關孟欣,彭蘭生,陳景陽,黃 魁,2*,夏 慧
玉米芯生物炭對污泥蚯蚓糞中微生物種群及ARGs的影響
關孟欣1,彭蘭生1,陳景陽3,黃 魁1,2*,夏 慧1
(1.蘭州交通大學環(huán)境與市政工程學院,甘肅 蘭州 730070;2.甘肅省黃河水環(huán)境重點實驗室,甘肅 蘭州 730070;3.金風環(huán)保有限公司,北京 102600)
較多的抗生素抗性基因(ARGs)積蓄于剩余污泥中降低了污泥蚯蚓糞的農用價值.為削減污泥蚯蚓糞中的ARGs,向污泥中分別添加1.25%和5%(質量比)的玉米芯生物炭(簡稱玉米芯炭),以無添加為對照組,揭示玉米芯炭對污泥蚯蚓堆肥過程中微生物種群結構及ARGs的影響.結果表明:添加高含量玉米芯炭顯著促進污泥有機質的礦化,提升蚯蚓堆肥產物的電導率和pH值(<0.05).同時,添加玉米芯炭能增加污泥蚯蚓糞中細菌16S rDNA和真核生物18S rDNA的豐度,且其豐度均與玉米芯炭添加量呈顯著正相關性(<0.05).與對照組相比,高含量玉米芯炭污泥蚯蚓糞中變形菌門、擬桿菌門、放線菌門與浮霉菌門的相對豐度分別降低了11.8%、7.1%、33.3%和20%,但厚壁菌門的豐度顯著增加了40%(<0.05).此外,添加玉米芯炭蚯蚓糞中大環(huán)內酯類抗性基因(F)和四環(huán)素類抗性基因(X)的絕對豐度較對照組分別顯著降低了32%~45%和13%~31%(<0.05),但同時整合子基因(I1)和磺胺類抗性基因(2)的豐度分別顯著增加了47%~135%和9%~42%(<0.05).研究結果顯示,添加玉米芯炭能增加污泥蚯蚓糞中微生物數(shù)量和種群多樣性,加速有機質礦化,但對ARGs的削減具有選擇性.
生物質炭;蚯蚓堆肥;污泥資源化;抗生素抗性基因;蚯蚓糞有機肥;生物污染物
隨著我國污水處理能力的不斷提升,剩余污泥產量越來越多[1-2],其處理處置已經成為我國生態(tài)文明建設過程中急需解決的難題.蚯蚓堆肥是一種蚯蚓協(xié)同微生物共同降解有機物的污泥肥料化技術[3],其產物蚯蚓糞富含多種土壤養(yǎng)分及益生菌群[4-5],是一種高質量的生物有機肥.由于我國城市生活污水和工業(yè)污水管網(wǎng)的分流,市政污泥中的重金屬與有毒有機物含量已不再是污泥蚯蚓堆肥的瓶頸.但新近研究發(fā)現(xiàn)剩余污泥中積蓄大量抗生素及其抗性基因(ARGs)[6],亦會造成污泥蚯蚓糞中功能性菌群攜帶有大量ARGs[7].ARGs作為新型生物污染物,具有很強的遺傳性和傳播性,難以在生物介質中將其有效去除[8-9].因此,如何有效降低污泥蚯蚓糞中ARGs的環(huán)境風險尤為重要[10].
生物質炭具有比表面積大、吸附能力強、穩(wěn)定性高等特點,能夠促進污泥有機物礦化、加速污泥穩(wěn)定化、吸附污泥中有害物質[11-12].同時,生物質炭為微生物的生長繁殖提供了多尺度的生態(tài)位[13].由于大多數(shù)ARGs鑲嵌在細菌胞內DNA上,其歸趨受生境下細菌菌群變化的影響[14-15].因此可推測污泥蚯蚓堆肥體內添加生物質炭,不僅可加速有機物的穩(wěn)定,而且會改變蚯蚓糞中微生物菌群,進而影響其ARGs的多樣性和豐度.已有研究表明生物質炭會影響污泥蚯蚓糞中ARGs[16].但關于不同含量生物質炭對污泥蚯蚓糞中ARGs的影響還鮮有研究.
本實驗選取網(wǎng)狀多孔結構的玉米芯炭為供試生物質炭,比較不同含量玉米芯炭對污泥蚯蚓堆肥產物中微生物種群結構和ARGs的影響,旨在為減少污泥蚯蚓糞中ARGs的風險提供一種新思路.
堆肥蚓種為赤子愛勝蚓(),并經脫水污泥馴化.玉米芯炭購置于大連九成物產公司,表面為100μm的網(wǎng)狀多孔結構,理化性質見表1.實驗反應器為底部打孔的矩形塑料盒(46cm′17cm′13cm).污泥取自蘭州市安寧七里河污水處理廠脫泥車間的新鮮脫水污泥(含水率64%),理化性質見表1.
表1 供試玉米芯炭和供試污泥理化性質
設置3個處理,以無玉米芯炭為對照組(CK組),低含量玉米芯炭(1.25%CL組)和高含量玉米芯炭(5%CH組)為處理組,每組設3個重復.新鮮脫水污泥先用5mm網(wǎng)孔的鐵絲網(wǎng)進行造粒,隨后將其與玉米芯炭按填加比例分別混勻后,再次造粒作為蚯蚓堆肥基質[16].而后將3kg蚯蚓堆肥基質分別放入對應的反應器中,最后向各基質中接種100 條體重約0.5g的赤子愛勝蚓.蚯蚓投加密度參照之前實驗進行[17].為保持水分、濕度和有氧條件,在各反應器上覆蓋帶孔保鮮膜,每周噴灑一次自來水并進行翻堆.所有反應器均在室溫(20~25℃)下進行.蚯蚓堆肥實驗共進行60d.污泥蚯蚓糞樣品取樣時將蚓卵剔除,每個反應器取2個平行樣品.所取樣品分兩份保存,一份存放于無菌塑封袋中,置于-20℃冰箱中冷凍保存,用于DNA相關分析;另一份風干后研磨,過60目篩,然后置于4℃冰箱中保存,用于理化性質分析.
1.3.1 理化性質分析 理化測試參照黃魁等[17]方法進行.將研磨后的風干樣與去離子水(干樣:水=1:50;kg/L)混勻后測定pH值(雷磁PHS-3C,上海)和電導率(雷磁DDS-307,上海).硝酸鹽氮采用紫外分光光度法(HJ/T 346-2007),氨氮采用納氏試劑分光光度法(HJ 535-2009).溶解性有機碳(DOC)為上述混合液稀釋10倍后,過0.45μm濾膜,用碳氮分析儀(耶拿MULTI N/C,2100,德國)進行測定.
1.3.2 DNA提取及熒光定量PCR 取約0.25g解凍樣品用DNeasy?Power Soil?Kit (Qiagen,德國)試劑盒提取總DNA,并用1%瓊脂糖凝膠電泳檢測其濃度.本實驗選取污泥中常見且含量較高的大環(huán)內酯類抗性基因(F)、四環(huán)素類抗性基因(MX)和磺胺類抗性基因(1、2)及第一類整合子基因(I1)進行檢測.采用熒光定量PCR儀(Takara,TP700,日本)對細菌16S rDNA(V3~V4區(qū)),真核18S rDNA(V4區(qū))及上述幾種ARGs進行定量.定量反應為25μL體系:TB Green II(Takara,日本)12.5μL, 10μmol/L引物各0.5μL,DNA模板1μL,以及DNA- free水10.5μL.所用引物均購置于生工生物工程(上海)股份有限公司,引物序列和反應條件見表2.標準品為攜帶目的基因的質粒,制備過程見文獻[18].
表2 抗性基因引物及PCR反應條件
1.3.3 PCR和高通量測序 采用帶有Barcode堿基的引物515F(5’-GTGCCAGCCGCGGTAA-3’)和806R(5’-GGACTACHVGGGTWTCTAAT-3’)對16S rDNA基因序列V4區(qū)進行擴增.使用Phusion High-Fidelity PCR Master Mix with HF Buffer (M0531NEB)高保真酶進行擴增.PCR擴增條件為: 95℃預變性5min;35個循環(huán)包括95℃變性30s,58℃退火30s,72℃延伸30s;72℃終延伸10min.所得到的擴增產物使用1%的瓊脂糖電泳進行檢測,并利用Agencourt AMPure XP 60mL Kit(A63881 Beckman Coulter)對產物進行純化.使用Qubit dsDNA HS Assay Kit (Q32851Life tech)對文庫進行構建,檢測合格后使用Illumina HiSeq平臺進行上機測序(谷禾信息生物有限公司,杭州).測序結果使用QIIME(1.8.0)軟件對序列進行質控過濾,去掉嵌合體,得到有效Clean tags.然后使用MEGA7.0軟件(v7.0.1001)將OTUs (Operational Taxonomic Units)進行聚類,相似度達97%的OTU聚為一類.最后與GreenGene(v gg_13_8)和Silva(SILVA128)數(shù)據(jù)庫進行對比并注釋,獲得各OTU的分類學信息.測序結果已上傳至DDBJ數(shù)據(jù)庫.
使用STATISTICA 10.0統(tǒng)計軟件進行單因素方差分析(One-way ANOVA)和相關性分析,顯著性水平為0.05.使用MEGA7.0軟件對DNA測序數(shù)據(jù)進行聚類,并用HemI1.0軟件繪制熱圖.使用OriginPro 2018(version 9.5)繪圖.用CANOCO 4.5軟件對環(huán)境因素、微生物和ARGs之間的關系進行冗余分析.
由表3可知,與CK組相比,CL和CH兩組蚯蚓糞中電導率分別提升15%和14%(<0.05),添加玉米芯炭能提升污泥蚯蚓堆肥的礦化水平[13]. Gong等[19]研究發(fā)現(xiàn),高溫堆肥中添加竹子生物質炭會提高其產物的電導率.污泥蚯蚓糞中增加的電導率可能與生物質炭中較高的電導率供給有關.與電導率相似,CL和CH兩組蚯蚓糞的pH值也顯著提升(<0.05).
如表3所示,CH組硝酸鹽氮的含量比CK組增加12%(<0.05),但CL與CK組無顯著性差異(> 0.05).這可能是因為高含量的玉米芯炭增加了污泥的孔隙率,致使堆體中氧含量增加,進而促進了硝化反應的進行[20].蚯蚓堆肥后各組氨氮含量均有顯著性下降(<0.05),但CL和CH氨氮含量比CK組顯著提高了1.46倍和1.07倍(< 0.05).這一結果可能與添加玉米芯炭會促進污泥有機物的氨化反應有關[13].玉米芯炭組中同時增多的氨氮和硝氮暗示著生物質炭能提升污泥蚯蚓糞的氮肥肥效.
由表3所見,實驗后各組污泥蚯蚓糞中溶解性有機碳(DOC)均顯著降低(<0.05),這與其他研究相近[17].與CK組相比,CL和CH組DOC含量呈增加趨勢(<0.05).研究發(fā)現(xiàn)[21-22],生物質炭的添加會增加土壤中的DOC含量.這可能歸因于生物質炭芳香結構中的碳被蚯蚓與微生物分解,從而增加了污泥蚯蚓糞中DOC的含量.本研究中DOC含量與玉米芯炭含量有較顯著的線性關系(<0.05,=0.96).
表3 不同處理中污泥蚯蚓糞的理化性質
注:同列指標的兩個處理組間存在相同字母表明其兩兩之間不具有顯著性差異(>0.05),同行字母之間沒有比較意義,下同.
2.2.1 玉米芯炭對微生物數(shù)量的影響 如圖1所示,與原始污泥相比,蚯蚓堆肥顯著增加了各處理組細菌16S rDNA和真核生物18S rDNA微生物的豐度(<0.05).與CK組相比,CL和CH組細菌16S rDNA豐度分別顯著增加了0.24倍和1.13倍(<0.05);對于真核生物18S rDNA來說,CL和CH組的數(shù)量均顯著高于CK組(<0.05).同時,皮爾遜相關性結果顯示,細菌與真核微生物的生物量與玉米芯炭含量均有極顯著的正相關性(<0.05,=0.96,=0.97).上述結果說明添加玉米芯炭有利于污泥蚯蚓糞中微生物的生長繁殖,這與Xu等[23]在土壤學中的研究結果相似.生物質炭較高的比表面積和孔隙度為微生物的生存提供了多樣的環(huán)境,其可利用成分可以直接被微生物所利用[24],進而增加了微生物的生物量[25].與細菌相比,CH組中真核生物數(shù)量急劇性增長,表明高含量玉米芯炭有利于其生長.這可能是因為高含量玉米芯炭多孔結構為真核微生物提供了好氧環(huán)境與庇護所,減少了被蚯蚓捕食的幾率[13].
圖1 蚯蚓堆肥前后污泥中細菌16S rDNA和真核18S rDNA的絕對含量
2.2.2 玉米芯炭對微生物種群結構的影響 由表4可知,與原始污泥相比,各組Shannon指數(shù)和Simpson指數(shù)均出現(xiàn)了增加,且最高值都出現(xiàn)在CH組,說明添加高含量玉米芯炭會增加堆肥產物微生物的豐富度和均勻度.這與最近在豬糞高溫堆肥的研究[26]結果相似.微生物均勻度的增加,可能是由于生物質炭多孔結構提供了多樣的生境,有利于功能性微生物的生長繁殖[25].
由圖2可見,原始污泥中優(yōu)勢菌門為變形菌門(25%)、擬桿菌門(13%)、厚壁菌門(13%).蚯蚓堆肥后各處理組中變形菌門、放線菌門、浮霉菌門均顯著增加(<0.05),而厚壁菌門顯著減少(<0.05).與CK組相比,CL組細菌菌群結構無顯著性變化.但CH組中厚壁菌門較CK組顯著增長了40%,這與黃家慶等[26]所得到的結果一致.厚壁菌門的主要功能為降解大分子有機物如蛋白質、脂肪類、纖維素等[17],因此可推斷高含量玉米芯炭會促進有機物質的轉化.而與CK組相比,CH組放線菌門和變形菌門分別減少了33.3%和11.8%.Cui等[27]也發(fā)現(xiàn)在雞糞高溫堆肥中添加5%的稻草生物質炭會降低變形菌門的比例.這說明高含量玉米芯炭會抑制堆肥體中變形菌門和放線菌門的生長.CH組中浮霉菌門和擬桿菌門與CK組相比也有明顯減少.以上結果表明,添加高含量玉米芯炭顯著影響了堆肥產物中門水平的細菌群落組成.
表4 不同處理中微生物Shannon與Simpson指數(shù)
注:IS為原始污泥.
圖2 堆肥前后污泥中細菌門水平結構變化
圖3 堆肥前后污泥中細菌屬水平相對豐度
如圖3所示,原始污泥中優(yōu)勢菌屬為、、Blvii28.而堆肥后3個處理組中Unclassified-1、、、、、SWB02、、、、、、和均有不同程度的增加.其中,、、、和從無到有,這說明蚯蚓堆肥可以顯著增加細菌種群多樣性[17].與CK組相比,CL組Unclassified-1和Nocardioides增加了28%和14%,而CH組中Nocardioides降低了36%,SWB02降低了34%,、、和降低了40%.結果顯示玉米芯炭的含量對堆肥產物細菌群落組成有較大的影響.聚類分析可見,CK與CL組種群結構差異性較小,而CH組與其余兩組種群結構有較大差異性,這說明高含量玉米芯炭對細菌屬水平結構影響較大.
如圖4(a)所示,與原始污泥相比,CK組中I1的數(shù)量顯著降低了0.48倍(<0.05),顯示出蚯蚓堆肥可以降低污泥中I1的豐度[17,28].但與CK組比較,添加玉米芯炭使I1的數(shù)量呈現(xiàn)出增長趨勢,且其豐度與玉米芯炭含量有顯著正相關性(<0.05,= 0.88).這表明添加玉米芯炭對I1豐度的增加有促進作用.相關研究證實,環(huán)境中較高的細菌數(shù)量和多樣性增多了ARGs的潛在宿主及細菌胞外接觸的可能性,進而增大了I1在生物介質中水平傳播的可能性[29-30].本研究中,增加的I1豐度與CL和CH組中較高的細菌數(shù)量和多樣性密切相關,因為污泥蚯蚓糞中的細菌數(shù)量和I1呈正相關關系(<0.05,=0.88).這一結果暗示著添加生物質炭將會增加污泥蚯蚓糞中ARGs的傳播風險.Duan[31]在研究中也發(fā)現(xiàn)生物質炭的添加并不會降低土壤中I1豐度.
圖4 蚯蚓堆肥前后ARGs的絕對豐度
對ARGs而言(圖4b~f),各組中F(大環(huán)內酯類抗性基因)和M(四環(huán)素類抗性基因)的豐度在堆肥處理后均出現(xiàn)顯著減少(<0.05),其中M與原始污泥相比減少了86%~90%.并且M各組間并無顯著性差異(>0.05),說明添加玉米芯炭對污泥蚯蚓糞中M的豐度無顯著影響.但對F來說,隨著玉米芯炭含量的增加,污泥蚯蚓糞中F的豐度逐漸減少,且與玉米芯炭含量有較強的負相關性(<0.05,=-0.83).這一現(xiàn)象表明,玉米芯炭可以減少蚯蚓堆肥中F的豐度.Li等[32]也發(fā)現(xiàn)向雞糞高溫堆肥中添加竹子生物質炭,F的豐度會減少.此外,與原始污泥相比,X(四環(huán)素類抗性基因)的豐度在蚯蚓堆肥后會出現(xiàn)顯著增長(<0.05),見圖4(f).但與CK組相比,CL和CH組X的豐度顯著下降了13%和31%,且與玉米芯炭含量存在顯著負相關(<0.05,=-0.88),說明添加玉米芯炭會降低污泥蚯蚓糞中X的豐度.與之相反,在添加玉米芯炭后,1和2(磺胺類抗性基因)的豐度均出現(xiàn)增加.磺胺類抗性基因的增多可能與污泥蚯蚓糞中I1豐度有關[31].Chen[33]在I1的保守區(qū)發(fā)現(xiàn)了磺胺類抗性基因,因此I1的增加會導致1和2的增加.相比而言,CH組中2豐度與CK組相比顯著增加了42%,且其豐度與玉米芯炭含量存在顯著正相關(<0.05,0.66).Wang等人[34]也發(fā)現(xiàn)高含量玉米秸稈生物質炭能增加動物糞便高溫堆肥中1和2的豐度.另外,最高的1和2豐度均出現(xiàn)在CH組,暗示著高含量玉米芯炭會提升蚯蚓堆肥產物中磺胺類抗性基因的豐度.綜上結果顯示玉米芯炭對蚯蚓污泥堆肥體系中ARGs的去除具有選擇性,且去除效率與玉米芯炭的含量密切相關.
圖5冗余分析可知,CK組中總ARGs的豐度最高,EC、pH值以及NH4+對堆肥體內ARGs的總豐度有一定的抑制作用.CH組高含量玉米芯炭及DOC、NO3-的含量與2和M的豐度有顯著正相關性(<0.05),表明高含量玉米芯炭對2和M的豐度有積極的影響,這與CH組中高含量2結果一致.此外,Firmicutes(厚壁菌門)與2和M之間較強的相關性表明其可能為2和M的潛在宿主細菌.Sun等[35]在牛糞厭氧消化中添加生物質炭也發(fā)現(xiàn)類似結果.RDA結果還顯示CL組Planctomycetes (浮霉菌門),Actinobacteria(放線菌門)及Proteobacteria(變形菌門)的豐度較高,表明了在蚯蚓堆肥過程中添加低含量玉米芯炭會促進上述菌門細菌的生長,細菌門水平的變化對堆肥過程中ARGs的變化有一定的影響.因此,環(huán)境變量對ARGs豐度的影響主要取決于它們對其潛在宿主細菌的影響[10,36-37].本研究顯示污泥中環(huán)境因子與微生物種群的變化受生物質炭含量的影響較大,進而對蚯蚓糞中ARGs分布和豐度產生影響[7,28,38].但由于污泥蚯蚓堆肥體系的復雜性,玉米芯炭對污泥蚯蚓堆肥中微生物和ARGs的影響機制仍須進一步研究.
圖5 ARGs、細菌菌群和環(huán)境因子的冗余分析
3.1 高含量玉米芯炭污泥蚯蚓糞中硝氮含量和電導率分別增加了12%和14%,促進了污泥蚯蚓堆肥中有機物的礦化,提升其產物的穩(wěn)定性.
3.2 高含量玉米芯炭組提升了污泥堆肥產物中微生物種群多樣性,、、Blvii28、、Unclassified-1、、、、、和為生物炭污泥蚯蚓糞的優(yōu)勢菌屬.
3.3 玉米芯炭降低了污泥中占主導地位的F和X的豐度,但I1和2的豐度在添加玉米芯炭組中分別增加47%~135%和9%~42%,玉米芯炭蚯蚓糞的生態(tài)風險需進一步研究.
[1] 薛重華,孔祥娟,王 勝,等.我國城鎮(zhèn)污泥處理處置產業(yè)化現(xiàn)狀、發(fā)展及激勵政策需求[J]. 凈水技術, 2018,37(12):41-47.
Xue C H, Kong X J, Wang S, et al. Industrialization status, development analysis and incentive policy demands of municipal sludge treatment and disposal industry in china [J]. Water Purification Technology, 2018,37(12):41-47.
[2] Qu J, Wang H, Wang K, et al. Municipal wastewater treatment in China: Development history and future perspectives [J]. Frontiers of Environmental Science and Engineering, 2019,13(6):88.
[3] Domínguez J, Aira M, Gómez-Brandón M. Vermicomposting: earthworms enhance the work of microbes [M]. Berlin, Heidelberg: Springer, 2010:93-114.
[4] Huang K, Xia H, Li F, et al. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes [J]. Environmental Science and Pollution Research, 2016,23(13):13569-13575.
[5] Sharma K, Garg V K, Vermicomposting: A green technology for organic waste management [M]. Singapore: Springer, 2018:199-235.
[6] 安新麗,蘇建強.活性污泥抗生素抗性基因研究進展[J]. 微生物學通報, 2019,46(8):2069-2079.
An X L, Su J Q. Resistome in activated sludge: current knowledge and future directions [J]. Microbiology China, 2019,46(8):2069-2079.
[7] Huang K, Xia H, Wu Y, et al. Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting [J]. Bioresource Technology, 2018,259: 32-39.
[8] Aminov R I, Mackie R I. Evolution and ecology of antibiotic resistance genes [J]. FEMS Microbiology Letters, 2007,271(2): 147-161.
[9] 張 寧,李 淼,劉 翔.土壤中抗生素抗性基因的分布及遷移轉化 [J]. 中國環(huán)境科學, 2018,38(7):2609-2617.
Zhang N, Li M, Liu X. Distribution and transformation of antibiotic resistance genes in Soil [J]. China Environmental Science, 2018, 38(7):2609-2617.
[10] Huang K, Xia H, Zhang Y, et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis [J]. Bioresource Technology, 2020,297:122451.
[11] Zhang J N, Lü F, Shao L M, et al. The use of biochar-amended composting to improve the humification and degradation of sewage sludge [J]. Bioresource Technology, 2014,168:252-258.
[12] 周 楫,余亞偉,蔣 越,等.生物炭對污泥堆肥及其利用過程重金屬有效態(tài)的影響[J]. 環(huán)境科學, 2019,40(2):987-993.
Zhou J, Yu Y W, Jiang Y, et al. Effect of biochar on available heavy metals during sewage sludge composting and land application of compost [J]. Environmental Science, 2019,40(2):987-993.
[13] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota–a review [J]. Soil Biology and Biochemistry, 2011,43(9):1812-1836.
[14] Miller J H, Novak J T, Knocke W R, et al. Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters [J]. Frontiers in Microbiology, 2016,7:263.
[15] 黃 薇,劉蘭英,劉 洋,等.鰻鱺養(yǎng)殖廢棄物抗性基因賦存特征及其與抗生素和微生物群落的相關性 [J]. 應用與環(huán)境生物學報, 2020,26(5):1275-1281.
Huang W, Liu L Y, Liu Y, et al. Analysis of occurrence of antibiotic resistance genes in eel culture waste and its correlations with antibiotics and microbial community [J]. Chinese Journal of Applied and Environmental Biology, 2020,26(5):1275-1281.
[16] Huang K, Chen J Y, Guan M X, et al. Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge [J]. Journal of Hazardous Materials, 2020,379(5): 122767.
[17] 黃 魁,夏 慧,陳景陽,等.蚯蚓對城市污泥蚯蚓堆肥過程中微生物特征變化的影響[J]. 環(huán)境科學學報, 2018,38(8):3146-3152.
Huang K, Xia H, Chen J Y, et al. Effects of earthworms on changes of microbial feature during vermicomposting of municipal sludge [J]. Acta Scientiae Circumstantiae, 2018,38(8):3146-3152.
[18] Cui G, Bhat S A, Li W, et al. Gut digestion of earthworms significantly attenuates cell-free and-associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles [J]. Science of the Total Environment, 2019,691:644-653.
[19] Gong X, Cai L, Li S, et al. Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost [J]. Ecotoxicology and Environmental Safety, 2018,156:197-204.
[20] 李 明,李忠佩,劉 明,等.不同秸稈生物炭對紅壤性水稻土養(yǎng)分及微生物群落結構的影響[J]. 中國農業(yè)科學, 2015,48(7):1361-1369.
Li M, Li Z P, Liu M, et al. Effects of different straw biochar on nutrient and microbial community structure of a red paddy soil [J]. Scientia Agricultura Sinica, 2015,48(7):1361-1369.
[21] El-Naggar A, El-Naggar A H, Shaheen S M, et al. Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, and potential environmental risk: a review [J]. Journal of Environmental Management, 2019,241:458-467.
[22] Agegnehu G, Srivastava A K, Bird M I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review [J]. Applied Soil Ecology, 2017,119:156-170.
[23] Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure [J]. European Journal of Soil Biology, 2016,74:1-8.
[24] Farrell M, Kuhn T K, Macdonald L M, et al. Microbial utilization of biochar-derived carbon [J]. Science of the Total Environment, 2013,465:288-297.
[25] Zhu X, Chen B, Zhu L, et al. Effects and mechanisms of biochar- microbe interactions in soil improvement and pollution remediation: a review [J]. Environmental Pollution, 2017,227:98-115.
[26] 黃家慶,葉 菁,李艷春,等.生物炭對豬糞堆肥過程中細菌群落結構的影響[J]. 微生物學通報, 2020,47(5):1477-1491.
Huang J Q, Ye J, Li Y C, et al. Effect of biochar on bacteria community structure of pig manure composting [J]. Microbiology China, 2020,47(5):1477-1491.
[27] Cui E, Wu Y, Zuo Y, et al. Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting [J]. Bioresource Technology, 2016,203:11-17.
[28] 陳景陽,夏 慧,黃 魁,等.四環(huán)素對污泥蚯蚓糞中微生物種群和抗性基因的影響[J]. 環(huán)境科學, 2019,40(7):3263-3269.
Chen J Y, Xia H, Huang K, et al. Effects of tetracycline on microbial communities and antibiotic resistance genes of vermicompost from dewatered sludge [J]. Environmental Science, 2019,40(7):3263-3269.
[29] Cui G, Lü F, Zhang H, et al. Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes [J]. Bioresource Technology, 2020,317:123974.
[30] Zhou G, Qiu X, Wu X, et al. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite [J]. Journal of Hazardous Materials, 2020,408:124883.
[31] Duan M, Li H, Gu J, et al. Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce [J]. Environmental Pollution, 2017,224:787-795.
[32] Li H, Duan M, Gu J, et al. Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting [J]. Ecotoxicology and Environmental Safety, 2017,140:1-6.
[33] Chen B, Liang X, Nie X, et al. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China [J]. Journal of Hazardous materials, 2015,282:61-67.
[34] Wang J, Sui B, Shen Y, et al. Effects of different biochars on antibiotic resistance genes during swine manure thermophilic composting [J]. International Journal of Agricultural and Biological Engineering, 2018,11(6):166-171.
[35] Sun W, Gu J, Wang X, et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater [J]. Bioresource Technology, 2018,256:342-349.
[36] Ma Y, Wilson C A, Novak J T, et al. Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons [J]. Environmental Science and Technology, 2011,45(18):7855-7861.
[37] Zhang R, Gu J, Wang X, et al. Contributions of the microbial community and environmental variables to antibiotic resistance genes during co-composting with swine manure and cotton stalks [J]. Journal of hazardous materials, 2018,358:82-91.
[38] Sun W, Qian X, Gu J, et al. Mechanisms and effects of arsanilic acid on antibiotic resistance genes and microbial communities during pig manure digestion [J]. Bioresource Technology, 2017,234:217-223
Effects of corncob biochar on the microbial communities and ARGs during vermicomposting of dewatered sludge.
GUAN Meng-xin1, PENG Lan-sheng1, CHEN Jing-yang3, HUANG Kui1,2*, XIA Hui1
(1.School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;2.Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou 730070, China;3.Goldwind Environmental Protection Co., LTD, Beijing 102600, China)., 2021,41(6):2744~2751
The higher content of antibiotics resistance genes (ARGs) accumulated in excess sludge lowers its agricultural value of vermicompost. To eliminate the content of ARGs in sludge vermicompost, this study aimed to reveal the effects of corncob biochars added in sludge on microbial communities and ARGs of vermicomposting. For this, 1.25% and 5% of corncob biochars, were separately added to dewatered sludge, comparing with the counterpart without addition of biochars. The addition high content of corncob biochars significantly (< 0.05) promoted the mineralization of organic matter, thus increasing the conductivity and pH of sludge vermicompost. In addition, the corncob biochars (< 0.05) enhanced the gene abundances of bacterial 16S rDNA and eukaryotic 18S rDNA in the vermicompost, resulting in a significantly (< 0.05) positive correlation between the microbial abundance and biochar concentration. Compared to control, the relative abundance of Proteobacteria, Bacteroidetes, Actinomycetes, and Planctomycetes in sludge vermicompost with high content of corncob biochar decreased by 11.8%, 7.1%, 33.3% and 20%, respectively. However, its abundance of Firmicutes significantly increased by 40% (< 0.05). Besides, the absolute abundance of macrolide resistance genes (F) and tetracycline resistance genes (X) in vermicompost with corncob biochars significantly decreased by 32%~45% and 13%~31% (< 0.05), respectively. But, the abundance of class 1integron (I1) and sulfonamides resistance genes (2) significantly increased by 47%~135% and 9%~42% (< 0.05) in the final vermciompost, respectively. The addition of corncob biochar in sludge can promote the mineralizaiton of sludge by enhancing microbial number and diversity of microbial, but this addition only selectively reduce the ARGs in vermicompost.
biochar;vermicomposting;sludge recycling;antibiotics resistance gene;vermicompost fertilizer;biological pollutants
X171.5
A
1000-6923(2021)06-2744-08
關孟欣(1996-),男,山西運城人,蘭州交通大學碩士研究生,主要研究污泥資源化技術.發(fā)表論文2篇.
2020-11-13
國家自然科學基金資助項目(51868036;52000095);甘肅省高等教師創(chuàng)新能力提升項目(2019A-040);蘭州交通大學百人計劃項目
* 責任作者, 副教授, huangk1199@hotmail.com