張祉靖,喬鈺,孫宇晨,雷蕾
表觀“閱讀器”BET蛋白家族對(duì)哺乳動(dòng)物發(fā)育和iPSC重編程的調(diào)控
張祉靖,喬鈺,孫宇晨,雷蕾
哈爾濱醫(yī)科大學(xué)組織學(xué)與胚胎學(xué)教研室,哈爾濱 150081
溴結(jié)構(gòu)域和超末端結(jié)構(gòu)域(bromodomain and extra-terminal, BET)蛋白家族作為表觀“閱讀器”,在哺乳動(dòng)物發(fā)育過程中起著至關(guān)重要的作用。其家族內(nèi)的各成員通過識(shí)別各種表觀修飾并募集相應(yīng)的功能復(fù)合物,對(duì)相關(guān)基因進(jìn)行精密調(diào)控,促使早期胚胎向特定方向分化和發(fā)育。另外,隨著誘導(dǎo)性多潛能干細(xì)胞(induced pluripotent stem cell, iPSC)重編程技術(shù)發(fā)展,越來(lái)越多的研究發(fā)現(xiàn)BET蛋白家族在體細(xì)胞重編程中可能也占據(jù)著核心地位。本文總結(jié)了BET蛋白家族在哺乳動(dòng)物發(fā)育和iPSC重編程中的作用,并對(duì)BET家族調(diào)控重編程的新機(jī)制進(jìn)行了展望。
BET蛋白;哺乳動(dòng)物發(fā)育;誘導(dǎo)性多潛能干細(xì)胞
哺乳動(dòng)物的發(fā)育始于精子和卵子結(jié)合,兩個(gè)高度分化的生殖細(xì)胞結(jié)合成為具有全能性的合子[1]。隨后一系列發(fā)育的關(guān)鍵事件相繼發(fā)生,包括卵母細(xì)胞活化、母源–合子轉(zhuǎn)換(maternal-to-zygotic transition, MZT)、合子基因激活(zygotic gene activation, ZGA)、第一次細(xì)胞命運(yùn)決定和譜系特異性分化等[2~6]。這些復(fù)雜且重要的事件是在精密“網(wǎng)絡(luò)”的調(diào)控下快速且有序地發(fā)生,而表觀調(diào)控正是這一“網(wǎng)絡(luò)”中的關(guān)鍵內(nèi)容。在其調(diào)控下各基因依次開放或關(guān)閉,使胚胎朝著特定方向生長(zhǎng)發(fā)育。通常將參與表觀調(diào)控的關(guān)鍵蛋白稱為“編輯器”、“清除器”和“閱讀器”?!熬庉嬈鳌焙汀扒宄鳌币话阖?fù)責(zé)沉積和去除翻譯后修飾(post-translation modification, PTMs),而“閱讀器”則負(fù)責(zé)識(shí)別這些標(biāo)記[7]。含溴結(jié)構(gòu)域(bromodomains, BDs)的蛋白分子是“閱讀器”中最具代表性的一類,能夠快速且特異性的識(shí)別基因組中乙?;奈稽c(diǎn)[8]。
目前將含有BDs的61種分子分為8個(gè)不同的家族[9],溴結(jié)構(gòu)域和超末端結(jié)構(gòu)域(bromodomain and extra-terminal, BET)蛋白家族屬于BDs家族第二類亞家族,其成員包括:BRD2、BRD3、BRD4以及BRDT。BET蛋白家族通過BDs能夠高效且準(zhǔn)確地識(shí)別并結(jié)合其天然配體—乙?;疕3、H4,并發(fā)揮不同的功能來(lái)維持胚胎正常發(fā)育。除此之外,目前越來(lái)越多的證據(jù)提示在誘導(dǎo)性多潛能干細(xì)胞(induced pluripotent stem cell, iPSC)重編程中,BET蛋白家族可能也以類似的機(jī)制促進(jìn)重編程的進(jìn)行。iPSC重編程自Yamanaka首次提出以來(lái),經(jīng)歷了迅猛發(fā)展,目前已快速地應(yīng)用于多個(gè)研究領(lǐng)域。然而,其中詳細(xì)的機(jī)制至今還不是十分清楚。因此,本文對(duì)BET蛋白家族在胚胎發(fā)育和iPSC重編程中的功能進(jìn)行了綜述,以期幫助人們更加深入地理解BET蛋白家族的功能和作用,并為BET蛋白家族在iPSC重編程中的研究帶來(lái)新的啟示。
表觀遺傳的概念最早由奧地利發(fā)育生物學(xué)家Conrad Waddington提出,主要用于描述基因及其產(chǎn)物間的相互作用,以及對(duì)生物表型的影響[10]。后來(lái),這一概念擴(kuò)展為在不改變DNA序列的情況下,基因表達(dá)的可遺傳變化[11]。位于組蛋白上的各種PTMs是表觀遺傳學(xué)研究的重要內(nèi)容[12]。幾乎每一種組蛋白修飾,即“組蛋白密碼”,都可以影響染色質(zhì)結(jié)構(gòu)。這些修飾相互交織,共同決定染色質(zhì)的整體狀態(tài)[8]。
組蛋白的PTMs在維持基因組完整性、調(diào)控轉(zhuǎn)錄以及形成表觀記憶等方面發(fā)揮重要作用[13]。組蛋白上的PTMs大體分為兩類:位于球狀結(jié)構(gòu)域的修飾和位于組蛋白尾的修飾[14,15]。球狀結(jié)構(gòu)域的PTMs能夠直接影響基因的轉(zhuǎn)錄和核小體的結(jié)構(gòu)。例如,核心組蛋白上的乙酰化修飾能夠減弱組蛋白和DNA間的相互作用,促進(jìn)核小體解離[16]。位于組蛋白尾的PTMs則依賴表觀“閱讀器”識(shí)別并募集各種復(fù)合物來(lái)發(fā)揮作用[17,18]。而表觀“閱讀器”通過特異性識(shí)別并結(jié)合各種PTMs,使自身能夠更加精準(zhǔn)并持久地靶向、維持和調(diào)控染色體修飾,同時(shí)幫助其他調(diào)控蛋白到達(dá)特定的基因位點(diǎn)并發(fā)揮相應(yīng)作用。依靠這些功能和特征,表觀“閱讀器”調(diào)控著眾多基因的表達(dá)。例如,DNA上組蛋白H3K9三甲基化(H3K9me3)形成后,人源沉默中心(human silencing hub, HUSH)復(fù)合物識(shí)別并與之結(jié)合。隨后,HUSH進(jìn)一步募集甲基轉(zhuǎn)移酶SETDB1,促進(jìn)H3K9me3沉積,從而抑制靶基因的表達(dá)[19,20]。表觀“閱讀器”具有不同結(jié)構(gòu)特征,但每種蛋白質(zhì)都至少含有一個(gè)或多個(gè)在進(jìn)化上保守的效應(yīng)元件。通過這些效應(yīng)元件,它們能夠識(shí)別基因組上的各種共價(jià)修飾[8]。在過去幾十年里,通過生物化學(xué)和生物物理學(xué)分析已經(jīng)發(fā)現(xiàn)了大量的這類元件,它們特異性結(jié)合組蛋白PTMs并發(fā)揮相應(yīng)作用[21]。例如:BDs、PHD finger結(jié)構(gòu)域、PWWP結(jié)構(gòu)域、Tudor結(jié)構(gòu)域等。其中,BDs是唯一能夠特異性識(shí)別e-N乙酰的賴氨酸位點(diǎn)的效應(yīng)元件[8]。
BDs最初是在染色體相關(guān)蛋白(例如組蛋白乙酰轉(zhuǎn)移酶),以及某些在轉(zhuǎn)錄活化和染色質(zhì)重塑中起關(guān)鍵作用的重塑復(fù)合物中發(fā)現(xiàn)的[22]。BDs結(jié)構(gòu)保守,共含有120個(gè)氨基酸,具有4個(gè)左手α螺旋(αZ、αA、αB和αC)和2個(gè)分別連接αZ和αA (ZA環(huán))以及αB和αC (BC環(huán))的loop環(huán)。作為BDs亞家族,BET蛋白家族擁有兩個(gè)串聯(lián)的BDs、一個(gè)超末端結(jié)構(gòu)域(ET)以及僅BRD4和BRDT末端含有的羧基區(qū)域(carboxyl-terminal repeat domain, CTD)[8](圖1)。BET蛋白家族利用BDs識(shí)別并結(jié)合組蛋白上乙?;馁嚢彼?,調(diào)控眾多基因的表達(dá)和功能,作用于哺乳動(dòng)物的生長(zhǎng)發(fā)育。
BRDT僅在睪丸組織中表達(dá),調(diào)控精原細(xì)胞的減數(shù)分裂及其后續(xù)的基因組重組。在敲除基因的雄性小鼠中,精子數(shù)量顯著減少同時(shí)伴有異常形態(tài)[23,24]。BRDT是BET蛋白家族中唯一擁有與BRD4相似CTD的蛋白[25],BRDT能夠和BRD4一樣募集正性轉(zhuǎn)錄延伸因子b (positive transcription elongation factor b, P-TEFb),促進(jìn)多種生精基因的表達(dá)(圖2A)。因此,也將BRDT稱為“BRD4樣的組織特異性類似物”[26~29]。減數(shù)分裂開始后,BRDT識(shí)別并結(jié)合睪丸特異性基因的轉(zhuǎn)錄起始位點(diǎn)(transcription start site, TSS)區(qū)域。通過募集P-TEFb,推動(dòng)靶基因進(jìn)入轉(zhuǎn)錄延伸階段,促進(jìn)基因表達(dá)[27]。之后,精子為了達(dá)到受精的目的,會(huì)進(jìn)行結(jié)構(gòu)上的特化,例如過渡蛋白(transition protein, TP)和魚精蛋白替換組蛋白[30]。BRDT識(shí)別并結(jié)合到高乙酰化的組蛋白上,隨后相鄰BRDT分子“擠壓”染色體,促使組蛋白脫落并被過渡蛋白和魚精蛋白替換[27]。BRDT通過輔助魚精蛋白對(duì)組蛋白替換,促進(jìn)精子細(xì)胞核中染色體濃縮,增強(qiáng)精子的靈活性并保護(hù)內(nèi)部遺傳物質(zhì)。
BRD4是BET家族蛋白中研究最清晰的一個(gè)成員。BRD4含有1362 aa,屬于長(zhǎng)亞型,其結(jié)構(gòu)主要包括2個(gè)BDs、1個(gè)CTD和1個(gè)ET (圖1)。通過可變剪接還可產(chǎn)生1個(gè)722 aa的短亞型a。該亞型保留了2個(gè)BDs,但缺少CTD。目前還發(fā)現(xiàn)第3種亞型,即短亞型b,其結(jié)構(gòu)類似于短亞型a,但另外含有76 aa的CTD[31,32]?;蛟缭谥踩肭芭咛ブ芯烷_始表達(dá),維持著早期胚胎正常的結(jié)構(gòu)和功能[33~35]。在植入前胚胎中抑制BRD4后,盡管仍然能夠發(fā)育到囊胚但表現(xiàn)出嚴(yán)重的發(fā)育遲緩[33]。在植入后胚胎中,基因完全敲除小鼠胚胎,由于內(nèi)細(xì)胞團(tuán)(inner cell mass, ICM)的退化,導(dǎo)致胚胎在E6天時(shí)死亡;半敲除小鼠胚胎雖然可以出生,但在出生前后均表現(xiàn)出嚴(yán)重的生長(zhǎng)缺陷,同時(shí)伴有顱骨畸形、皮下脂肪缺失、白內(nèi)障等器官病變[34]。
最初發(fā)現(xiàn)BRD2時(shí),認(rèn)為其是人類細(xì)胞中的核激酶,通過與多個(gè)核轉(zhuǎn)錄因子E2Fs結(jié)合調(diào)控細(xì)胞周期基因表達(dá)[36~38]。目前發(fā)現(xiàn)BRD2還可以調(diào)控胚胎發(fā)育和神經(jīng)系統(tǒng)發(fā)育相關(guān)基因。在E9.5天小鼠胚胎的前腦、中腦以及后腦中均可檢測(cè)到高水平的BRD2[39]。而基因缺失的小鼠胚胎表現(xiàn)出神經(jīng)管閉合缺陷、神經(jīng)系統(tǒng)發(fā)育遲緩以及細(xì)胞增殖能力下降等缺陷,并在E12.5天左右死亡[40]。BRD2通過與E2Fs相互作用,還可以對(duì)細(xì)胞周期基因、和進(jìn)行調(diào)控,促進(jìn)G1期向S期過渡[41]。作為BET家族成員,BRD2和BRD4在功能上具有相似之處。LeRoy等[42]研究發(fā)現(xiàn),BRD2通過引導(dǎo)RNA聚合酶II(Pol II)定位于高乙酰化的轉(zhuǎn)錄位點(diǎn),也可以對(duì)mRNA、microRNA的轉(zhuǎn)錄進(jìn)行調(diào)控[42](圖2B)。
圖1 BET蛋白家族4個(gè)主要成員的分子結(jié)構(gòu)
數(shù)字代表每個(gè)已知結(jié)構(gòu)域的氨基酸位點(diǎn)。BD1、BD2為兩個(gè)溴結(jié)構(gòu)域,ET為超末端家族,CTD代表BRD4和BRDT末端的羧基區(qū)域。
在BET蛋白家族成員中,BRD2和BRD3具有更高的相似性。都通過不依賴P-TEFb的方式與Pol II結(jié)合,調(diào)控胚胎干細(xì)胞(embryonic stem cell, ESC)相關(guān)基因的表達(dá)[39,43](圖2B)。在造血系統(tǒng)發(fā)育過程中,BRD3與GATA1結(jié)合,并被募集到多個(gè)紅系成熟相關(guān)基因上,促進(jìn)紅系分化[43]。干擾BRD3和GATA1結(jié)合后,不僅會(huì)顯著降低這兩種蛋白在紅系基因上的富集,還會(huì)影響GATA1介導(dǎo)的紅系成熟[44]。然而,大量負(fù)向轉(zhuǎn)錄因子和染色體重構(gòu)蛋白,如核小體重構(gòu)復(fù)合體(nucleosome remodeling complex, NuRD),也會(huì)優(yōu)先同BRD3進(jìn)行結(jié)合[43]。BRD3與NuRD間的相互作用,甚至對(duì)GATA1介導(dǎo)的紅系成熟也會(huì)產(chǎn)生影響[44,45]。因此,BRD3雖然能夠和GATA1一起促進(jìn)造血系統(tǒng)發(fā)育,但也可以與許多負(fù)向調(diào)控因子結(jié)合,干擾GATA1介導(dǎo)的紅系發(fā)育。綜上所述,BRD3在胚胎發(fā)育過程中具有復(fù)雜的功能,一方面維持著造血系統(tǒng)的正常發(fā)育;另一方面,可能也干擾多種基因的表達(dá),抑制細(xì)胞增殖。
作為表觀“閱讀器”,BRD4通過BDs識(shí)別并結(jié)合乙?;稽c(diǎn)。隨后,BRD4發(fā)揮組蛋白乙酰轉(zhuǎn)移酶(HAT)活性,與其他表觀修飾酶一起促進(jìn)核小體解聚[46,47]。隨著核小體解離,BRD4進(jìn)入到“開放”的染色質(zhì)中,同增強(qiáng)子、啟動(dòng)子、TSS處乙?;慕M蛋白結(jié)合并發(fā)揮支架作用。在這些組蛋白位點(diǎn),BRD4募集大量功能復(fù)合物,例如轉(zhuǎn)錄中介體(mediator, MED)、轉(zhuǎn)錄因子以及Pol II等,進(jìn)而維持基因的正常表達(dá)[48,49]。BRD4利用CTD結(jié)合P-TEFb,磷酸化Pol II的第五位絲氨酸(Ser5),促進(jìn)轉(zhuǎn)錄啟動(dòng)[50,51]。在轉(zhuǎn)錄因子的輔助下,Pol II向TSS移動(dòng)。到達(dá)TSS下游約100 bp處時(shí),停滯于此處[52,53]。此時(shí),BRD4結(jié)合并活化P-TEFb,磷酸化Pol II的第二位絲氨酸(Ser2),促進(jìn)Pol II釋放,使轉(zhuǎn)錄進(jìn)入延伸階段[53](圖2A)。BRD4以這樣的方式活化多能性基因,維持ESCs的自我更新能力和多能性。相反,干擾表達(dá)后,小鼠植入前胚胎中以為代表的多能性基因表達(dá)顯著下降。這些干擾了表達(dá)的胚胎盡管仍可以發(fā)育到囊胚且保持較為正常的形態(tài)特征,但胚胎發(fā)育遲緩且ICM的大小較正常顯著縮小[33]。總之,BRD4對(duì)多能性基因的轉(zhuǎn)錄具有強(qiáng)大的調(diào)控作用,對(duì)維持哺乳動(dòng)物胚胎的正常發(fā)育不可或缺。
圖2 BET蛋白推進(jìn)轉(zhuǎn)錄模式圖
A:BRD4和BRDT推進(jìn)轉(zhuǎn)錄模式圖。當(dāng)Pol II在TSS附近暫停后,BRD4和BRDT依靠分子末端的羧基結(jié)構(gòu)域(CTD)募集并結(jié)合正性轉(zhuǎn)錄延長(zhǎng)因子b (P-TEFb),促進(jìn)Pol II中第二位絲氨酸(Ser2)磷酸化。與此同時(shí),BRD4還可以與超級(jí)增強(qiáng)子(super enhancer, SEs)結(jié)合,并募集轉(zhuǎn)錄中介體(mediator, MED)和P-TEFb的催化亞基CDK9。BRD4和BRDT通過以上方式推動(dòng)Pol II釋放,并使轉(zhuǎn)錄進(jìn)入延長(zhǎng)階段;B:BRD2和BRD3推進(jìn)轉(zhuǎn)錄模式圖。BRD2和BRD3作為Pol II伴侶,識(shí)別基因組上乙?;慕M蛋白并幫助Pol II結(jié)合到基因組上促進(jìn)轉(zhuǎn)錄。
BRD4還可以結(jié)合在基因組中的一些“特殊區(qū)域”上。這些區(qū)域跨越的長(zhǎng)度以及含有的轉(zhuǎn)錄因子密度遠(yuǎn)超一般增強(qiáng)子。一般增強(qiáng)子長(zhǎng)度約為100 bp,而這些區(qū)域增強(qiáng)子的長(zhǎng)度可達(dá)到近50 kb。因此,將這些功能遠(yuǎn)超一般增強(qiáng)子的“特殊區(qū)域”稱作超級(jí)增強(qiáng)子(super enhancer, SEs)[54]。SEs內(nèi)部含有大量由BRD4、Mediator、轉(zhuǎn)錄因子、乙?;M蛋白等成員組裝而成的增強(qiáng)子元件,因此可以輔助靶基因產(chǎn)生更高的轉(zhuǎn)錄水平[55]。Whyte等[56]最初在ESC中的多能性基因上發(fā)現(xiàn)SEs結(jié)構(gòu),這些SEs通過促進(jìn)多能性基因表達(dá),維持ESC的干性特征。
在ESC中,BRD4結(jié)合到多能性基因(例如和)的SEs內(nèi)部,發(fā)揮“支架”作用并募集Mediator來(lái)輔助干性基因的轉(zhuǎn)錄。除此之外,當(dāng)BRD4位于SEs中時(shí),它還可以募集并結(jié)合P-TEFb的成員—細(xì)胞周期依賴蛋白激酶9 (CDK9),促進(jìn)靶基因進(jìn)入轉(zhuǎn)錄延伸階段[57,58](圖2A)。當(dāng)抑制BRD4后,其不再同核心多能性基因的SEs結(jié)合,造成大量Mediator (例如MED1和MED12)無(wú)法結(jié)合到SEs上,引起多能性基因轉(zhuǎn)錄受限。除此之外,抑制BRD4后,ChIP分析還發(fā)現(xiàn),啟動(dòng)子和SEs中的CDK9大量丟失,Pol II在TSS區(qū)域停滯,基因體中的Pol II數(shù)量顯著下降。此時(shí),這些多能性基因無(wú)法進(jìn)入到轉(zhuǎn)錄延伸階段,最終導(dǎo)致ESC干性丟失,且易于分化[57]。
BRD4通過促進(jìn)早期胚胎細(xì)胞有絲分裂來(lái)維持胚胎正常的體積和重量。在有絲分裂過程中,大量基因被暫時(shí)沉默。此時(shí),轉(zhuǎn)錄因子從染色體上解離,而BRD4是少數(shù)仍可與染色體結(jié)合的蛋白分子。在小鼠胚胎成纖維細(xì)胞(mouse embryonic fibro-blasts, MEF)有絲分裂中,BRD4識(shí)別并結(jié)合M/G1期基因[59,60],誘導(dǎo)BRD4結(jié)合區(qū)域周圍的染色體解聚,促進(jìn)DNA復(fù)制,推動(dòng)細(xì)胞從G1期進(jìn)入M期[61]。當(dāng)細(xì)胞進(jìn)入有絲分裂后,基因轉(zhuǎn)錄被關(guān)閉,但大量的H4K5ac作為有絲分裂后重建轉(zhuǎn)錄的基因“標(biāo)簽”而被保留下來(lái)。有絲分裂結(jié)束后,子代細(xì)胞中的BRD4識(shí)別并結(jié)合基因組上的H4K5ac,促使結(jié)合的基因位點(diǎn)“開放”。之后BRD4進(jìn)一步募集相應(yīng)的轉(zhuǎn)錄復(fù)合物,例如CDK9、Pol II等,使靶基因以更高效的水平恢復(fù)轉(zhuǎn)錄[26]。因此,該過程也被稱為BRD4介導(dǎo)的“轉(zhuǎn)錄記憶”。
在其他一些細(xì)胞系中,例如HeLa細(xì)胞以及NIH3T3細(xì)胞,還發(fā)現(xiàn)BRD4通過負(fù)向調(diào)控SPA-1促進(jìn)G2期向M期的轉(zhuǎn)變,或者促進(jìn)Aurora B激酶的表達(dá)來(lái)推動(dòng)有絲分裂后期染色體分離和胞質(zhì)分裂[62,63]。在HeLa細(xì)胞和NIH3T3細(xì)胞中敲除基因后,不僅會(huì)使細(xì)胞阻滯在G1期,還導(dǎo)致細(xì)胞衰老和凋亡[34,64,65]。雖然該機(jī)制在ESC中還未得到驗(yàn)證,但當(dāng)部分敲除基因后,小鼠胚胎在E10天時(shí),其平均體重顯著低于野生型小鼠,多種器官的重量和MEF增殖率也顯著降低和下降[34]。表明BRD4可以通過調(diào)控有絲分裂,維持胚胎正常的生長(zhǎng)發(fā)育。
BET蛋白家族對(duì)生物體的生長(zhǎng)發(fā)育具有廣泛的調(diào)控作用,iPSC重編程作為正常分化發(fā)育的一個(gè)逆向過程,BET蛋白在該過程中可能也占據(jù)著重要地位。iPSC由Yamanaka于2006年提出,通過過表達(dá)、、、(OSKM)可以實(shí)現(xiàn)將體細(xì)胞重編程為iPSC。然而從體細(xì)胞跨越到iPSC不是一蹴而就的,其內(nèi)部包含著多個(gè)事件依次有序的發(fā)生以及不同分子間的相互作用[66,67]。目前對(duì)于BET蛋白家族在iPSC重編程中的研究還處于探索階段,且主要局限于BRD4。在ESC中,BRD4介導(dǎo)的Pol II釋放對(duì)多能性基因的轉(zhuǎn)錄至關(guān)重要[48]。在OSKM誘導(dǎo)的重編程中也存在類似機(jī)制,體細(xì)胞重編程依賴著眾多多能性基因的重新表達(dá),例如、、、等。這些多能性基因在轉(zhuǎn)錄過程中,Pol II同樣會(huì)在TSS附近停滯。BRD4通過CTD募集并活化P-TEFb,促進(jìn)Pol II釋放,有利于多能性基因表達(dá)[68]。當(dāng)在重編程晚期使用JQ1 (BET蛋白家族抑制劑)抑制BRD4后,具有完全多能性的iPSC克隆數(shù)量顯著減少,同時(shí)伴有多能性基因表達(dá)下降[68]。相反,在MEF中過表達(dá)BRD4后,iPSC的建系效率明顯增加,表明BRD4調(diào)控著iPSC重編程的正常進(jìn)行。
除了促進(jìn)Pol II釋放,BRD4通過與眾多ESC特異性基因的SEs (ES-SEs)結(jié)合也能夠推動(dòng)重編程的進(jìn)行。在C/EBPα和OSKM介導(dǎo)的高效重編程中,BRD4、MED1、CDK9的表達(dá)水平顯著升高,并形成BRD4-MED1-CDK9復(fù)合物[69]。C/EBPα將其募集到ES-SEs上,通過促進(jìn)染色體重構(gòu)、推動(dòng)Pol II釋放等作用,增強(qiáng)多能性基因轉(zhuǎn)錄并促進(jìn)iPSC重編程[69]。相反,如果在重編程前用JQ1和C/EBPα同時(shí)處理細(xì)胞,或在隨后的重編程中同時(shí)添加OSKM和JQ1,重編程效率將顯著降低[69]。其原因可能是JQ1使BRD4從染色體上脫落,導(dǎo)致C/EBPα無(wú)法順利將BRD4募集到多能性基因上。
除了上調(diào)多能性基因的表達(dá),BRD4可能還通過抑制譜系分化基因來(lái)維持多能性。受BRD4調(diào)控的不僅能夠維持多能性,還可以阻遏神經(jīng)外胚層基因的表達(dá),將ESC維持在未分化狀態(tài)[70]。抑制BRD4后,表達(dá)相應(yīng)下調(diào),此時(shí)ESCs易于向神經(jīng)外胚層細(xì)胞分化。相反,在接受BET抑制劑處理后的ESCs中過表達(dá),可以再次抑制上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)和神經(jīng)外胚層標(biāo)記的誘導(dǎo)[57]。這些結(jié)果表明BRD4一方面維持著多能性基因的表達(dá),另一方面還抑制一些促分化基因或譜系特異性基因的表達(dá),維持ESC的未分化狀態(tài)。敲除基因后,未分化細(xì)胞減少,同時(shí)伴有滋養(yǎng)層標(biāo)志基因和上調(diào)[33]。雖然目前只在ESCs中驗(yàn)證了這一現(xiàn)象,還未在iPSC中得到直接證據(jù),但iPSC和ESCs極為相似,因此我們有理由相信,這可能也是BRD4維持iPSC多能性的潛在機(jī)制。另外,還有研究發(fā)現(xiàn)在重編程早期,通過使用JQ1抑制BET蛋白可以幫助許多體細(xì)胞基因關(guān)閉,從而促進(jìn)重編程效率[71]。然而,目前并無(wú)直接證據(jù)確定是何種BET蛋白調(diào)控這一過程。因此,我們猜測(cè)在iPSC重編程過程中,早期抑制BRD4可以輔助體細(xì)胞基因關(guān)閉,而在中晚期過表達(dá)BRD4則有利于抑制譜系基因轉(zhuǎn)錄,促進(jìn)多能性基因表達(dá),提高重編程效率。
除了BRD4,還發(fā)現(xiàn)其他一些BET蛋白在重編程中也發(fā)揮著重要作用。Yamanaka[72]曾提出重編程只會(huì)發(fā)生在細(xì)胞群體中少數(shù)具有特定傾向的細(xì)胞中,這些具有特定傾向的細(xì)胞被稱為“精英細(xì)胞”。因此,重編程效率的高低一定程度上取決于“精英細(xì)胞”的數(shù)量。BRD3R是BRD3的一個(gè)亞型,在重編程早期階段,BRD3R可以上調(diào)有絲分裂相關(guān)基因的表達(dá),顯著增加“精英細(xì)胞”的數(shù)量從而促進(jìn)重編程[73]。有絲分裂活躍的細(xì)胞具有更高的重編程效率[74,75],可能是因?yàn)樵谟薪z分裂過程中眾多體細(xì)胞相關(guān)轉(zhuǎn)錄因子從染色體上解聚,為多能性轉(zhuǎn)錄因子提供了更多與靶基因結(jié)合的機(jī)會(huì)。BRD3R通過促進(jìn)有絲分裂可能也為相關(guān)轉(zhuǎn)錄因子提供了結(jié)合位點(diǎn),促進(jìn)多能性基因表達(dá)。
BET蛋白家族含有4個(gè)成員:BRD2、BRD3、BRD4和睪丸特異性的BRDT,它們都擁有相似的BDs。通過BDs,BET蛋白識(shí)別并結(jié)合基因組上乙?;稽c(diǎn)。BET蛋白家族具有廣泛的生物學(xué)功能,參與生物體多種不同的生理和病理過程。盡管每個(gè)成員調(diào)控的過程不同,但每種蛋白都發(fā)揮著不可替代的作用。BRD4是目前研究最廣泛的一個(gè)成員,通過多種機(jī)制確保胚胎穩(wěn)定而有序地發(fā)育。當(dāng)BRD4缺失或者功能異常時(shí),將導(dǎo)致胚胎早期致死。除此之外,目前發(fā)現(xiàn)BRD3同rDNA可能也有潛在關(guān)系。核糖體是細(xì)胞蛋白質(zhì)合成的主要場(chǎng)所,其功能依賴于rDNA的表達(dá)。一旦rDNA的表達(dá)受到抑制,會(huì)嚴(yán)重影響蛋白質(zhì)的合成,威脅細(xì)胞的生存和增殖。當(dāng)使用BET抑制劑JQ1后,BRD3同rDNA結(jié)合,抑制rRNA的轉(zhuǎn)錄[43],干擾蛋白質(zhì)合成。Leroy等[43]研究表明BRD3具有抗增殖作用,很可能與其對(duì)rDNA的抑制相關(guān)。BRD3具體是如何調(diào)控哺乳動(dòng)物的胚胎發(fā)育?各通路之間是如相互拮抗或協(xié)同?還需要更多研究。
BRD4可通過促進(jìn)Pol II暫停后釋放、結(jié)合多能性基因的SEs等來(lái)推動(dòng)重編程。但目前并未探究過BRD4是否可以通過調(diào)控細(xì)胞周期來(lái)促進(jìn)重編程。已有研究證實(shí)活躍的有絲分裂能夠有力地推動(dòng)重編程[74,75],且已發(fā)現(xiàn)同為BET蛋白家族成員的BRD3R可以通過活化有絲分裂來(lái)促進(jìn)重編程。那么,同樣具有活化有絲分裂作用的BRD4是否也可以通過這一機(jī)制來(lái)促進(jìn)重編程呢?另外,在許多腫瘤細(xì)胞中發(fā)現(xiàn),上游結(jié)合因子(upstream binding factor 1, UBF)結(jié)合到rDNA上后,會(huì)與LYAR形成復(fù)合物并募集BRD4。通過BRD4的乙?;饔?,促進(jìn)RNA Pol I介導(dǎo)的rDNA轉(zhuǎn)錄[76]。該結(jié)果表明,BRD4除了已知的功能外,其對(duì)rDNA可能也具有調(diào)控作用。本實(shí)驗(yàn)室以往的研究表明,rDNA的轉(zhuǎn)錄活性對(duì)核移植胚胎的早期發(fā)育以及iPSC重編程過程均有重要影響[77,78]。因此,我們猜測(cè)在iPSC誘導(dǎo)過程中,BRD4也許能夠通過活化rDNA來(lái)促進(jìn)重編程過程。對(duì)BET家族在體細(xì)胞重編程中作用的探索不僅對(duì)再生醫(yī)學(xué)、藥物研究等眾多領(lǐng)域的發(fā)展有著重要意義,同時(shí)也為iPSC在臨床上的應(yīng)用奠定基礎(chǔ)。
[1] Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development., 2013, 113(3): 423–432.
[2] Amdani SN, Yeste M, Jones C, Coward K. Sperm factors and oocyte activation: current controversies and consi-derations., 2015, 93(2): 50, 1–8.
[3] Minami N, Suzuki T, Tsukamoto S. Zygotic gene activa-tion and maternal factors in mammals., 2007, 53(4): 707–715.
[4] Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts., 2009, 136(18): 3033– 3042.
[5] Mihajlovi? AI, Bruce AW. The first cell-fate decision of mouse preimplantation embryo development: integrating cell position and polarity., 2017, 7(11): 170210.
[6] Yao CM, Zhang WH, Shuai L. The first cell fate decision in pre-implantation mouse embryos., 2019, 8(2): 51–57.
[7] Zaware N, Zhou MM. Chemical modulators for epige-nome reader domains as emerging epigenetic therapies for cancer and inflammation., 2017, 39: 116–125.
[8] Filippakopoulos P, Knapp S. The bromodomain interaction module., 2012, 586(17): 2692–2704.
[9] Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S. Histone recognition and large-scale structural analysis of the human bromodomain family., 2012, 149(1): 214–231.
[10] Waddington CH. Preliminary notes on the development of the wings in normal and mutant strains of., 1939, 25(7): 299–307.
[11] Holliday R. The inheritance of epigenetic defects., 1987, 238(4824): 163–170.
[12] Soshnev AA, Josefowicz SZ, Allis CD. Greater than the sum of parts: complexity of the dynamic epigenome., 2016, 62(5): 681–694.
[13] Jenuwein T, Allis CD. Translating the histone code., 2001, 293(5532): 1074–1080.
[14] Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression., 2016, 32(1): 42–56.
[15] Villase?or R, Baubec T. Regulatory mechanisms governing chromatin organization and function., 2021, 70: 10–17.
[16] Ura K, Kurumizaka H, Dimitrov S, Almouzni G, Wolffe AP. Histone acetylation: influence on transcription, nu-cleosome mobility and positioning, and linker histone- dependent transcriptional repression., 1997, 16(8): 2096–2107.
[17] Musselman CA, Lalonde ME, C?téJ, Kutateladze TG. Perceiving the epigenetic landscape through histone readers., 2012, 19(12): 1218–1227.
[18] Patel DJ. A structural perspective on readout of epigenetic histone and DNA methylation marks., 2016, 8(3): a018754.
[19] Villase?or R, Pfaendler R, Ambrosi C, Butz S, Giuliani S, Bryan E, Sheahan TW, Gable AL, Schmolka N, Manzo M, Wirz J, Feller C, Von Mering C, Aebersold R, Voigt P, Baubec T. ChromID identifies the protein interactome at chromatin marks., 2020, 38(6): 728–736.
[20] Tchasovnikarova IA, Timms RT, Matheson NJ, Wals K, Antrobus R, G?ttgens B, Dougan G, Dawson MA, Lehner PJ. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells., 2015, 348(6242): 1481–1485.
[21] Taverna SD, Li HT, Ruthenburg AJ, Allis CD, Patel DJ. How chromatin-binding modules interpret histone mo-difications: lessons from professional pocket pickers., 2007, 14(11): 1025–1040.
[22] Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain., 2002, 513(1): 124–128.
[23] Matzuk MM, Mckeown MR, Filippakopoulos P, Li QL, Ma L, Agno JE, Lemieux ME, Picaud S, Yu RN, Qi J, Knapp S, Bradner JE. Small-molecule inhibition of BRDT for male contraception., 2012, 150(4): 673–684.
[24] Berkovits BD, Wolgemuth DJ. The first bromodomain of the testis-specific double bromodomain protein Brdt is required for chromocenter organization that is modulated by genetic background., 2011, 360(2): 358–368.
[25] Bisgrove DA, Mahmoudi T, Henklein P, Verdin E. Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription., 2007, 104(34): 13690–13695.
[26] Zhao R, Nakamura T, Fu Y, Lazar Z, Spector DL. Gene bookmarking accelerates the kinetics of post-mitotic transcriptional re-activation., 2011, 13(11): 1295–1304.
[27] Gaucher J, Boussouar F, Montellier E, Curtet S, Buchou T, Bertrand S, Hery P, Jounier S, Depaux A, Vitte AL, Guardiola P, Pernet K, Debernardi A, Lopez F, Holota H, Imbert J, Wolgemuth DJ, Gérard M, Rousseaux S, Khochbin S. Bromodomain-dependent stage-specific male genome programming by Brdt., 2012, 31(19): 3809–3820.
[28] Wang L, Wolgemuth DJ. BET protein BRDT complexes with HDAC1, PRMT5, and TRIM28 and functions in transcriptional repression during spermatogenesis., 2016, 117(6): 1429–1438.
[29] Manterola M, Brown TM, Oh MY, Garyn C, Gonzalez BJ, Wolgemuth DJ. BRDT is an essential epigenetic regulator for proper chromatin organization, silencing of sex chro-mosomes and crossover formation in male meiosis., 2018, 14(3): e1007209.
[30] Yanagimachi R. Male gamete contributions to the embryo., 2005, 1061: 203–207.
[31] Devaiah BN, Gegonne A, Singer DS. Bromodomain 4: a cellular Swiss army knife., 2016, 100(4): 679–686.
[32] Floyd SR, Pacold ME, Huang QY, Clarke SM, Lam FC, Cannell IG, Bryson BD, Rameseder J, Lee MJ, Blake EJ, Fydrych A, Ho R, Greenberger BA, Chen GC, Maffa A, Del Rosario AM, Root DE, Carpenter AE, Hahn WC, Sabatini DM, Chen CC, White FM, Bradner JE, Yaffe MB. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling., 2013, 498(7453): 246– 250.
[33] Liu W, Stein P, Cheng X, Yang W, Shao NY, Morrisey EE, Schultz RM, You J. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos., 2014, 21(12): 1950–1960.
[34] Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS. Growth and early postimplan-tation defects in mice deficient for the bromodomain- containing protein Brd4., 2002, 22(11): 3794–3802.
[35] Nagashima T, Maruyama T, Furuya M, Kajitani T, Uchida H, Masuda H, Ono M, Arase T, Ozato K, Yoshimura Y. Histone acetylation and subcellular localization of chromosomal protein BRD4 during mouse oocyte meiosis and mitosis., 2007, 13(3): 141–148.
[36] Beck S, Hanson I, Kelly A, Pappin DJ, Trowsdale J. A homologue of thefemale sterile homeotic (fsh) gene in the class II region of the human MHC., 1992, 2(4): 203–210.
[37] Florence B, Faller DV. You bet-cha: a novel family of transcriptional regulators., 2001, 6: D1008– D1018.
[38] Denis GV, Green MR. A novel, mitogen-activated nuclear kinase is related to adevelopmental regulator., 1996, 10(3): 261–271.
[39] Shang EY, Wang XY, Wen DC, Greenberg DA, Wolgemuth DJ. Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse., 2009, 238(4): 908–917.
[40] Gyuris A, Donovan DJ, Seymour KA, Lovasco LA, Smilowitz NR, Halperin AL, Klysik JE, Freiman RN. The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis., 2009, 1789(5): 413–421.
[41] Denis GV, Mccomb ME, Faller DV, Sinha A, Romesser PB, Costello CE. Identification of transcription complexes that contain the double bromodomain protein Brd2 and chromatin remodeling machines., 2006, 5(3): 502–511.
[42] Leroy G, Rickards B, Flint SJ. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription., 2008, 30(1): 51–60.
[43] Lambert JP, Picaud S, Fujisawa T, Hou HY, Savitsky P, Uuskula-Reimand L, Gupta GD, Abdouni H, Lin ZY, Tucholska M, Knight JDR, Gonzalez-Badillo B, St-Denis N, Newman JA, Stucki M, Pelletier L, Bandeira N, Wilson MD, Filippakopoulos P, Gingras AC. Interactome rewiring following pharmacological targeting of BET bromodo-mains., 2019, 73(3): 621–638 e617.
[44] Lamonica JM, Deng WL, Kadauke S, Campbell AE, Gamsjaeger R, Wang HX, Cheng Y, Billin AN, Hardison RC, Mackay JP, Blobel GA. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes., 2011, 108(22): E159–168.
[45] Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bro-modomain and extra-terminal proteins for treating multiple human diseases., 2021, 41(1): 223–245.
[46] Wu T, Kamikawa YF, Donohoe ME. Brd4's bromodomains mediate histone H3 acetylation and chromatin remodeling in pluripotent cells through P300 and Brg1., 2018, 25(7): 1756–1771.
[47] Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH, Kim TH. Histone deacetylases positively regulate trans-cription through the elongation machinery., 2015, 13(7): 1444–1455.
[48] Jang MK, Mochizuki K, Zhou MS, Jeong HS, Brady JN, Ozato K. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription., 2005, 19(4): 523–534.
[49] Yang ZY, Yik JHN, Chen RC, He NH, Jang MK, Ozato K, Zhou Q. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4., 2005, 19(4): 535–545.
[50] Zhang WS, Prakash C, Sum C, Gong Y, Li YH, Kwok JJ, Thiessen N, Pettersson S, Jones SJM, Knapp S, Yang H, Chin KC. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells., 2012, 287(51): 43137– 43155.
[51] Sims RJ 3rd, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it., 2004, 18(20): 2437–2468.
[52] Itzen F, Greifenberg AK, B?sken CA, Geyer M. Brd4 activates P-TEFb for RNA polymerase II CTD phos-phorylation., 2014, 42(12): 7577–7590.
[53] Rasmussen EB, Lis JT.transcriptional pausing and cap formation on threeheat shock genes., 1993, 90(17): 7923–7927.
[54] Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-AndréV, Sigova AA, Hoke HA, Young RA. Super-enhancers in the control of cell identity and disease., 2013, 155(4): 934–947.
[55] Pott S, Lieb JD. What are super-enhancers?, 2015, 47(1): 8–12.
[56] Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcrip-tion factors and mediator establish super-enhancers at key cell identity genes., 2013, 153(2): 307–319.
[57] Di Micco R, Fontanals-Cirera B, Low V, Ntziachristos P, Yuen SK, Lovell CD, Dolgalev I, Yonekubo Y, Zhang GT, Rusinova E, Gerona-Navarro G, Ca?amero M, Ohlmeyer M, Aifantis I, Zhou MM, Tsirigos A, Hernando E. Control of embryonic stem cell identity by BRD4-dependent trans-criptional elongation of super-enhancer-associated pluri-potency genes., 2014, 9(1): 234–247.
[58] Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers., 2013, 153(2): 320–334.
[59] Dey A, Nishiyama A, Karpova T, Mcnally J, Ozato K. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription., 2009, 20(23): 4899–4909.
[60] Mochizuki K, Nishiyama A, Jang MK, Dey A, Ghosh A, Tamura T, Natsume H, Yao HJ, Ozato K. The bromodo-main protein Brd4 stimulates G1 gene transcription and promotes progression to S phase., 2008, 283(14): 9040–9048.
[61] Devaiah BN, Case-Borden C, Gegonne A, Hsu CH, Chen QR, Meerzaman D, Dey A, Ozato K, Singer DS. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin., 2016, 23(6): 540–548.
[62] You JX, Li Q, Wu C, Kim J, Ottinger M, Howley PM. Regulation of aurora B expression by the bromodomain protein Brd4., 2009, 29(18): 5094–5103.
[63] Farina A, Hattori M, Qin J, Nakatani Y, Minato N, Ozato K. Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization., 2004, 24(20): 9059–9069.
[64] Maruyama T, Farina A, Dey A, Cheong J, Bermudez VP, Tamura T, Sciortino S, Shuman J, Hurwitz J, Ozato K. A mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase., 2002, 22(18): 6509–6520.
[65] Tasdemir N, Banito A, Roe JS, Alonso-Curbelo D, Camiolo M, Tschaharganeh DF, Huang CH, Aksoy O, Bolden JE, Chen CC, Fennell M, Thapar V, Chicas A, Vakoc CR, Lowe SW. BRD4 connects enhancer remodeling to sene-scence immune surveillance., 2016, 6(6): 612–629.
[66] Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibro-blasts show global epigenetic remodeling and widespread tissue contribution., 2007, 1(1): 55–70.
[67] Mikkelsen TS, Hanna J, Zhang XL, Ku MC, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A. Dissecting direct reprogramming through integrative genomic analysis., 2008, 454(7200): 49–55.
[68] Liu LQ, Xu Y, He MH, Zhang M, Cui FG, Lu LN, Yao MZ, Tian WH, Benda C, Zhuang Q, Huang ZJ, Li WJ, Li XC, Zhao P, Fan WX, Luo ZW, Li Y, Wu YS, Hutchins AP, Wang DY, Tse HF, Schambach A, Frampton J, Qin BM, Bao XC, Yao HJ, Zhang BL, Sun H, Pei DQ, Wang HT, Wang J, Esteban MA. Transcriptional pause release is a rate-limiting step for somatic cell reprogramming., 2014, 15(5): 574–588.
[69] Di Stefano B, Collombet S, Jakobsen JS, Wierer M, Sardina JL, Lackner A, Stadhouders R, Segura-Morales C, Francesconi M, Limone F, Mann M, Porse B, Thieffry D, Graf T. C/EBPalpha creates elite cells for iPSC repro-gramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4., 2016, 18(4): 371–381.
[70] Wang Z, Oron E, Nelson B, Razis S, Ivanova N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells., 2012, 10(4): 440–454.
[71] Shao ZC, Yao CP, Khodadadi-Jamayran A, Xu WH, Townes TM, Crowley MR, Hu KJ. Reprogramming by de-bookmarking the somatic transcriptional program through targeting of BET bromodomains., 2016, 16(12): 3138–3145.
[72] Yamanaka S. Elite and stochastic models for induced pluripotent stem cell generation., 2009, 460(7251): 49–52.
[73] Shao ZC, Zhang RW, Khodadadi-Jamayran A, Chen B, Crowley MR, Festok MA, Crossman DK, Townes TM, Hu KJ. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis., 2016, 7: 10869.
[74] Lorthongpanich C, Solter D, Lim CY. Nuclear reprogra-mming in zygotes., 2010, 54(11–12): 1631– 1640.
[75] Egli D, Birkhoff G, Eggan K. Mediators of reprogramming: transcription factors and transitions through mitosis., 2008, 9(7): 505–516.
[76] Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min JR, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA., 2019, 47(19): 10357–10372.
[77] Zhao QS, Wu YS, Shan ZY, Bai GY, Wang ZD, Hu J, Liu L, Li T, Shen JL, Lei L. Serum starvation-induced cell cycle synchronization stimulated mouse rDNA transcrip-tion reactivation during somatic cell reprogramming into iPSCs., 2016, 7(1): 112.
[78] Zheng Z, Jia JL, Bou G, Hu LL, Wang ZD, Shen XH, Shan ZY, Shen JL, Liu ZH, Lei L. rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos., 2012, 287(24): 19949–19960.
Epigenetic “reader” BET proteins regulate mammalian development and iPSC reprogramming
Zhijing Zhang, Yu Qiao, Yuchen Sun, Lei Lei
As an epigenetic “reader”, bromodomain and extra-terminal (BET) proteins play a vital role in mammalian development. Each member in the BET family regulates precisely the related genes and promotes the differentiation and development of early embryos specifically through recognizing a variety of epigenetic modifications and recruiting corresponding functional complexes. In addition, with the development of induced pluripotent stem cell (iPSC) technology, accumulating evidence have found that BET family proteins may also play a pivotal role in the iPSC reprogramming. In this review, we summarize the function of the BET family proteins in mammalian development and iPSC reprogramming from recent literatures and speculate new mechanisms of the BET family proteins in regulating reprogramming.
BET proteins; mammalian development; induced pluripotent stem cell (iPSC)
2021-06-30;
2021-08-23;
2021-11-08
國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):31671545)資助[Supported by the National Natural Science Foundation of China (No. 31671545)]
張祉靖,在讀碩士研究生,專業(yè)方向:人體解剖學(xué)與組織胚胎學(xué)。E-mail: cdzzj1998@163.com
雷蕾,博士,教授,研究方向:干細(xì)胞與胚胎發(fā)育。E-mail: lei086@ems.hrbmu.edu.cn
10.16288/j.yczz.21-232
(責(zé)任編委: 李海濤)