mazhar I,Kanoujia J,et al.Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model[J].Archives of Physiology and Biochemistry,2019:1-11.

      [5]Lodhi G,Kim Y,Hwang J,et al.Chitooligosaccharide and its derivatives:Preparation and biological applications[J].BioMed research international,2014,2014(1):654913.

      [6]Imran M,Sajwan M,Alsuwayt B,et al.Synthesis,characterization and anticoagulant activity of chitosan derivatives[J].Saudi Pharmaceutical Journal,2019,28(1).

      [7]Naveed M,Phil L,Sohail M,et al.Chitosan oligosaccharide (COS):An overview[J].Int J Biol Macromol,2019,129:827-843.

      [8]Gabriel S K,Peters L,Mucalo M.Chitosan:A review of sources and preparation methods[J].Int J Biol Macromol,2020.

      [9]楊倩,劉建輝,蔣彤,等.幾丁質(zhì)脫乙酰酶的研究進(jìn)展[J].食品研究與開發(fā),2017,038(010):200-203.

      [10]Ghormade V,Kulkarni S,Doiphode N,et al.Chitin deacetylase:A comprehensive account on its role in nature and its biotechnological applications[J].Current Research,Technology and Education Topics in Applied Microbiology and Microbial Biotechnology,2010,2:1054-1066.

      [11]Araki Y,Ito E.A pathway of chitosan formation in Mucor rouxii:Enzymatic deacetylation of chitin[J].Biochem Biophys Res Commun,1974,56(3):669-675.

      [12]Kauss H,Jeblick W,Young D H.Chitin deacetylase from the plant pathogen Colletotrichum lindemuthianum[J].Plant Science Letters,1983,28(2):231-236.

      [13]Alfonso C,Nuero O M,Santamaria F,et al.Purification of a heat-stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation[J].Curr Microbiol,1995,30(1):49-54.

      [14]Gastebois A,Clavaud C,Aimanianda V,et al.Aspergillus fumigatus:Cell wall polysaccharides,their biosynthesis and organization[J].Future Microbiology,2009,4(5):583-595.

      [15]Gao X D,Katsumoto T,Onodera K.Purification and characterization of chitin deacetylase from Absidia coerulea[J].J Biochem,1995,117(2):257-263.

      [16]Martinou A,Koutsioulis D,Bouriotis V.Expression,purification,and characterization of a cobalt-activated chitin deacetylase (cda2p) from Saccharomyces cerevisiae[J].Protein Expr Purif,2002,24(1):111-116.

      [17]Matsuo Y,Tanaka K,Matsuda H,et al.Cda1+,encoding chitin deacetylase is required for proper spore formation in Schizosaccharomyces pombe[J].FEBS Lett,2005,579(12):2737-2743.

      [18]Cai J,Yang J,Du Y,et al.Purification and characterization of chitin deacetylase from Scopulariopsis brevicaulis[J].Carbohydr Polym,2006,65(2):211-217.

      [19]Yamada M,Kurano M,Inatomi S,et al.Isolation and characterization of a gene coding for chitin deacetylase specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes and its expression in the yeast Pichia pastoris[J].FEMS Microbiol Lett,2008,289(2):130-137.

      [20]Bai Y,Wang Y,Liu X,et al.Heterologous expression and characterization of a novel chitin deacetylase,cda3,from the mushroom Coprinopsis cinerea[J].Int J Biol Macromol,2020,150.

      [21]Maw T,Tan T K,Khor E,et al.Selection of Gongronella butleri strains for enhanced chitosan yield with uv mutagenesis[J].J Biotechnol,2002,95(2):189-193.

      [22]Gauthier C,Clerisse F,Dommes J,et al.Characterization and cloning of chitin deacetylases from Rhizopus circinans[J].Protein Expr Purif,2008,59(1):127-137.

      [23]Jeraj N,Kuni[c] B,Lenasi H,et al.Purification and molecular characterization of chitin deacetylase from Rhizopus nigricans[J].Enzyme & Microbial Technology,2006,39(6):1294-1299.

      [24]Pareek N,Vivekanand V,Saroj S,et al.Purification and characterization of chitin deacetylase from Penicillium oxalicum saem-51[J].Carbohydr Polym,2012,87(2):1091-1097.

      [25]Suresh P V,Sakhare P Z,Sachindra… N M.Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum[J].Journal of Food Science & Technology,2014,51(8):1594-1599.

      [26]Mouyna I,Dellière S,Beauvais A,et al.What are the functions of chitin deacetylases in Aspergillus fumigatus?[J].Frontiers in Cellular and Infection Microbiology,2020,10:28.

      [27]Hunt D E,Gevers D,Vahora N M,et al.Conservation of the chitin utilization pathway in the Vibrionaceae[J].Appl Environ Microbiol,2008,74(1):44-51.

      [28]Maw T,Tan T K,Khor E,et al.Complete cdna sequence of chitin deacetylase from Gongronella butleri and its phylogenetic analysis revealed clusters corresponding to taxonomic classification of fungi[J].J Biosci Bioeng,2002,93(4):376-381.

      [29]Zhao Y,Jo G H,Ju W T,et al.A highly n-glycosylated chitin deacetylase derived from a novel strain of Mortierella sp.Dy-52[J].Biosci Biotechnol Biochem,2011,75(5):960-965.

      [30]Tokuyasu K,Ohnishikameyama M,Hayashi K.Purification and characterization of extracellular chin deacetylase from Colletotrichum lindemuthianum[J].Bioscience Biotechnology & Biochemistry,1996,60(10):1598-1603.

      [31]Tsigos I,Bouriotis V.Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum[J].J Biol Chem,1995,270(44):26286-26291.

      [32]Shrestha B,Blondeau K,Stevens W F,et al.Expression of chitin deacetylase from Colletotrichum lindemuthianum in pichia pastoris:Purification and characterization[J].Protein Expr Purif,2004,38(2):196-204.

      [33]Kafetzopoulos D,Thireos G,Vournakis J N,et al.The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products[J].Proc Natl Acad Sci U S A,1993,90(17):8005-8008.

      [34]He Y,Xu J,Wang S,et al.Optimization of medium components for production of chitin deacetylase by Bacillus amyloliquefaciens z7,using response surface methodology[J].Biotechnol Biotechnol Equip,2014,28(2):242-247.

      [35]Raval R,Simsa R,Raval K.Expression studies of Bacillus licheniformis chitin deacetylase in E.Coli rosetta cells[J].Int J Biol Macromol,2017,104(Pt B):1692-1696.

      [36]Sun Y Y,Zhang J Q,Wang S J,et al.Cloning and recombinant expression of chitin deacetylase from Bacillus cereus[J].Food Research & Development,2016.

      [37]Sun Y,Zhang J,Wu S,et al.Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis hg05[J].Carbohydr Polym,2014,102:649-652.

      [38]Chai J,Hang J,Zhang C,et al.Purification and characterization of chitin deacetylase active on insoluble chitin from Nitratireductor aquimarinus mcda3-3[J].Int J Biol Macromol,2020,152.

      [39]Ma Q,Gao X,Tu L,et al.Enhanced chitin deacetylase production ability of Rhodococcus equi cgmcc14861 by co-culture fermentation with Staphylococcus sp.Mc7[J].Frontiers in Microbiology,2020,11.

      [40]Pawaskar G M,Pangannaya S,Raval K,et al.Screening of chitin deacetylase producing microbes from marine source using a novel receptor on agar plate[J].Int J Biol Macromol,2019,131:716-720.

      [41]Wu J J,Chen Z C,Wang Y W,et al.Silencing chitin deacetylase 2 impairs larval–pupal and pupal–adult molts in Leptinotarsa decemlineata[J].Insect Molecular Biology,2019,28(1):52-64.

      [42]Miller S,Shippy T,Tamayo B,et al.Characterization of chitin deacetylase genes in the Diaphorina citri genome[J].2020.

      [43]An,Xiangshun,Zhong,et al.Comparative characterization of putative chitin deacetylases from Tetranychus cinnabarinus[J].Bioscience Biotechnology & Biochemistry,2019.

      [44]Caufrier F,Martinou A,Dupont C,et al.Carbohydrate esterase family 4 enzymes:Substrate specificity[J].Carbohydr Res,2003,338(7):687-692.

      [45]Gilmore M E,Bandyopadhyay D,Dean A M,et al.Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan[J].J Bacteriol,2004,186(1):80-89.

      [46]Vollmer W,Tomasz A.The pgda gene encodes for a peptidoglycan n-acetylglucosamine deacetylase in Streptococcus pneumoniae[J].J Biol Chem,2000,275(27):20496-20501.

      [47]Blair D E,Hekmat O,Schuttelkopf A W,et al.Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum[J].Biochemistry,2006,45(31):9416-9426.

      [48]Liu Z,Gay L M,Tuveng T R,et al.Structure and function of a broad-specificity chitin deacetylase from Aspergillus nidulans fgsc a4[J].Sci Rep,2017,7(1):1746.

      [49]Tokuyasu K,Kaneko S,Hayashi K,et al.Production of a recombinant chitin deacetylase in the culture medium of Escherichia coli cells[J].FEBS Lett,1999,458(1):23-26.

      [50]Kang L,Chen X,Zhai C,et al.Synthesis and high expression of chitin deacetylase from Colletotrichum lindemuthianum in Pichia pastoris gs115[J].J Microbiol Biotechnol,2012,22(9):1202-1207.

      [51]Wang Y,Song J Z,Yang Q,et al.Cloning of a heat-stable chitin deacetylase gene from Aspergillus nidulans and its functional expression in Escherichia coli[J].Appl Biochem Biotechnol,2010,162(3):843-854.

      [52]Kadokura K,Sakamoto Y,Saito K,et al.Production of a recombinant chitin oligosaccharide deacetylase from Vibrio parahaemolyticus in the culture medium of Escherichia coli cells[J].Biotechnol Lett,2007,29(8):1209-1215.

      [53]危蓉萍,楊東航,卜瑩瑩,等.蜜蜂螺原體幾丁質(zhì)脫乙酰酶基因的克隆、表達(dá)及酶學(xué)性質(zhì)[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,39(03):417-424.

      [54]Zhao P,Zhang X,Liu X,et al.Eukaryotic expression,affinity purification and enzyme activity of chitin deacetylase in Locusta migratoria[J].Scientia Agricultura Sinica,2017,50:1057-1066.

      (責(zé)編:張宏民)

      猜你喜歡
      甲殼素
      微生物甲殼素酶的研究進(jìn)展及應(yīng)用現(xiàn)狀
      中國果菜(2022年1期)2022-01-26 08:07:50
      甲殼素在食品領(lǐng)域的最新研究進(jìn)展
      離子液體在蝦殼甲殼素提取中的應(yīng)用研究進(jìn)展
      中國第五屆國際及海峽兩岸甲殼素研討會暨第九屆甲殼素科學(xué)技術(shù)會議
      甲殼素酶的研究進(jìn)展
      超聲輔助改性甲殼素對水中亞甲基藍(lán)的吸附性能
      負(fù)載型摻氮TiO2 光催化劑的制備及可見光催化活性研究
      甲殼素對蔬菜抗逆性的影響
      中國果菜(2015年2期)2015-03-11 20:01:05
      甲殼素對蔬菜表觀狀況的影響
      科技視界(2014年7期)2014-12-24 07:24:02
      甲殼素對番茄產(chǎn)量品質(zhì)的影響
      科技視界(2014年6期)2014-12-23 12:16:56
      永城市| 阿鲁科尔沁旗| 高清| 闽清县| 阳信县| 澜沧| 镇坪县| 基隆市| 法库县| 杨浦区| 睢宁县| 嵊泗县| 远安县| 桦甸市| 锦州市| 林西县| 大名县| 社会| 台东县| 乐都县| 金阳县| 佛冈县| 洛扎县| 陆良县| 招远市| 公主岭市| 治多县| 米林县| 天水市| 宜宾市| 远安县| 云南省| 枞阳县| 府谷县| 仁化县| 潜江市| 即墨市| 青铜峡市| 江华| 天等县| 溧水县|