羅 嵐 陳 蕓 2
·綜述與進(jìn)展·
納米脂質(zhì)體在腦膠質(zhì)瘤免疫治療中的應(yīng)用進(jìn)展
羅 嵐1陳 蕓1 2
1.遵義醫(yī)科大學(xué)珠海校區(qū),廣東珠海 519090;2.北京大學(xué)深圳醫(yī)院超聲影像科,廣東深圳 518000
腦膠質(zhì)瘤是一種中樞神經(jīng)系統(tǒng)原發(fā)性腦腫瘤,占所有腦惡性腦瘤的80%,是原發(fā)性腦腫瘤死亡的主要原因。腦膠質(zhì)瘤手術(shù)及放、化療療效欠佳,免疫治療是當(dāng)前較熱點(diǎn)的治療方法之一,但由于血-腦脊液屏障和血腦腫瘤屏障的阻礙,藥物不能到達(dá)中樞神經(jīng)系統(tǒng)或達(dá)不到有效藥物濃度。脂質(zhì)體是由與細(xì)胞膜相同的材料制成的一個微小囊泡,具有包裹多種治療腫瘤和其他疾病藥物的能力。將藥物包裹在納米脂質(zhì)體中可以保護(hù)藥物不被降解,增加到達(dá)腫瘤部位的藥物量,從而達(dá)到提高治療效果,降低藥物不良反應(yīng),提高治療安全性的作用。本文從脂質(zhì)體改善腦膠質(zhì)瘤免疫微環(huán)境、保護(hù)藥物穩(wěn)定性,提高藥物安全性,及協(xié)同其他治療方式提高免疫治療效果方面展開綜述。
脂質(zhì)體;腦膠質(zhì)瘤;免疫治療;免疫微環(huán)境;藥物遞送
腦膠質(zhì)瘤是指起源于腦神經(jīng)膠質(zhì)細(xì)胞的腫瘤,是常見的原發(fā)性顱內(nèi)腫瘤,2021年版世界衛(wèi)生組織中樞神經(jīng)系統(tǒng)腫瘤分類將腦膠質(zhì)瘤分為1~4級,其中1、2級為低級別腦膠質(zhì)瘤,3、4級為高級別腦膠質(zhì)瘤;我國腦膠質(zhì)瘤年發(fā)病率為5~8個/10萬[1]。膠質(zhì)瘤是較嚴(yán)重和危及生命的癌癥類型之一,占原發(fā)性腦腫瘤的40%[2]。在所有腦和其他中樞神經(jīng)系統(tǒng)惡性腫瘤中常見的是膠質(zhì)母細(xì)胞瘤(占48%),其5年相對存活率為5%,惡性膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)疾病導(dǎo)致死亡的第二個原因(僅次于腦卒中)[3,4]。目前確定的兩個危險因素是:暴露于高劑量電離輻射和與罕見綜合征相關(guān)的高外顯率基因遺傳突變。此外,亞硝酸鹽食品、病毒或細(xì)菌感染等致癌因素也可能參與腦膠質(zhì)瘤的發(fā)生[5]。膠質(zhì)瘤的特點(diǎn)是侵襲性嚴(yán)重、腫瘤與周圍正常組織界限模糊、手術(shù)切除困難、復(fù)發(fā)率高[6],所以單靠手術(shù)無法根治,術(shù)后一般均輔以放、化療,但由于血-腦脊液屏障和血腦腫瘤屏障的阻礙、放射劑量限制致其臨床效果不佳,只能適度提高生存率[7]。
免疫療法是腫瘤治療的一場革命[8]。多項研究表明,膠質(zhì)瘤腫瘤微環(huán)境具有免疫抑制性,可調(diào)節(jié)抗腫瘤免疫反應(yīng)[9]。腦腫瘤免疫抑制的機(jī)制主要源于三個關(guān)鍵特征:微環(huán)境中的分泌因子、腫瘤細(xì)胞內(nèi)在特性和免疫抑制性骨髓細(xì)胞的富集[10]。脂質(zhì)體與免疫系統(tǒng)的相互作用涉及到一些器官、組織和細(xì)胞(如巨噬細(xì)胞、T細(xì)胞等),其相互作用可以在非特異性或特異性免疫系統(tǒng)中進(jìn)行,從而避免免疫系統(tǒng)識別、抑制和增強(qiáng)免疫反應(yīng)[11]。Yaghi等[12]證明納米顆粒脂質(zhì)體可以通過靶向細(xì)胞內(nèi)免疫通路來指導(dǎo)治療反應(yīng),目前已有的免疫治療方法包括:免疫檢查點(diǎn)抑制劑、樹突狀疫苗、細(xì)胞因子療法、免疫毒素、病毒治療、腫瘤相關(guān)巨噬細(xì)胞治療等。各種免疫治療方法的應(yīng)用,特別是聯(lián)合治療策略已被證實(shí)對膠質(zhì)瘤有效[13]。
脂質(zhì)體是一個微小的囊泡,由與細(xì)胞膜相同的材料制成。脂質(zhì)體是藥物遞送中應(yīng)用廣泛的藥物載體,因為其具有優(yōu)越的理化性質(zhì)和優(yōu)異的生物相容性,是目前被美國食品藥品監(jiān)督管理局批準(zhǔn)用于臨床的納米顆粒系統(tǒng)[14]。脂質(zhì)體具有可以包裹多種藥物的能力,用于輸送治療癌癥和其他疾病的藥物[15],因為其可以改變相關(guān)組分的特定性質(zhì),如脂質(zhì)組成、電荷、大小、抗原的包封或佐劑等,是用于遞送抗原的重要載體系統(tǒng)[16]。與傳統(tǒng)的藥物遞送系統(tǒng)相比,使用納米顆粒進(jìn)行藥物遞送具有包括高穩(wěn)定性、與靶向相關(guān)的特異性及遞送親水性和疏水性藥物分子的能力的優(yōu)勢[17]。將藥物包裹在納米載體中可以保護(hù)藥物不被降解,增加到達(dá)腫瘤部位的藥物劑量,降低不良反應(yīng)的強(qiáng)度,從而可以達(dá)到臨床治療的安全性[18]。
應(yīng)用脂質(zhì)體可促進(jìn)膠質(zhì)瘤微環(huán)境中的巨噬細(xì)胞極化。Zheng等[19]構(gòu)建的諾基醇-雙硫-銅復(fù)合遞送系統(tǒng)腦靶向脂質(zhì)體,通過調(diào)節(jié)哺乳動物雷帕霉素靶點(diǎn)重塑腫瘤代謝和腫瘤微環(huán)境,促進(jìn)巨噬細(xì)胞極化,觸發(fā)腫瘤細(xì)胞自噬誘導(dǎo)免疫原性細(xì)胞死亡。一種用于靶向神經(jīng)膠質(zhì)瘤微環(huán)境和巨噬細(xì)胞定向免疫治療的白蛋白仿生遞送系統(tǒng)可有效抑制膠質(zhì)瘤細(xì)胞的增殖,并將原腫瘤相關(guān)巨噬細(xì)胞M2極化轉(zhuǎn)變?yōu)榭鼓[瘤M1極化,可解除免疫抑制引發(fā)細(xì)胞毒性T細(xì)胞的免疫應(yīng)答[20]。甘露糖基化脂質(zhì)體可通過提高體外CD86/CD206的表達(dá)來促進(jìn)M0和M2向M1表型的極化,并抑制膠質(zhì)瘤的生長增強(qiáng)免疫調(diào)節(jié)抗腫瘤[21]。給予小鼠脂質(zhì)體60min產(chǎn)生穩(wěn)定的血漿濃度能夠?qū)е翸2樣腫瘤相關(guān)的小膠質(zhì)細(xì)胞/巨噬細(xì)胞復(fù)極化為殺腫瘤的M1表型并激活自然殺傷細(xì)胞向膠質(zhì)母細(xì)胞瘤內(nèi)募集,從而觸發(fā)膠質(zhì)母細(xì)胞瘤和干細(xì)胞的凋亡[22]。紫杉醇負(fù)載的人參皂苷脂質(zhì)體系統(tǒng)通過激活神經(jīng)膠質(zhì)瘤的免疫微環(huán)境,促進(jìn)CD8(+)T細(xì)胞數(shù)量增加的T細(xì)胞免疫反應(yīng),增加M1/M2比例,并減少調(diào)節(jié)性T細(xì)胞和髓源性抑制細(xì)胞,顯著延長老鼠的中位生存時間[23]。
此外,脂質(zhì)體的應(yīng)用可改善腫瘤免疫抑制來提高抗腫瘤效果。Sayour等[24]研究了脂質(zhì)體封裝RNA形成的RNA-NPs,可以在24h內(nèi)激活全身及腫瘤內(nèi)免疫,導(dǎo)致全身器官和腫瘤微環(huán)境中細(xì)胞程序性死亡受體-1、CD86+骨髓細(xì)胞的百分比顯著增加,抗PD-L1單克隆抗體與RNA-NP的同時給藥增加了外周腫瘤內(nèi)PD-1+與CD8+細(xì)胞的百分比,可對單藥治療效果差的免疫“冷”腫瘤模型中引發(fā)協(xié)同抗腫瘤反應(yīng)。新型疫苗制劑 M/CpG-ODN-TRP2-Lipo,其目的是通過減輕腫瘤中的免疫抑制環(huán)境來改善抗腫瘤反應(yīng)[25]。開發(fā)增強(qiáng)和維持T細(xì)胞代謝的生理特性以防止T細(xì)胞失活并促進(jìn)腫瘤微環(huán)境中效應(yīng)器功能的方法是改進(jìn)基于細(xì)胞癌癥免疫療法的迫切需要[26]。Haw等[27]利用疏水作用將脂質(zhì)插入并將功能Tre基團(tuán)引入T細(xì)胞表面,將含有雙環(huán)的脂質(zhì)體阿伐麥布點(diǎn)擊到細(xì)胞表面。阿伐麥布可在循環(huán)和外滲時被抑制在T細(xì)胞表面,局部釋放使T細(xì)胞膜內(nèi)膽固醇濃度增加,誘導(dǎo)T細(xì)胞受體快速聚集,持續(xù)活化T細(xì)胞,達(dá)到免疫治療的作用。
RNA納米顆??捎糜谠隗w內(nèi)激活樹突狀細(xì)胞(dendritic cell,DC),在一項小型I期臨床試驗中,RNA脈沖DC疫苗已被證明是安全的[28]。Sayour等[29]篩選納米脂質(zhì)體可以將RNA封裝成70~200nm的顆粒,保護(hù)核酸不被降解,并將其輸送到淋巴器官的抗原提呈細(xì)胞,激活外周T細(xì)胞來對抗顱內(nèi)惡性腫瘤。脂化色胺以共同遞送喜樹堿和姜黃素的神經(jīng)遞質(zhì)類似物修飾的脂質(zhì)體[30]。Zhang等[31]開發(fā)了一種包裹綠原酸的聚乙二醇脂質(zhì)體,并通過體內(nèi)及體外實(shí)驗驗證聚乙二醇脂質(zhì)體包裹綠原酸可提高綠原酸的體內(nèi)穩(wěn)定性,增強(qiáng)綠原酸的抗腫瘤免疫能力,降低了給藥頻率,提高了患者治療的依從性。體內(nèi)研究結(jié)果表明,該脂質(zhì)體抗腫瘤作用可延長小鼠的存活時間并減少腫瘤體積,脂質(zhì)體提高了生物安全性,且表明其具有主動靶向仿生效果[32]。
已知光動力療法可有效誘導(dǎo)抗腫瘤免疫反應(yīng)。一種可臨床轉(zhuǎn)化適用于光動力療法的納米顆粒,通過增強(qiáng)在腫瘤組織中滲透性和滯留效應(yīng),在近紅外光激活時釋放熱量和單線態(tài)氧來殺傷腫瘤細(xì)胞。在膠質(zhì)母細(xì)胞瘤模型大鼠及在免疫功能低下的裸鼠中驗證表明,納米顆粒與近紅外光照射相結(jié)合可能是通過誘導(dǎo)HSP70表達(dá)可以有效地誘導(dǎo)惡性膠質(zhì)瘤的腫瘤特異性免疫反應(yīng)[33]。研究人員發(fā)現(xiàn),含有紫杉醇(paclitaxel,PTX)的中性粒細(xì)胞(neutrophils,NEs)攜帶脂質(zhì)體可以穿透大腦,腫瘤切除后釋放的炎癥因子引導(dǎo)NEs進(jìn)入大腦,并觸發(fā)NEs釋放脂質(zhì)體傳遞到手術(shù)切除后剩余的腫瘤細(xì)胞,可有效地減緩腫瘤的復(fù)發(fā),顯著提高其存活率,但并不能完全抑制腫瘤的再生[34]。免疫檢查點(diǎn)抑制劑與PTX負(fù)載的脂質(zhì)體包封在多孔ZGO@Tio2內(nèi)部形成ZGO@Tio2@ALP由NEs遞送可穿透血-腦脊液屏障,超聲照射膠質(zhì)瘤部位引發(fā)ZGO@Tio2@ALP產(chǎn)生活性氧,導(dǎo)致脂質(zhì)體對PTX的破壞和抗程序性死亡受體抗體的釋放,殺死腫瘤并引起局部炎癥,進(jìn)而吸引更多的ZGO@Tio2@ALP-NEs遷移到腫瘤部位進(jìn)行增強(qiáng)和持續(xù)治療,使小鼠的存活率從0提高到40%,并可對腫瘤復(fù)發(fā)進(jìn)行長期免疫監(jiān)測[35]。
AL3810是具有極好的vβ3結(jié)合親和性的藥物,負(fù)載Mn修飾脂質(zhì)體,有效下調(diào)表皮生長因子受體蛋白,誘導(dǎo)膠質(zhì)瘤細(xì)胞凋亡,抑制膠質(zhì)瘤;并將AL3810轉(zhuǎn)入膠質(zhì)瘤,在多次給藥后也延長了預(yù)期的壽命。且該脂質(zhì)體免疫原性弱,似乎具有安全有效的臨床可轉(zhuǎn)化性[36]。替莫唑胺輸送到腦膠質(zhì)瘤所在部位受到包括血-腦脊液屏障等的各種阻礙,用一種雙靶向免疫脂質(zhì)體封裝替莫唑胺,研究表明,雙靶向angiopep-2和抗CD133單克隆抗體功能化脂質(zhì)體促進(jìn)了替莫唑胺穿過血-腦脊液屏障,并分別通過脂質(zhì)體介導(dǎo)的胞飲作用和表面標(biāo)志物CD133增強(qiáng)了替莫唑胺向膠質(zhì)瘤干細(xì)胞的傳遞[37]。Jose等[38]開發(fā)了與抗GD2抗體偶聯(lián)的免疫脂質(zhì)體,用于靶向遞送喜樹堿和帕比司他,從體外細(xì)胞毒性測定喜樹堿與帕比司他相互作用,已被證明可增強(qiáng)腦腫瘤的治療效果。
納米脂質(zhì)體的大小和形狀會影響膠質(zhì)瘤治療的效率。膠質(zhì)瘤體積不僅影響腫瘤的穿透,也影響血-腦脊液屏障的靶向和穿透效率。膠質(zhì)瘤的形狀會影響血-腦脊液屏障和細(xì)胞膜間的內(nèi)吞作用。從生物安全的角度考慮,使用腦膠質(zhì)瘤納米顆粒藥物遞送系統(tǒng)應(yīng)可從腦中去除且無免疫原性或生物毒性的可生物降解材料,避免損傷腫瘤臨近正常組織[39]。腦膠質(zhì)瘤的固有特征,包括侵襲性、高增殖指數(shù)、免疫逃逸能力和遺傳異質(zhì)性,以及阻礙藥物輸送的血-腦脊液屏障和血腦腫瘤屏障為開發(fā)應(yīng)用于臨床的治療方案帶來了獨(dú)特的挑戰(zhàn)[40]。
綜上,納米醫(yī)學(xué)的快速發(fā)展為腫瘤的免疫治療提供了新的思路。納米粒子最明顯的優(yōu)勢是其可調(diào)性,表現(xiàn)為它們可以被設(shè)計成各種尺寸、形狀和功能[41]。脂質(zhì)體可以通過靶向分子進(jìn)行修飾或裝載各種藥物,從而實(shí)現(xiàn)靶向遞送到相應(yīng)的位置,提高藥物在體內(nèi)的穩(wěn)定性,且與其他藥物協(xié)同作用,改善腦膠質(zhì)瘤免疫抑制的微環(huán)境來達(dá)到抗腫瘤的作用。在過去幾十年里,脂質(zhì)體已經(jīng)應(yīng)用于全身多個系統(tǒng)的藥物遞送,脂質(zhì)體在腦膠質(zhì)瘤的治療中可以起到輔助作用來增加抗腫瘤作用。
[1] Komori T. The 2021 WHO classification of tumors, 5th edition, central nervous system tumors: A short review[J]. Brain Nerve, 2022, 74(6): 803–809.
[2] Poonan P, Agoni C, Ibrahim MAA, et al. Glioma-targeted therapeutics: Computer-aided drug design prospective[J]. Protein J, 2021, 40(5): 601–655.
[3] GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other NS cancer, 1990-2016: A systematic analysis for the global burden of disease study 2016[J]. Lancet Neurol, 2019, 18(4): 376–393.
[4] Morgan LL. The epidemiology of glioma in adults: a "state of the science" review[J]. Neuro Oncol, 2015, 17(4): 623–624.
[5] 中華人民共和國國家衛(wèi)生健康委員. 腦膠質(zhì)瘤診療指南(2022年版). 2022–04–11.
[6] Li J, Tan T, Zhao L, et al. Recent advancements in liposome-targeting strategies for the treatment of gliomas: A systematic review[J]. ACS Appl Bio Mater, 2020, 3(9): 5500–5528.
[7] Bilmin K, Kujawska T, Grieb P. Sonodynamic therapy for gliomas perspectives and prospects of selective sonosensitization of glioma cells[J]. Cells, 2019, 8(11): 1428.
[8] Xu S, Tang L, Li X, et al. Immunotherapy for glioma: Current management and future application[J]. Cancer Lett, 2020, 476: 1–12.
[9] Gieryng A, Pszczolkowska D, Walentynowicz KA, et al. Immune microenvironment of gliomas[J]. Lab Invest, 2017, 97(5): 498–518.
[10] Kwok D, Okada H. T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment[J]. J Neurooncol, 2020, 147(2): 281–295.
[11]Zahednezhad F, Saadat M, Valizadeh H, et al. Liposome and immune system interplay: Challenges and potentials[J]. J Control Release, 2019, 305: 194–209.
[12] Yaghi NK, Wei J, Hashimoto Y, et al. Immune modulatory nanoparticle therapeutics for intracerebral glioma[J]. Neuro Oncol, 2017, 19(3): 372–382.
[13] Yang P, Wang Y, Peng X, et al. Management and survival rates in patients with glioma in China (2004-2010): A retrospective study from a single-institution[J]. J Neurooncol, 2013, 113(2): 259–266.
[14] Almeida B, Nag OK, Rogers KE, et al. Recent progress in bioconjugation strategies for liposome-mediated drug delivery[J]. Molecules, 2020, 25(23): 5672.
[15] Daraee H, Etemadi A, Kouhi M, et al. Application of liposomes in medicine and drug delivery[J]. Artif Cells Nanomed Biotechnol, 2016, 44(1): 381–391.
[16] Zamani P, Momtazi AA, Nik ME, et al. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy[J]. J Cell Physiol, 2018, 233(7): 5189–5199.
[17] Petros RA, De Simone JM. Strategies in the design of nanoparticles for therapeutic applications[J]. Nat Rev Drug Discov, 2010, 9(8): 615–627.
[18] Bozzato E, Bastiancich C, Préat V. Nanomedicine: A useful tool against glioma stem cells[J]. Cancers (Basel), 2020, 13(1): 9.
[19] Zheng Z, Zhang J, Jiang J, et al. Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery[J]. J Immunother Cancer, 2020, 8(2): e000207.
[20] Zhao P, Wang Y, Kang X, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy[J]. Chem Sci, 2018, 9(10): 2674–2689.
[21] Ye J, Yang Y, Dong W, et al. Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages[J]. Int J Nanomedicine, 2019, 14: 3203–3220.
[22] Mukherjee S, Baidoo JNE, Sampat S, et al. Liposomal Tri Curin, a synergistic combination of curcumin, epicatechin gallate and resveratrol, repolarizes tumor-associated microglia/macrophages, and eliminates glioblastoma (GBM) and GBM stem cells[J]. Molecules, 2018, 23(1): 201.
[23] Zhu Y, Liang J, Gao C, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy[J]. J Control Release, 2021, 330: 641–657.
[24] Sayour EJ, Grippin A, De Leon G, et al. Personalized tumor RNA loaded lipid-nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy[J]. Nano Lett, 2018, 18(10): 6195–6206.
[25] Lai C, Duan S, Ye F, et al. The enhanced antitumor- specific immune response with mannose-and CpG- ODN-coated liposomes delivering TRP2 peptide[J]. Theranostics, 2018, 8(6): 1723–1739.
[26]Christofides A, Tijaro-Ovalle NM, Boussiotis VA. Commentary on: Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy[J]. Immunometabolism, 2021, 3(2): e210016.
[27] Hao M, Hou S, Li W, et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy[J]. Sci Transl Med, 2020, 12(571): eaaz6667.
[28] Melnick K, Dastmalchi F, Mitchell D, et al. Contemporary RNA therapeutics for glioblastoma[J]. Neuromolecular Med, 2022, 24(1): 8–12.
[29] Sayour EJ, De Leon G, Pham C, et al. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles[J]. Oncoimmunology, 2016, 6(1): e1256527.
[30] Wang Z, Wang X, Yu H, et al. Glioma-targeted multifunctional nanoparticles to co-deliver camptothecin and curcumin for enhanced chemo-immunotherapy[J]. Biomater Sci, 2022, 10(5): 1292–1303.
[31] Zhang Y, Yang Y, Ye J, et al. Construction of chlorogenic acid-containing liposomes with prolonged antitumor immunity based on T cell regulation[J]. Sci China Life Sci, 2021, 64(7): 1097–1115.
[32] Li J, Zeng H, You Y, et al. Active targeting of orthotopic glioma using biomimetic liposomes co-loaded elemene and cabazitaxel modified by transferritin[J]. J Nanobiotechnology, 2021, 19(1): 289.
[33] Shibata S, Shinozaki N, Suganami A, et al. Photo- immune therapy with liposomally formulated phospholipid-conjugated indocyanine green induces specific antitumor responses with heat shock protein-70 expression in a glioblastoma model[J]. Oncotarget, 2019, 10(2): 175–183.
[34] Xue J, Zhao Z, Zhang L, et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12(7): 692–700.
[35] Li Y, Teng X, Wang Y, et al. Neutrophil delivered hollow titania covered persistent luminescent nanosensitizer for ultrosound augmented chemo/immuno glioblastoma therapy[J]. Adv Sci (Weinh), 2021, 8(17): e2004381.
[36] Li J, Lu J, Guo H, et al. A pentapeptide enabled AL3810 liposome-based glioma-targeted therapy with immune opsonic effect attenuated[J]. Acta Pharm Sin B, 2021, 11(1): 283–299.
[37] Kim JS, Shin DH, Kim JS. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells[J]. J Control Release, 2018, 269: 245–257.
[38] Jose G, Lu YJ, Hung JT, et al. Co-delivery of CPT-11 and panobinostat with anti-GD2 antibody conjugated immunoliposomes for targeted combination chemotherapy[J]. Cancers (Basel), 2020, 12(11): 3211.
[39] Li J, Zhao J, Tan T, et al. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review[J]. Int J Nanomedicine, 2022, 15: 2563–2582.
[40] Raj D, Agrawal P, Gaitsch H, et al. Pharmacological strategies for improving the prognosis of glioblastoma[J]. Expert Opin Pharmacother, 2021, 22(15): 2019–2031.
[41] Yang M, Li J, Gu P, et al. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment[J]. Bioact Mater, 2020, 6(7): 1973–1987.
深圳市“醫(yī)療衛(wèi)生三名工程”項目(SZSM202111011)
陳蕓,電子信箱:chenyun6308@139.com
(2022–08–05)
(2022–10–10)
R973.4
A
1673–9701(2022)36–0120–04