• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      高溫脅迫下杜鵑葉片AsA-GSH循環(huán)的亞細胞定位分析

      2021-09-28 22:35:10劉曉青趙暉耿興敏李暢肖政蘇家樂
      江蘇農(nóng)業(yè)科學 2021年18期
      關鍵詞:高溫脅迫抗壞血酸杜鵑

      劉曉青 趙暉 耿興敏 李暢 肖政 蘇家樂

      摘要:為明確杜鵑AsA-GSH循環(huán)在亞細胞水平上對高溫脅迫的響應機制,以耐熱性不同的杜鵑品種胭脂蜜、紅珊瑚、紅月為試驗材料,分析高溫脅迫下AsA-GSH循環(huán)中還原型抗壞血酸(AsA)、還原型谷胱甘肽(GSH)、抗壞血酸過氧化物酶(APX)和谷胱甘肽還原酶(GR)活性在細胞溶質、葉綠體和線粒體中的變化。結果表明:胭脂蜜耐熱性高于紅珊瑚和紅月,高溫脅迫后MDA含量僅在紅月中顯著升高。高溫脅迫下胭脂蜜和紅珊瑚的AsA、APX和GSH主要存在于細胞溶質中,其次是線粒體和葉綠體,GR的亞細胞分布為線粒體>葉綠體>細胞溶質。紅月中4個AsA-GSH循環(huán)指標的亞細胞分布與其他2個杜鵑品種不同,APX和GR在葉綠體中活性最高,AsA主要存在于線粒體,GSH則主要存在于細胞溶質中。高溫脅迫下,3個杜鵑品種AsA含量在3個亞細胞組分中都有所升高,僅在胭脂蜜葉綠體中顯著下降;APX活性都有所升高,但僅在胭脂蜜和紅月細胞溶質和紅月葉綠體中升高顯著;GR僅在胭脂蜜葉綠體中顯著升高,在紅月的細胞溶質和線粒體中顯著下降;GSH在胭脂蜜葉綠體、紅珊瑚和紅月的細胞溶質中顯著降低,在其他亞細胞中變化不顯著。本研究未發(fā)現(xiàn)杜鵑耐熱性強度與抗氧化指標亞細胞分布之間存在相關性。

      關鍵詞:杜鵑;高溫脅迫;抗壞血酸-谷胱甘肽循環(huán)

      中圖分類號: S685.210.1? 文獻標志碼: A

      文章編號:1002-1302(2021)18-0128-06

      收稿日期:2020-12-16

      基金項目:國家自然科學基金(編號:31700627);江蘇省自然科學基金(編號:BK20170607);中央財政林業(yè)科技推廣示范資金(編號:蘇 [2018]TG02);江蘇省林業(yè)發(fā)展專項資金(編號:蘇財資環(huán)[2020] 26號)。

      作者簡介:劉曉青(1970—),女,山東青島人,研究員,主要研究方向為杜鵑花育種與栽培。E-mail:1376660436@qq.com。

      通信作者:李暢,碩士,副研究員,主要從事觀賞植物種質資源與遺傳育種研究。E-mail:changli529@foxmail.com。

      抗壞血酸-谷胱甘肽(AsA-GSH)循環(huán)是植物活性氧清除系統(tǒng)的重要組成部分[1]。APX和GR是AsA-GSH循環(huán)中重要的酶,以AsA和GSH為底物還原H2O2,并促進AsA和GSH的循環(huán)再生[2](表1)。有研究表明,葉綠體活性氧(ROS)可以通過超氧化物歧化酶(SOD)以及抗壞血酸-谷胱甘肽(AsA-GSH)循環(huán)進行清除[2]。葉綠體中AsA-GSH 循環(huán)在圓柏低溫脅迫響應中發(fā)揮主要作用[3]。保持葉綠體AsA-GSH循環(huán)持續(xù)快速、有效運轉,降低葉綠體膜系統(tǒng)受傷害程度,維持葉肉細胞較強的光合活性,是耐鹽的菜用大豆維持較高的凈光合速率的重要生理基礎之一[4]。AsA-GSH循環(huán)在葉綠體ROS清除過程中發(fā)揮重要作用。同時,AsA-GSH循環(huán)也存在于細胞溶質、線粒體、質體和過氧化物酶體中[5-6],對維持大部分亞細胞組分氧化還原平衡起著重要作用。AsA-GSH循環(huán)中抗氧化酶及抗氧化物質在亞細胞分布上存在差異。三葉草在水脅迫下,AsA和GR的亞細胞分布為葉綠體>線粒體>細胞溶質,而APX的亞細胞分布為葉綠體>細胞溶質>線粒體[7]。高溫脅迫后,煙草AsA、GSH、APX和GR的亞細胞分布都為細胞溶質>質體>線粒體[8]。

      杜鵑花作為我國傳統(tǒng)十大名花之一,具有很高的觀賞和應用價值[9]。大部分杜鵑花屬植物的原始生境都是較陰涼濕潤的地區(qū),忌炎熱和強光,因此高溫熱害會導致植物發(fā)育停滯甚至死亡,是制約杜鵑花應用于園林中的一個重要因素[10]。目前杜鵑高溫脅迫下活性氧清除系統(tǒng)研究主要集中于SOD、POD、CAT等抗氧化物酶活性的變化[11-14],對AsA-GSH循環(huán)中APX和AsA的變化雖也有報道[12-13,15-16],但針對AsA-GSH循環(huán)的研究以及其亞細胞定位分析尚未見報道。因此,本研究以前期篩選出的3種耐熱性不同的杜鵑為研究對象,進行高溫脅迫,分析高溫脅迫后葉綠體、線粒體和細胞溶質等亞細胞組分中AsA-GSH循環(huán)的抗氧化酶及抗氧化物質的變化,以期能夠在亞細胞水平上明確杜鵑AsA-GSH循環(huán)在高溫脅迫下的活性氧調控機制。

      1 材料與方法

      1.1 材料與處理

      選擇耐熱性不同的3個杜鵑品種胭脂蜜、紅珊瑚、紅月的當年生扦插苗(3月份扦插,7月份用于試驗)進行試驗。2018年7月在江蘇省農(nóng)業(yè)科學院智能溫室中選擇大小一致、生長健壯的杜鵑幼苗,進行脅迫處理。脅迫處理在實驗室培養(yǎng)箱中進行,高溫處理(HS)溫度 42 ℃/30 ℃(晝/夜),對照(CK)組放置在通風的溫室(25 ℃)中。為避免水分脅迫,盆底放置托盤補充水分,每個品種選取10株幼苗。處理72 h后取樣,樣品保存于-80 ℃冰箱中。

      1.2 亞細胞提取的方法

      參照于飛等的方法[3],對葉綠體、線粒體和細胞溶質進行分離提取,取10 g杜鵑葉片,用液氮迅速研磨成粉,加入預冷的提取緩沖液,過濾,濾液用冷凍離心機離心。利用差速離心法進行葉綠體(2 000 r/min,沉淀)、線粒體(12 000 r/min,沉淀)和細胞溶質(12 000 r/min,上清液)的分離提取。用 5 mL 提取緩沖液分別懸浮葉綠體和線粒體沉淀,可獲得葉綠體和線粒體的提取液。

      1.3 葉片亞細胞生理生化指標的測定

      取亞細胞提取液0.5 mL,參照Kampfenkel等的方法[17],測定抗壞血酸(AsA)的含量:加質量濃度6%三氯乙酸(TCA)定容至8 mL,15 600 r/min,2 ℃離心10 min,上清液即為樣品待測液,測525 nm處的吸光度。參照李玲的方法[18],測定谷胱甘肽(GSH)的含量:加入5 mL經(jīng)4 ℃預冷的50 g/L TCA(含 5 mol/L EDTA),于4 ℃、12 000 r/min離心20 min,上清液即為樣品待測液,迅速測定顯色液在波長412 nm處的吸光度。參照湯紹虎等的方法[19],測定抗壞血酸過氧化物酶(APX)的活性:加入5 mL pH值7.0的磷酸緩沖液(25 mmol/L),在 10 000 r/min下離心15 min,上清液即為樣品待測液,測定連續(xù) 1 min 內290 nm下的吸光度。參照李忠光等的方法[20],測定谷胱甘肽還原酶(GR)的活性:加入 5 mL 預冷的酶提取液,于4 ℃下 10 000 r/min 離心20 min,上清液即為樣品待測液,測定連續(xù)4 min內340 nm下的吸光度。

      采用Microsoft Excel 2016軟件進行數(shù)據(jù)處理和作圖,采用SPSS 19.0軟件進行差異顯著性分析(P<0.05)。

      2 結果與分析

      2.1 杜鵑幼苗熱害癥狀變化及過氧化損傷

      從圖1中可以看出,高溫脅迫處理3 d后,胭脂蜜葉片無明顯變化;紅珊瑚頂部個別幼嫩葉片出現(xiàn)輕度變黃;紅月頂部個別幼嫩葉片邊緣開始枯黃。結果表明,胭脂蜜比紅珊瑚和紅月有更好的耐熱性,紅月耐熱性最差。

      MDA是膜脂過氧化作用的最終產(chǎn)物[21]。高溫脅迫后3個杜鵑品種MDA含量均呈上升趨勢(圖2)。高溫脅迫后,MDA含量在紅月中變化顯著,在胭脂蜜和紅珊瑚中變化不顯著。紅月的過氧化損傷程度比胭脂蜜和紅珊瑚嚴重。

      2.2 高溫脅迫下3個杜鵑品種葉片各亞細胞中AsA含量的變化

      由圖3可知,高溫脅迫后,胭脂蜜和紅珊瑚AsA含量在3個亞細胞組分中從高到低依次為細胞溶質>線粒體>葉綠體,胭脂蜜AsA含量在線粒體和葉綠體中無顯著差異,紅珊瑚AsA含量在3個亞細胞間的分布差異顯著;而紅月AsA含量從高到低依次為線粒體>細胞溶質>葉綠體,細胞溶質和葉綠體中AsA含量差異不顯著。

      高溫脅迫后,在細胞溶質中,胭脂蜜和紅珊瑚AsA含量顯著上升,而紅月AsA含量無顯著性變化,3個杜鵑品種中AsA含量從高到低依次為紅珊瑚>胭脂蜜>紅月。AsA含量在線粒體中的變化與細胞溶質中的變化一致,但3個杜鵑品種中AsA含量從高到低依次為紅月>紅珊瑚>胭脂蜜。在葉綠體中,胭脂蜜AsA含量顯著降低,紅珊瑚和紅月AsA含量顯著上升,3個杜鵑品種中AsA含量從高到低依次為紅月>胭脂蜜>紅珊瑚。

      2.3 高溫脅迫下3個杜鵑品種葉片各亞細胞中APX活性的變化

      由圖4可知,高溫脅迫后,胭脂蜜和紅珊瑚APX活性在3個亞細胞組分間從高到低依次為細胞溶質>葉綠體>線粒體,紅月APX活性的亞細胞分布為葉綠體>細胞溶質>線粒體。APX活性在胭脂蜜和紅珊瑚的葉綠體和線粒體中無顯著差異,而紅月細胞溶質和葉綠體APX活性無顯著差異。

      高溫脅迫后,3個杜鵑品種APX活性除在胭脂蜜細胞溶質和紅月細胞溶質和葉綠體中顯著上升外,其余APX活性與對照相比均無顯著性差異。細胞溶質、線粒體和葉綠體中3個杜鵑品種中APX活性從高到低依次為胭脂蜜>紅珊瑚>紅月、胭脂蜜>紅月>紅珊瑚、紅月>紅珊瑚>胭脂蜜。

      2.4 高溫脅迫下3個杜鵑品種葉片各亞細胞中GSH含量的變化

      從圖5可知,高溫脅迫后,3個杜鵑品種GSH在細胞溶質中含量高于線粒體和葉綠體,GSH含量在胭脂蜜的3個亞細胞組分間的分布差異顯著,紅珊瑚的細胞溶質和線粒體GSH含量變化不顯著,但顯著高于葉綠體,紅月細胞溶質中GSH含量顯著高于線粒體和葉綠體,并且GSH含量在線粒體和葉綠體中變化不明顯。

      高溫脅迫后,在細胞溶質中,GSH含量在紅珊瑚和紅月中顯著降低,紅月的下降幅度高于紅珊瑚,在胭脂蜜中上升但并不顯著。3個杜鵑品種細胞溶質中GSH含量從高到低依次為胭脂蜜>紅月>紅珊瑚。在線粒體中,與對照相比,3個杜鵑品種GSH含量在高溫脅迫后均無顯著性差異,3個杜鵑品種線粒體中GSH含量從高到低依次為胭脂蜜>紅珊瑚>紅月。在葉綠體中,胭脂蜜中GSH含量下降顯著,其余2個品種無顯著變化,3個杜鵑品種葉綠體中GSH含量從高到低依次為紅月>胭脂蜜>紅珊瑚。

      2.5 高溫脅迫下3個杜鵑品種葉片各亞細胞中GR活性的變化

      從圖6可知,高溫脅迫后,胭脂蜜和紅珊瑚的GR活性在線粒體中含量最高,顯著高于細胞溶質和葉綠體,GR活性在紅月的3個亞細胞組分間的分布從高到低依次為葉綠體>線粒體>細胞溶質,且在3個亞細胞組分間的分布差異顯著。

      高溫脅迫后,在細胞溶質中,胭脂蜜和紅珊瑚的GR活性上升不顯著,胭脂蜜上升幅度高于紅珊瑚,紅月中GR活性顯著下降,3個杜鵑品種細胞溶質中GR活性從高到低依次為紅月>胭脂蜜>紅珊瑚。在線粒體中,GR活性的變化與細胞溶質中一致,但3個杜鵑品種線粒體中GR活性從高到低依次為胭脂蜜>紅珊瑚>紅月。在葉綠體中,胭脂蜜中GR活性在高溫脅迫后顯著上升,紅珊瑚和紅月GR活性無顯著性變化。3個杜鵑品種葉綠體中GR活性從高到低依次為紅月>紅珊瑚>胭脂蜜。

      3 討論與結論

      高溫脅迫導致杜鵑幼苗中積累過多活性氧,造成過氧化脅迫,耐熱性強的杜鵑可以維持較高的抗氧化酶活性,清除過多的活性氧[15,22]。前期研究以2年生的杜鵑扦插苗為試驗材料進行高溫脅迫,發(fā)現(xiàn)胭脂蜜的耐熱性比紅月強,紅珊瑚的耐熱性最差[23]。而本研究中以杜鵑當年生扦插苗試驗材料,進行熱脅迫,發(fā)現(xiàn)胭脂蜜耐熱性與以往研究相同,而紅珊瑚的耐熱性比紅月強,這或許與幼苗苗齡以及自身營養(yǎng)狀態(tài)相關。閆圓圓等[24]和賈志國[25]分別對結球甘藍和仙客來的耐熱性研究發(fā)現(xiàn),苗齡與植物的耐熱性具有相關性。從MDA含量變化也可以看出,紅月耐熱性最差,高溫脅迫后,紅月MDA含量變化顯著,胭脂蜜和紅珊瑚MDA含量沒有顯著變化。申惠翡等[26]和張樂華等[11]的研究表明,MDA含量與耐熱性呈負相關。

      3.1 高溫脅迫后杜鵑AsA-GSH循環(huán)的亞細胞定位

      APX、GR、GSH和AsA在杜鵑細胞溶質、線粒體和葉綠體中都有分布,但4個指標的亞細胞分布存在著品種間差異。耐熱性強的胭脂蜜和耐熱性較差的紅珊瑚AsA、GSH含量和APX活性均在細胞溶質中含量最高,其次是線粒體和葉綠體,GR則主要分布在線粒體中。耐熱性差的紅月APX、GR在葉綠體中活性最高,AsA主要分布在線粒體,而GSH主要分布在細胞溶質中??寡趸笜藖喖毎植嫉牟町惢蛟S與基因型不同有關,也可能與脅迫類型以及耐受性不同有關。研究表明,AsA-GSH循環(huán)是葉綠體中主要的活性氧清除系統(tǒng)。白三葉在水脅迫后,MDA、H2O2以及AsA-GSH循環(huán)均主要分布在葉綠體中[27];圓柏進行低溫脅迫發(fā)現(xiàn),ASA-GSH 循環(huán)效率定位為葉綠體>線粒體>細胞溶質,表明圓柏屬植物葉綠體中ASA-GSH 循環(huán)在低溫脅迫響應中發(fā)揮主要作用[28]。

      研究表明,胭脂蜜、紅珊瑚和紅月3個杜鵑品種H2O2含量的亞細胞分布為細胞溶質>葉綠體>線粒體,耐熱性差的杜鵑紅月和紅珊瑚中MDA含量分布與H2O2的亞細胞分布相一致,耐熱性強的杜鵑胭脂蜜細胞溶質中的MDA含量最高,但線粒體和葉綠體的排序發(fā)生了變化[23]。本研究中4個抗氧化指標的亞細胞分布與之進行比較,可以發(fā)現(xiàn)AsA-GSH循環(huán)與H2O2的亞細胞分布并不一致,但其中3個指標AsA、GSH和APX也都在細胞溶質中含量最高。另外,耐熱最好的杜鵑胭脂蜜中MDA的亞細胞分布與這3個指標的排序完全一致,即細胞溶質>線粒體>葉綠體。GR的排序與H2O2、MDA完全不同,這可以在一定程度上說明,高溫脅迫下AsA、GSH和APX在杜鵑抗氧化循環(huán)中起著重要作用。

      3.2 高溫脅迫下3個亞細胞中AsA-GSH循環(huán)的響應

      高溫脅迫下,在胭脂蜜細胞溶質中,4個抗氧化指標都有所升高,但僅APX和AsA升高顯著;紅珊瑚AsA顯著升高,APX和GR變化不顯著,GSH顯著下降;耐熱性最差的紅月細胞溶質中的APX顯著升高,AsA 變化不顯著,GSH和GR顯著下降。在細胞溶質中,通過提高AsA-GSH循環(huán)代謝中抗氧化物含量(ASA、GSH)和抗氧化酶(APX、GR)活性,使耐熱性強的杜鵑有更好的對H2O2清除的能力。玉米細胞溶質中ASA、GSH含量和APX、GR活性在PEG脅迫(水脅迫)后都上升[27],使玉米對PEG脅迫有更好的耐受性。另外,3個杜鵑品種相比,高溫脅迫后,耐熱性強的胭脂蜜中發(fā)揮作用的抗氧化酶及抗氧化劑的種類多于耐性差的紅珊瑚和紅月。

      高溫脅迫后,在線粒體中,耐熱性強的胭脂蜜和耐熱性較強的紅珊瑚AsA顯著升高,耐熱性差的紅月線粒體中GR顯著降低,3個杜鵑品種中其他指標的變化在線粒體不顯著,但均在抗性強的品種胭脂蜜中含量(活性)最高。耐熱性強的杜鵑線粒體AsA-GSH循環(huán)代謝中高的抗氧化物含量(ASA、GSH)和抗氧化酶(APX、GR)活性,促進線粒體 AsA-GSH循環(huán)對H2O2的清除作用。對枇杷幼果低溫脅迫發(fā)現(xiàn),通過提高幼果線粒體AsA-GSH循環(huán)代謝中的抗氧化物含量(ASA、GSH)和抗氧化酶類(APX、GR)的活性,促進幼果線粒體AsA-GSH循環(huán)對H2O2的清除作用,增強枇杷幼果在低溫脅迫下的抗寒能力[29]。孫海平等對大豆種子PEG處理發(fā)現(xiàn),種子線粒體中APX、GR增加,提高了大豆種子抗吸脹冷害的能力[30]。

      在本研究中,葉綠體AsA-GSH循環(huán)中抗氧化酶活性和抗氧化物含量的變化與杜鵑的耐熱性并不明確。3個杜鵑品種相比,紅月葉綠體中抗氧化物含量(ASA、GSH)和抗氧化酶類(APX、GR)的活性均比胭脂蜜和紅珊瑚中的要高。Gu等研究發(fā)現(xiàn),葉綠體對高溫的反應最為敏感,其中類囊體片層變得模糊,甚至在熱敏性杜鵑屬植物中降解[31]。耐熱性差的杜鵑葉綠體更容易受ROS的損傷,其葉綠體中抗氧化機制更容易被激活。在葉綠體中,高溫脅迫后胭脂蜜AsA和GSH呈顯著下降趨勢,有待進一步深入研究。

      參考文獻:

      [1]Pang C H,Wang B S. Role of ascorbate peroxidase and glutathione reductase in ascorbate-glutathione cycle and stress tolerance in plants [M]//Ascorbate-glutathione pathway and stress tolerance in plants. Berlin:Springer Netherlands,2010:91-113.

      [2]Das K,Roychoudhury A. Reactive oxygen species(ROS)and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science,2014,2(53):1-13.

      [3]于 飛,陳銀萍,楊宗娟,等. 低溫脅迫對兩種圓柏屬植物亞細胞抗氧化酶活性的影響[J]. 廣西植物,2014,34(5):686-693.

      [4]王 聰,楊恒山,劉艷華,等. NaCl脅迫下外源殼聚糖對菜用大豆葉綠體AsA-GSH循環(huán)的影響[J]. 江蘇農(nóng)業(yè)學報,2016,32(5):1141-1147.

      [5]Jimenez A,Hernandez J A,Pastori G,et al. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves[J]. Plant Physiology,1998,118(4):1327-1335.

      [6]Meyer A J. The integration of glutathione homeostasis and redox signaling[J]. Journal of Plant Physiology,2008,165(13):1390-1403.

      [7]Wang C Q,Zhang Y F,Zhang Y B. Scavenger enzyme activities in subcellular fractions of white clover (Trifolium repens L.) under PEG-induced water stress[J]. Journal of Plant Growth Regulation,2008,27(4):387-393.

      [8]Locato V,de Pinto M C,de Gara L. Different involvement of the mitochondrial,plastidial and cytosolic ascorbate-glutathione redox enzymes in heat shock responses[J]. Physiologia Plantarum,2009,135(3):296-306.

      [9]耿玉英. 中國杜鵑花屬植物[M]. 上海:上??茖W技術出版社,2014.

      [10]龐新華,羅 清,池昭錦. 杜鵑耐熱生理研究進展[J]. 北方園藝,2016(13):192-195.

      [11]張樂華,孫寶騰,周 廣,等. 高溫脅迫下五種杜鵑花屬植物的生理變化及其耐熱性比較[J]. 廣西植物,2011,31(5):651-658.

      [12]周 廣,孫寶騰,張樂華,等. 井岡山杜鵑葉片抗氧化系統(tǒng)對高溫脅迫的響應[J]. 西北植物學報,2010,30(6):1149-1156.

      [13]王凱紅,凌家慧,張樂華,等. 兩種常綠杜鵑亞屬幼苗耐熱性的主成分及隸屬函數(shù)分析[J]. 熱帶亞熱帶植物學報,2011,19(5):412-418.

      [14]Shen H F,Zhao B,Xu J J,et al. Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron[J]. South African Journal of Botany,2017,112:338-345.

      [15]張樂華,周 廣,孫寶騰,等. 高溫脅迫對兩種常綠杜鵑亞屬植物幼苗生理生化特性的影響[J]. 植物科學學報,2011,29(3):362-369.

      [16]劉 宇,宋希強,史佑海,等. 高溫脅迫下海南杜鵑和白花杜鵑的生理響應比較分析[J]. 分子植物育種,2018,16(17):5827-5834.

      [17]Kampfenkel K,van Montagu M,Inzé D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Analytical Biochemistry,1995,225(1):165-167.

      [18]李 玲. 植物生理學模塊實驗指導[M]. 北京:科學出版社,2009.

      [19]湯紹虎,羅 充. 植物生理學實驗教程[M]. 重慶:西南師范大學出版社,2012.

      [20]李忠光,龔 明. 植物生理學綜合性和設計性實驗教程[M]. 武漢:華中科技大學出版社,2014.

      [21]Mittler R. Oxidative stress,antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9):405-410.

      [22]李小玲,雒玲玲,華智銳. 高溫脅迫下高山杜鵑的生理生化響應[J]. 西北農(nóng)業(yè)學報,2018,27(2):253-259.

      [23]耿興敏,肖麗燕,趙 暉,等. H2O2預處理及高溫脅迫下杜鵑葉片活性氧及抗氧化酶亞細胞定位分析[J]. 西北植物學報,2019,39(5):791-800.

      [24]閆圓圓,曾愛松,宋立曉,等. 結球甘藍幼苗耐熱性鑒定方法及耐熱生理[J]. 江蘇農(nóng)業(yè)學報,2016,32(4):885-890.

      [25]賈志國. 仙客來耐熱性研究[D]. 保定:河北農(nóng)業(yè)大學,2005.

      [26]申惠翡,趙 冰. 杜鵑花品種耐熱性評價及其生理機制研究[J]. 植物生理學報,2018,54(2):335-345.

      [27]Tan M P,Lu J,Zhang A Y,et al. The distribution and cooperation of antioxidant (Iso)enzymes and antioxidants in different subcellular compartments in maize leaves during water stress[J]. Journal of Plant Growth Regulation,2011,30(3):255-271.

      [28]于 飛. 低溫脅迫下圓柏屬植物抗氧化系統(tǒng)在葉片中的亞細胞定位研究[D]. 蘭州:蘭州交通大學,2013.

      [29]黃志明,陳 宇,吳晶晶,等. 硝普鈉對低溫脅迫下枇杷幼果線粒體AsA-GSH循環(huán)代謝的影響[J]. 熱帶作物學報,2011,32(8):1469-1474.

      [30]孫海平,汪曉峰. PEG處理對種子線粒體中抗壞血酸-谷胱甘肽循環(huán)的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2009(6):135-136,138.

      [31]Gu K,Geng X M,Yue Y,et al. Contribution of keeping more stable anatomical structure under high temperature to heat resistance of Rhododendron seedlings[J]. Journal of Faculty of Agriculture,Kyushu University,2016,61(2):273-279.

      猜你喜歡
      高溫脅迫抗壞血酸杜鵑
      杜鵑紅
      心聲歌刊(2021年3期)2021-08-05 07:43:52
      杜鵑
      百里杜鵑百里歌
      民族音樂(2018年5期)2018-11-17 08:20:00
      百里杜鵑
      高溫脅迫對楊樹保護酶活性的影響
      抗壞血酸的電化學研究
      高效液相色譜法同時測定水果蔬菜中L-抗壞血酸、D-異抗壞血酸、脫氫抗壞血酸及總維生素C的含量
      外源水楊酸對高溫脅迫下甘藍幼苗生長及生理特性的影響
      高溫脅迫對胭脂花葉片細胞膜透性影響研究
      高溫脅迫下草坪草高羊茅差異表達基因的分子研究
      宜黄县| 永丰县| 丹棱县| 福贡县| 永寿县| 涪陵区| 阜宁县| 读书| 德化县| 宜宾市| 淄博市| 金塔县| 永平县| 防城港市| 运城市| 成都市| 汽车| 神池县| 胶南市| 中卫市| 富裕县| 兴安县| 开阳县| 台北县| 南涧| 新闻| 抚州市| 威信县| 盐源县| 德阳市| 长寿区| 湘潭市| 突泉县| 体育| 靖宇县| 吕梁市| 收藏| 天全县| 安丘市| 南和县| 错那县|