惠永永
【摘要】異面直線所成角是立體幾何當(dāng)中的一塊比較重要的基礎(chǔ)知識(shí),它相對(duì)于立體幾何中的線面角和面面角來說要簡(jiǎn)單些.因?yàn)楹?jiǎn)單,所以解決這一類型題的方法有很多,如傳統(tǒng)意義上的直接平移法、利用中位線平移法、相似平移法、補(bǔ)形法、向量法和三余弦定理法等.然而,也正是因?yàn)楹?jiǎn)單,異面直線所成角才更有研究的價(jià)值.
【關(guān)鍵詞】構(gòu)造四面體模型
本文主要探討的是異面直線所成角之四面體模型.這一類型題若采用傳統(tǒng)的方法來解決,可能運(yùn)算會(huì)比較煩瑣.而且,這一類型題曾出現(xiàn)于浙江省高考模擬卷中選擇題和填空題較后的位置,因此研究異面直線所成角之四面體模型就顯得很有價(jià)值.
【參考文獻(xiàn)】
[1]胡貴平.一個(gè)向量公式妙解高考題[J].數(shù)理化學(xué)習(xí)(高中版),2018(10):8-9.
[2]王芳.異面直線所成角問題的多種解法[J].中學(xué)生數(shù)學(xué),2014(17):10-11.