楊恒,逄越,李慶偉
七鰓鰻膽道閉鎖過程中膽汁酸耐受機制研究進展
楊恒1,2,逄越1,2,李慶偉1,2
1. 遼寧師范大學生命科學學院,大連 116081 2. 遼寧師范大學七鰓鰻研究中心,大連 116081
膽道閉鎖(biliary atresia, BA)是一種罕見的嬰幼兒肝膽疾病,其特征是纖維硬化性膽管病變,導致肝外膽管和肝內(nèi)膽管阻塞或閉塞,膽汁不能向腸道排泄,膽汁酸對肝實質(zhì)細胞造成嚴重損傷,最后導致肝硬化和肝衰竭危及生命。目前,膽道閉鎖的發(fā)病機理尚不明確,臨床上普遍采用“先葛西”、“后移植”的序貫性治療方式。葛西手術(shù)(Kasai)通過建立膽汁引流通道從而延長患兒自體肝生存時間,但隨著門靜脈高壓和原發(fā)性膽管炎等并發(fā)癥的出現(xiàn),最后患者仍需要肝移植來挽救生命。七鰓鰻(lamprey)是唯一在生長發(fā)育過程中膽管能夠自發(fā)消失的脊椎動物,在幼體期七鰓鰻具有完整的膽道系統(tǒng),但在變態(tài)過程中,七鰓鰻表現(xiàn)出發(fā)育性膽道閉鎖,膽管及膽囊逐漸退化直至整個膽道系統(tǒng)完全喪失,同時肝細胞發(fā)生重排和精細結(jié)構(gòu)改變。研究發(fā)現(xiàn),七鰓鰻可以在變態(tài)發(fā)育過程中形成膽道閉鎖癥狀時維持血漿正常的膽汁酸水平,從而不會發(fā)生肝硬化和肝衰竭,適應性地在膽道閉鎖和膽汁淤積癥中存活。為探究七鰓鰻膽汁酸耐受在膽道閉鎖疾病中的應用,本文對近年來七鰓鰻發(fā)生膽道閉鎖而產(chǎn)生對膽汁酸耐受機制的相關研究進展進行了總結(jié),以期為人類膽道閉鎖疾病的診斷和治療提供參考。
七鰓鰻;變態(tài)發(fā)育;膽道閉鎖;膽汁淤積;耐受機制
在脊椎動物肝細胞內(nèi)質(zhì)網(wǎng)中,膽固醇被轉(zhuǎn)化為兩親性多功能小分子膽汁酸或膽汁醇,與?;撬?、甘氨酸、葡萄糖醛酸或硫酸根的結(jié)合形式稱為膽鹽,是膽汁的主要組成成分,膽鹽合成是脊椎動物肝臟的一種特有功能,在食物消化和糖脂代謝中發(fā)揮著重要作用[1]。正常情況下,膽鹽隨著膽汁流入腸道被重新吸收后,經(jīng)門靜脈返回肝臟形成膽鹽腸肝循環(huán)[2]。膽道閉鎖時膽汁無法流入腸道,不能有效建立腸肝循環(huán)導致肝內(nèi)膽汁淤積,肝細胞膽鹽轉(zhuǎn)運體及核受體的表達會在疾病的不同階段作出適應性改變[3]。在膽汁淤積早期,肝細胞會減少對膽鹽的攝取及分泌來降低肝內(nèi)膽鹽水平及膽小管內(nèi)膽汁壓力,從而保護肝細胞及膽管細胞免受損傷;在膽汁淤積終末期,機體為代償肝細胞內(nèi)高膽鹽濃度,通過肝細胞膽管膜及基底膜雙向排出膽鹽,細胞基底膜膽鹽轉(zhuǎn)運體高表達以最大限度將膽鹽排入循環(huán)系統(tǒng),引起血漿中膽鹽濃度升高對肝臟細胞造成危害[4]。
目前膽道閉鎖的診斷與治療都面臨著一定的困難,患兒的早期診斷通常需要多種診斷方式相結(jié)合,具有不穩(wěn)定性,并且極易與肝炎綜合征等肝臟疾病發(fā)生混淆,從而錯過最佳的治療時期[5]。葛西手術(shù)(Kasai)可實現(xiàn)膽汁引流是BA的首選手術(shù)方法,但Kasai手術(shù)是一種姑息手術(shù)且成功率得不到保證,患兒最后仍需要肝移植挽回生命,肝源的嚴重缺乏成為了首要難題,針對膽道閉鎖的特異性藥物研發(fā)愈發(fā)顯得重要。
七鰓鰻(lamprey)是現(xiàn)存的無頜類脊椎動物代表之一[6],幼體期具有完整的膽道系統(tǒng),在變態(tài)過程中七鰓鰻膽管和膽囊會逐漸退化[7],變態(tài)完成后整個膽道系統(tǒng)完全消失(圖1)。在七鰓鰻變態(tài)過程中類似的形態(tài)學變化最終可能與膽汁分泌減少相一致,七鰓鰻幼體的肝臟由一個分支小管網(wǎng)絡組成,每個分支小管由4~6個錐形扁平細胞圍繞一個管腔組成[8]。在變態(tài)早期觀察到膽管變性的最初征象是膽管細胞微絨毛的斷裂和明顯的基底膜折疊,這種特征在膽道閉鎖和膽汁性肝硬化患者的膽管中都有報道[9]。隨著變態(tài)的進行,膽管細胞微絨毛的斷裂更加嚴重,膽小管逐漸退化,膜碎片和可變電子密度的囊泡聚集在管腔內(nèi),這些殘留物或被肝細胞吞噬,或與膽汁匯聚在一起,類似的現(xiàn)象也發(fā)生在哺乳動物的膽汁淤積期間[10]。變態(tài)中期肝細胞粗面內(nèi)質(zhì)網(wǎng)解聚,遍及肝臟的管腔變窄,膽管逐漸萎縮,膽管殘余物完全被膠原纖維取代[9]。此外,膽管細胞內(nèi)的包涵體(致密小體和自噬空泡)逐漸積累,研究表明這些包涵體的大小和數(shù)量反映了單個導管細胞的退化狀態(tài),在人類膽道閉鎖和膽汁性肝硬化患者的膽管細胞內(nèi)也觀察到了類似的包涵體成分[11]。在變態(tài)末期,膠原纖維被肝細胞索所取代,幼體肝臟典型的分支小管被重建成由3個或更多同心排列的肝細胞組成的實心索,人類肝臟從早期胚胎發(fā)育到早期嬰兒期也發(fā)生了類似的從小管到索狀的轉(zhuǎn)變過程[12]。七鰓鰻肝細胞在變態(tài)早期停止膽汁酸合成,經(jīng)歷細胞結(jié)構(gòu)重組,最終在變態(tài)晚期恢復膽汁酸合成,并增殖以填補曾經(jīng)由膽道系統(tǒng)占據(jù)的空間,退化的膽管上皮內(nèi)沒有游動的吞噬細胞,表明退化主要通過自溶和自噬作用進行,處于自溶晚期的細胞像人類膽道閉鎖一樣,脫落到膽管管腔內(nèi)[13]。
七鰓鰻膽管退化過程中所表現(xiàn)出的病理特征與人類膽道閉鎖十分相似:包括膽管細胞增生、巨噬細胞增加、膽管周炎、膽管閉塞、門脈周圍淋巴細胞浸潤、基底膜增厚和膠原原纖維的存在[14],七鰓鰻會出現(xiàn)膽汁淤積特征但不會發(fā)生肝硬化和肝衰竭[15]。七鰓鰻是如何耐受膽汁淤積,維持膽鹽穩(wěn)態(tài)并成功適應膽囊、肝內(nèi)和肝外膽管的程序性消失的呢?有研究表明,七鰓鰻膽道閉鎖的適應機制包括以下幾個方面:(1)成熟期七鰓鰻通過鰓中膽汁酸修飾基因的特異性表達降低膽汁酸細胞毒性并將其排出體外[16];(2)改變成年七鰓鰻肝臟與血漿膽鹽池組成,上調(diào)腎臟中有機陰離子和膽鹽轉(zhuǎn)運體的同源基因表達,加快七鰓鰻體內(nèi)毒性膽鹽的腎臟排泄[17];(3)下調(diào)肝臟膽汁酸合成能力,通過腸道合成來滿足機體對膽汁酸的需要[18]。七鰓鰻通過以上多器官的相互協(xié)作適應性地耐受膽道閉鎖(圖2)。
七鰓鰻作為一種膽道閉鎖的天然動物模型[20],可以觀察到膽道閉鎖整個發(fā)生發(fā)展過程,為臨床上膽道閉鎖的早期診斷提供理論依據(jù)。七鰓鰻膽道閉鎖是一種與人類致病性膽道閉鎖在許多細胞特征上相似的發(fā)育過程,但又不同于人類膽道閉鎖的病理適應機制。七鰓鰻作為一種原始的無頜類脊椎動物已經(jīng)進化出一種獨特的適應途徑來耐受發(fā)育性膽道閉鎖帶來的危害,了解這些機制的分子基礎可能有助于闡明膽鹽合成的進化和嬰兒膽道閉鎖的潛在治療方法。
圖1 七鰓鰻膽道閉鎖前后肝臟HE染色對比
A:七鰓鰻膽道閉鎖前肝臟HE染色(標尺:200 μm)和放大圖(標尺:50 μm)。GB:膽囊;箭頭所指為七鰓鰻膽管。B:七鰓鰻膽道閉鎖后肝臟HE染色(標尺:200 μm)和放大圖(標尺:50 μm)。
圖2 七鰓鰻膽道閉鎖期間膽汁酸耐受機制
在七鰓鰻膽道閉鎖期間:鰓組織中基因表達上調(diào)催化膽鹽PZS轉(zhuǎn)化成毒性較小的3k-PZS;編碼膽鹽合成限速酶基因和在肝臟表達下調(diào),在腸道表達上調(diào)代償膽汁酸合成;腎臟中膽鹽轉(zhuǎn)運基因和表達上調(diào),促進膽鹽排泄到體外。根據(jù)參考文獻[19]修改繪制。
七鰓鰻與哺乳動物有著不同的膽鹽池組成,它能合成獨特的5種α-膽汁酸(表1)。從已知膽鹽的結(jié)構(gòu)變化判斷,七鰓鰻的膽汁酸合成途徑似乎比哺乳動物更少受限[26],例如C3、C5、C7、C12和C24位點的修飾似乎是可變的,這表明七鰓鰻的膽鹽合成酶可能在底物選擇方面更為多樣[27,28]。研究發(fā)現(xiàn)七鰓鰻在不同的發(fā)育階段膽鹽池的組成有所差異,可能與七鰓鰻膽鹽合成關鍵酶在不同時期的表達模式不同有關,例如七鰓鰻幼體不能產(chǎn)生3,12-diketo- 4,6-petromyzonene-24- sulfate (dkPES),可能是因為缺乏3β-羥基-Δ5-C27-甾體脫氫酶(HSD3B7)活性[29]。另一方面,大部分成年七鰓鰻不會產(chǎn)生石油甾醇二硫酸鹽(petromyzosterol disulfate, PSDS),可能是由于C3特異性磺基轉(zhuǎn)移酶的表達抑制[30],這些膽鹽合成酶在不同發(fā)育階段產(chǎn)生不同的膽鹽混合物中發(fā)揮著重要作用。在哺乳動物中,膽汁酸的合成受到多種反饋抑制機制的調(diào)節(jié),膽汁酸鵝去氧膽酸(chenodeoxycholic acid, CDCA)和白介素1β (inter-leukin-1beta, IL-1β)可以通過誘導原癌基因c-Jun的表達抑制肝細胞核因子4α (hepatocyte nuclear factor 4-alpha, HNF4α)激活,使得膽汁酸生物合成限速酶CYP7A1 (膽固醇7-羥化酶)的基因表達受到抑制[31,32]。因此,JNK/c-Jun信號通路可抑制膽汁酸的合成,保護肝細胞免受膽汁酸的毒性作用[33]。七鰓鰻特有膽鹽3k-ACA和3k-PZS在成熟期七鰓鰻的鰓中由酶HSD3B7催化生成,會改變JNK/c-Jun的表達[34],它們可能通過類似的JNK/c-Jun機制來抑制膽鹽合成。
與成年雄性七鰓鰻肝臟組織相比,膽汁酸修飾相關的基因、和在鰓組織中的表達顯著增加,和編碼的酶分別催化類固醇激素和膽汁酸與硫酸鹽結(jié)合[19]。LC-MS/MS分析和基因表達數(shù)據(jù)表明PZS在鰓上皮轉(zhuǎn)化為毒性較低的3k-PZS,成年雄性七鰓鰻通過上述酶催化的脫氫作用和硫化作用降低膽汁酸的細胞毒性、增加這些化合物的溶解度,促進其分泌到體外,同時它對排卵期的雌性七鰓鰻有很強的信息素引誘作用[35]。在膽鹽排出過程中,膽鹽轉(zhuǎn)運體發(fā)揮了重要作用:基因編碼ATP依賴的膽鹽輸出泵,該泵可以從肝細胞中分泌膽鹽[36],在成年雄性七鰓鰻肝臟中保持高表達,基因編碼一種膽鹽共轉(zhuǎn)運蛋白,負責從血液中攝取膽鹽到肝細胞,從幼體到成年的雄性七鰓鰻肝臟基因表達量下降[37],通過和兩種膽鹽轉(zhuǎn)運基因正反向的共同作用,減少肝臟對膽鹽攝取的同時增加了膽鹽的排出。有趣的是,編碼的共轉(zhuǎn)運蛋白主要負責小腸管腔內(nèi)的頂端細胞對膽鹽的吸收[38],在成年雄性七鰓鰻中表達量很高,轉(zhuǎn)運蛋白SLC10A2已被證明與5α-膽汁醇(例如七鰓鰻中的3k-PZS)有很高的親和力,這種Na+/膽鹽共轉(zhuǎn)運蛋白可能在七鰓鰻從循環(huán)中攝取膽鹽這一過程中發(fā)揮作用。
膽鹽轉(zhuǎn)運基因的組織特異性表達表明,這些轉(zhuǎn)運基因在七鰓鰻的膽鹽排泄過程中發(fā)揮重要作用。進一步確認和在轉(zhuǎn)運5α-膽汁醇中的功能,檢查轉(zhuǎn)運蛋白(包括SLC10A2)在肝臟和鰓中的具體細胞位置對于理解七鰓鰻的膽鹽排泄十分有必要。七鰓鰻可同時生成C24和C27膽汁醇,產(chǎn)生C24膽汁醇時裂解膽固醇側(cè)鏈的酶機制可能不同于人類和嚙齒類中產(chǎn)生C24膽鹽的多種過氧化物酶體酶[39],上述問題一旦確定,將為揭示膽鹽生物合成和排泄的復雜機制提供證據(jù)。
表1 七鰓鰻特有的膽汁酸
膽汁酸通過與調(diào)節(jié)基因表達的核受體和G蛋白偶聯(lián)受體相互作用,參與一系列的信號轉(zhuǎn)導,調(diào)控膽鹽穩(wěn)態(tài)、葡萄糖代謝和心血管功能[40];然而膽汁酸也有幾種病理作用,例如致癌性和細胞毒性[41]。通過肝腸代謝和循環(huán)維持膽鹽的穩(wěn)態(tài),這對其生理功能和解毒至關重要[42]。七鰓鰻在變態(tài)過程中肝腸循環(huán)被破壞[43],成年七鰓鰻是如何耐受膽汁酸的細胞毒性適應膽汁淤積引起的肝損傷,并維持這種獨特的膽鹽穩(wěn)態(tài)呢?以下的適應機制可能解釋了這一現(xiàn)象:
(1)成年七鰓鰻下調(diào)了膽鹽合成限速酶CYP7A1的肝臟表達,減少肝臟內(nèi)源性膽鹽的產(chǎn)生[18];(2)成年七鰓鰻將幼體期血漿和肝臟的主要膽鹽C24膽鹽轉(zhuǎn)化為C27膽鹽(膽鹽成分的改變在膽汁淤積的嚙齒類動物中也有描述[44]),與此同時將細胞毒性較大的膽鹽PZS轉(zhuǎn)化為3k-PZS[17];(3)成年七鰓鰻的肝臟中含有高濃度的膽紅素和膽綠素,膽紅素和膽綠素都具有抗氧化的特性,成年七鰓鰻可能通過下調(diào)肝臟中膽綠素還原酶的表達來提高膽綠素水平[45],這可以提高對肝臟的保護作用[46,47]有研究顯示,膽綠素能夠降低人肝細胞的膽鹽細胞毒性,在膽綠素還原酶活性較低的細胞中觀察到的保護作用最好[48]。七鰓鰻腎臟在變態(tài)過程中經(jīng)歷了相當大的結(jié)構(gòu)重塑,成年七鰓鰻通過腎臟排泄有效地清除膽鹽和有機陰離子,此外研究還發(fā)現(xiàn)成年七鰓鰻腎臟中膽鹽輸出泵BSEP和多藥耐藥相關蛋白1 (multidrug resistance associated protein 1, MDR1)mRNA表達顯著增加,BSEP、MDR1是哺乳動物中關鍵的膽鹽轉(zhuǎn)運體,因此這兩種轉(zhuǎn)運蛋白在腎臟中的表達上調(diào)可能是成年七鰓鰻在腎臟排泄膽汁產(chǎn)物的原因[17]。
綜上所述,七鰓鰻通過減少肝臟膽鹽的合成和增加膽鹽的腎臟排泄,降低膽汁淤積程度;改變肝臟膽鹽池組成的同時在肝臟中積累高水平的膽綠素來防止肝組織損傷。因此,在肝臟中積累膽綠素并進一步誘導腎中膽鹽和有機陰離子轉(zhuǎn)運體的表達可能是治療膽道閉鎖和其他慢性膽汁淤積性肝病的新方法。
對所有脊椎動物來說,膽鹽合成是肝臟的一項獨特而重要的功能,膽鹽被排泄到腸腔中溶解脂肪酸,從而促進脂溶性維生素的吸收[49]。在膽道閉鎖期間,七鰓鰻肝臟基因表達與膽鹽濃度顯著下調(diào),的表達下調(diào)與人類膽道閉鎖或其他膽汁淤積性疾病的現(xiàn)象驚人地相似[50]。然而,在許多哺乳動物模型和人類膽道閉鎖模型中,的下調(diào)并不能阻止對肝臟的膽汁淤積性損傷。出現(xiàn)膽汁淤積的患者會發(fā)生肝纖維化和肝硬化,七鰓鰻盡管出現(xiàn)發(fā)育性膽道閉鎖,卻仍能維持正常的血漿膽鹽水平防止肝損傷。研究發(fā)現(xiàn),除了已知的肝臟中膽鹽合成減少等機制外,七鰓鰻還通過腸道內(nèi)從頭合成和分泌膽鹽的獨特機制來適應膽道閉鎖。在發(fā)育性膽道閉鎖后,七鰓鰻不再保持從肝臟到腸道的直接膽汁流動,分泌物進入體循環(huán)是運送肝臟膽鹽的唯一替代途徑?;蚓幋a合成膽鹽初始酶,在發(fā)育性膽道閉鎖之后,腸道基因的表達增加了100倍以上,而肝臟的表達減少了同樣的幅度,與此同時這兩個器官的膽鹽池發(fā)生了相似模式和大小的改變,C24膽汁醇硫酸鹽逐漸轉(zhuǎn)變?yōu)榕;撬峤Y(jié)合的C24膽汁酸,?;撬峤Y(jié)合的膽鹽形式可能更有利于寄生期七鰓鰻消化脂類物質(zhì)[18]。在寄生期腸道中還檢測到膽鹽合成中間體7α羥基膽固醇等,并且寄生期七鰓鰻的腸細胞周轉(zhuǎn)率(9~14天)比哺乳動物(2~3天)慢[51],這可能有利于腸道內(nèi)膽鹽的合成。這些數(shù)據(jù)表明,寄生期七鰓鰻腸道中存在膽鹽的從頭合成,七鰓鰻獨特的生活方式和膽鹽的利用是由兩個器官(肝臟和腸道)在整個發(fā)育周期合成不同的共軛膽鹽來適應。有趣的是,肝臟和腸道中的脂肪分解和脂肪酸合成在不同的發(fā)育階段之間存在顯著差異[52]。七鰓鰻肝和腸都支持膽鹽的合成來耐受發(fā)育性膽道閉鎖,在動物進化過程中隨著消化系統(tǒng)變得更加復雜,膽鹽合成的位置似乎已經(jīng)從消化道轉(zhuǎn)移到肝臟。
七鰓鰻在變態(tài)期間,肝膽、腸道和腎臟經(jīng)歷了重塑和重組,以膽道系統(tǒng)的變化最為劇烈,關于七鰓鰻膽管退化的原因至今仍沒有定論。有研究者認為寄生七鰓鰻的食物中可能含有一些物質(zhì)不需要膽汁就能被腸道吸收,隨著飲食方式的改變,七鰓鰻的膽管開始自然退化[13]。另一種假說認為,終生自由游泳生活的七鰓鰻也存在類似的膽管退化過程,可能反映了所有七鰓鰻物種的相似起源,代表著這類七鰓鰻對環(huán)境和生活方式的適應性進化[53]。對于膽管退化的原因,我們認為變態(tài)完成后進入寄生期,七鰓鰻快速進食為機體儲存能量與營養(yǎng),以肝腸循環(huán)為主的膽汁酸代謝模式已經(jīng)無法滿足機體需要,隨著肝膽退化,七鰓鰻可能已經(jīng)進化出了一套效率更高的膽汁酸代謝途徑。對于七鰓鰻膽管退化的真正原因,還需要進一步比較寄生與非寄生七鰓鰻膽管退化過程中生理生化特征以及基因表達等方面的差異才能進一步確定。
七鰓鰻膽道系統(tǒng)消失的遺傳編程可能對理解人類胚胎BA潛在機制具有重要作用,有研究表明轉(zhuǎn)化生長因子β (beta-和熱休克蛋白90 (heat shock protein 90, HSP90)可能在七鰓鰻膽道系統(tǒng)退化過程中發(fā)揮重要作用。Chung-Davidson等[54]在七鰓鰻膽道閉鎖期間通過干擾-信號通路,導致獨特的膽管退化模式和表型,說明-信號通路在膽管退化過程中發(fā)揮重要作用;通過變態(tài)各時期轉(zhuǎn)錄本的分析以及基因敲低等方法驗證了HSP90參與肝膽轉(zhuǎn)化的多個方面,包括肝細胞再生、膽管變性和膽汁酸合成的改變[55]。以上結(jié)果提示了發(fā)育性BA的可能機制,為推斷人類胚胎性BA的病因提供了可檢驗的假說。目前認為,嬰幼兒先天性膽道閉鎖是環(huán)境因素、遺傳突變以及母親圍產(chǎn)期病毒感染等導致,如果從七鰓鰻膽道閉鎖的適應性進化觀點來看,我們認為嬰幼兒先天性膽道閉鎖也可能是一種人類的返祖現(xiàn)象,并非后天因素影響所致。
七鰓鰻在發(fā)育性膽道閉鎖期間,通過上調(diào)基因在鰓的特異性表達降低膽鹽細胞毒性并通過鰓排泄;下調(diào)肝臟中膽鹽合成關鍵基因表達并將肝內(nèi)的主要膽鹽C27膽鹽轉(zhuǎn)化為C24膽鹽降低肝內(nèi)膽汁淤積程度,由腸道代償膽汁酸合成滿足機體代謝需要;上調(diào)腎臟中膽鹽轉(zhuǎn)運基因表達加快毒性膽鹽排泄等機制耐受膽道閉鎖帶來的危害,這些分子機制將會為治療人類膽道閉鎖提供思路。七鰓鰻具有獨特膽鹽,但其合成、轉(zhuǎn)運與調(diào)控的關鍵酶仍未闡明,這些關鍵分子的找尋將為闡釋七鰓鰻獨特的膽汁酸耐受機制提供更多分子層面的證據(jù)。
綜合以上觀點以及膽道閉鎖的最新研究進展,現(xiàn)提出以下幾種看法:(1)七鰓鰻的肝臟中可能含有其他抗膽汁淤積分子,在闡明其機制后,可用于開發(fā)藥物治療膽道閉鎖患兒,如果能夠預防晚期纖維化,將改善這些患者的預后;(2)通過藥物干預加強膽鹽和其他有機溶質(zhì)的腎臟排泄,則可能會減緩或阻止肝損傷的進展;(3)開發(fā)出專門針對膽鹽生物轉(zhuǎn)化和運輸?shù)倪m應性途徑激動劑,可能通過法尼酯X受體(recombinant farnesoid X receptor, FXR)和孕烷X受體(pregnane X receptor, PXR)等核受體發(fā)揮作用;(4)在減少肝臟中膽鹽合成的同時通過基因工程等方法將膽鹽合成和分泌轉(zhuǎn)移到腸道來適應膽道閉鎖;(5)高遷移率蛋白1 (high mobility group proteins B1, HMGB1)等細胞因子在膽道閉鎖的發(fā)病機制中發(fā)揮重要作用,可能成為治療膽道閉鎖的特異性靶點[56];(6)膽管“類器官”的成功培育有望緩解器官移植所面臨的困境,這種新的細胞療法可能會成為膽道閉鎖疾病治療新途徑[57]。
[1] Morita SY, Ikeda Y, Tsuji T, Terada T. Molecular mechanisms for protection of hepatocytes against bile salt cytotoxicity., 2019, 67(4): 333–340.
[2] Nie YF, Hu J, Yan XH. Cross-talk between bile acids and intestinal microbiota in host metabolism and health., 2015, 16(6): 436–446.
[3] Thompson MD, Moghe A, Cornuet P, Marino R, Tian JM, Wang PC, Ma XC, Abrams M, Locker J, Monga SP, Nejak-Bowen K. β-Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis., 2018, 67(3): 955–971.
[4] Chen HL, Liu YJ, Chen HL, Wu SH, Ni YH, Ho MC, Lai HS, Hsu WM, Hsu HY, Tseng HC, Jeng YM, Chang MH. Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia., 2008, 63(6): 667–673.
[5] Wang L, Yang Y, Chen Y, Zhan JH. Early differential diagnosis methods of biliary atresia: a meta-analysis., 2018, 34(4): 363–380.
[6] Liang J, Liu X, Wu FF, Li QW. Progress of adaptive immunity system of agnathan vertebrates., 2009, 31(10): 969–976.
梁佼, 劉欣, 吳芬芳, 李慶偉. 無頜類脊椎動物適應性免疫系統(tǒng)的研究進展. 遺傳, 2009, 31(10): 969–976.
[7] Zhu YG, Li J, Pang Y, Li QW. Lamprey: an important animal model of evolution and disease research., 2020, 42(9): 847–857.
朱醫(yī)高, 李軍, 逄越, 李慶偉. 七鰓鰻:生物進化和疾病研究的重要模式動物. 遺傳, 2020, 42(9): 847–857.
[8] Sidon EW, Youson JH. Morphological changes in the liver of the sea lamprey,L., during meta-morphosis. II. Canalicular degeneration and transfor-mation of the hepatocytes., 1983, 178(3): 225–246.
[9] Boomer LA, Bellister SA, Stephenson LL, Hillyard SD, Khoury JD, Youson JH, Gosche JR. Cholangiocyte apoptosis is an early event during induced metamorphosis in the sea lamprey,L., 2010, 45(1): 114–120.
[10] Sidon EW, Youson JH. Morphological changes in the liver of the sea lamprey,L., during metamorphosis: I. Atresia of the bile ducts., 1983, 177(1): 109–124.
[11] Nikitina N, Bronner-Fraser M, Sauka-Spengler T. The sea lamprey:a model for evolutionary and developmental biology., 2009, 2009(1): pdb.emo113.
[12] Tetlock A, Yost CK, Stavrinides J, Manzon RG. Changes in the gut microbiome of the sea lamprey during metamor-phosis., 2012, 78(21): 7638–7644.
[13] Suchy FJ. Biliary atresia in sea lampreys. What can it tell us about the disorder in human infants?, 2013, 57(6): 2114–2116.
[14] Chung-Davidson YW, Yeh CY, Li WM. The sea lamprey as an etiological model for biliary atresia., 2015, 2015: 832943.
[15] Davenport M, Gonde C, Redkar R, Koukoulis G, Tredger M, Mieli-Vergani G, Portmann B, Howard ER. Immuno-histochemistry of the liver and biliary tree in extrahepatic biliary atresia., 2001, 36(7): 1017–1025.
[16] Johnson NS, Yun SS, Li WM. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues., 2014, 40(10): 1152–1160.
[17] Cai SY, Lionarons DA, Hagey L, Soroka CJ, Mennone A, Boyer JL. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion., 2013, 57(6): 2418–2426.
[18] Yeh CY, Chung-Davidson YW, Wang HY, Li K, Li WM. Intestinal synthesis and secretion of bile salts as an ada-ptation to developmental biliary atresia in the sea lamprey., 2012, 109(28): 11419–11424.
[19] Chung-Davidson YW, Wang HY, Siefkes MJ, Bryan MB, Wu H, Johnson NS, Li WM. Pheromonal bile acid 3-ketopetromyzonol sulfate primes the neuroendocrine system in sea lamprey., 2013, 14: 11.
[20] Liu CJ, Huang HF, Ma F, Liu X, Li QW. Evolution of adaptive immune system in guinea-free vertebrates., 2008, 30(1): 13–19.
劉岑杰, 黃惠芳, 馬飛, 劉欣, 李慶偉. 無頜類脊椎動物適應性免疫系統(tǒng)的進化. 遺傳, 2008, 30(1): 13–19.
[21] Yun SS, Scott AP, Li W. Pheromones of the male sea lamprey,L.: structural studies on a new compound, 3-keto allocholic acid, and 3-keto petro-myzonol sulfate., 2003, 68(3): 297–304.
[22] Haslewood GA, T?kés L. Comparative studies of bile salts. Bile salts of the lampreyL.., 1969, 114(2): 179–184.
[23] Li WM, Scott AP, Siefkes MJ, Yan HG, Liu Q, Yun SS, Gage DA. Bile acid secreted by male sea lamprey that acts as a sex pheromone., 2002, 296(5565): 138– 141.
[24] Hoye TR, Dvornikovs V, Fine JM, Anderson KR, Jeffrey CS, Muddiman DC, Shao F, Sorensen PW, Wang JZ. Details of the structure determination of the sulfated steroids PSDS and PADS: new components of the sea lamprey () migratory pheromone., 2007, 72(20): 7544–7550.
[25] Li K, Wang HY, Brant CO, Ahn SC, Li WM. Multiplex quantification of lamprey specific bile acid derivatives in environmental water using UHPLC-MS/MS., 2011, 879(32): 3879– 8386.
[26] Chiang JY. Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms., 2004, 40(3): 539–551.
[27] Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols., 2014, 15(9): 895–914.
[28] Bj?rkheim I, Danielsson H, Einarsson K, Johansson G. Formation of bile acids in man: conversion of cholesterol into 5-beta-cholestane-3-alpha,7-alpha,12-alpha-triol in liver homogenates., 1968, 47(7): 1573–1582.
[29] Shea HC, Head DD, Setchell KDR, Russell DW. Analysis of HSD3B7 knockout mice reveals that a 3alpha-hydroxyl stereochemistry is required for bile acid function., 2007, 104(28): 11526–11533.
[30] Venkatachalam KV, Llanos DE, Karami KJ, Malinovskii VA. Isolation, partial purification, and characterization of a novel petromyzonol sulfotransferase from(lamprey) larval liver., 2004, 45(3): 486–495.
[31] Abu-Hayyeh S, Papacleovoulou G, Williamson C. Nuclear receptors, bile acids and cholesterol homeostasis series-bile acids and pregnancy., 2013, 368(1–2): 120–128.
[32] Liu X, Wang Y. An overview of bile acid synthesis and its physiological and pathological functions., 2019, 41(5): 365–374.
劉笑, 王琰. 膽汁酸的合成調(diào)控及其在生理與病理中的功能機制. 遺傳, 2019, 41(5): 365–374.
[33] Li TG, Jahan A, Chiang JYL. Bile acids and cytokines inhibit the human cholesterol 7 alpha-hydroxylase gene via the JNK/c-jun pathway in human liver cells., 2006, 43(6): 1202–1210.
[34] Siefkes MJ, Scott AP, Zielinski B, Yun SS, Li WM. Male sealampreys,L., excrete a sex pheromone from gill epithelia., 2003, 69(1): 125–132.
[35] Chung-Davidson YW, Bussy U, Fissette SD, Scott AM, Li WM. Bile acid production is life-stage and sex-dependent and affected by primer pheromones in the sea lamprey., 2021, 224(9): jeb229476.
[36] Sohail MI, D?nmez-Cakil Y, Sz?ll?si D, Stockner T, Chiba P. The bile salt export pump: molecular structure, study models and small-molecule drugs for the treatment of inherited BSEP deficiencies., 2021, 22(2): 784.
[37] Tran QH, Nguyen VG, Tran CM, Nguyen MN. Down- regulation of solute carrier family 10 member 1 is associated with early recurrence and poorer prognosis of hepatocellular carcinoma., 2021, 7(3): e06463.
[38] Wang LN, Zhou Y, Wang XH, Zhang GW, Guo B, Hou XM, Ran JT, Zhang QN, Li CC, Zhao XS, Geng YC, Feng SW. Mechanism of Asbt (Slc10a2)-related bile acid malabsorption in diarrhea after pelvic radiation., 2020, 96(4): 510–519.
[39] Hagey LR, M?ller PR, Hofmann AF, Krasowski MD. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway., 2010, 83(2): 308–321.
[40] Han SY, Song HK, Cha JJ, Han JY, Kang YS, Cha DR. Farnesoid X receptor (FXR) agonist ameliorates systemic insulin resistance, dysregulation of lipid metabolism, and alterations of various organs in a type 2 diabetic kidney animal model., 2021, 8(4): 495–503.
[41] Wang RX, Sheps JA, Ling V. ABC transporters, bile acids, and inflammatory stress in liver cancer., 2011, 12(4): 636–646.
[42] Slizgi JR, Lu Y, Brouwer KR, St Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KL. Inhibition of human hepatic bile acid transporters by tolvaptan and metabolites: contributing factors to drug-induced liver injury?, 2016, 149(1): 237–250.
[43] Sidon EW, Youson JH. Morphological changes in the liver of the sea lamprey,L., during metamorphosis. II. Canalicular degeneration and transfor-mation of the hepatocytes., 1983, 178(3): 225– 246.
[44] Zhang YC, Hong JY, Rockwell CE, Copple BL, Jaeschke H, Klaassen CD. Effect of bile duct ligation on bile acid composition in mouse serum and liver., 2012, 32(1): 58–69.
[45] Makino I, Shinozaki K, Nakagawa S, Mashimo K. Mea-surement of sulfated and nonsulfated bile acids in human serum and urine., 1974, 15(2): 132–138.
[46] Makos BK, Youson JH. Tissue levels of bilirubin and biliverdin in the sea lamprey,L., before and after biliary atresia., 1988, 91(4): 701–710.
[47] Jansen T, Hortmann M, Oelze M, Opitz B, Steven S, Schell R, Knorr M, Karbach S, Schuhmacher S, Wenzel P, Münzel T, Daiber A. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin., 2010, 49(2): 186–195.
[48] Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles., 2009, 106(13): 5171–5176.
[49] Bathena SPR, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y. Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients., 2015, 143(2): 308–318.
[50] Faiz Kabir Uddin Ahmed A, Ohtani H, Nio M, Funaki N, Iwami D, Kumagai S, Sato E, Nagura H, Ohi R.expression of fibrogenic growth factors and their receptors in biliary atresia: comparison between early and late stages., 2000, 192(1): 73–80.
[51] Youson JH, Langille RM. Proliferation and renewal of the epithelium in the intestine of young adult anadromous sea lampreys,L., 1981, 59(12): 2341–2349.
[52] Kao Y, Manzon RG, Sheridan MA, Youson JH. Study of the relationship between thyroid hormones and lipid metabolism during KClO4-induced metamorphosis of landlocked lamprey,., 1999, 122(3): 363–373.
[53] Morii M, Mezaki Y, Yamaguchi N, Yoshikawa K, Miura M, Imai K, Yoshino H, Hebiguchi T, Hebiguchi T, Senoo H. Onset of apoptosis in the cystic duct during metamorphosis of a Japanese lamprey,., 2010, 293(7): 1155–66.
[54] Chung-Davidson YW, Ren JF, Yeh CY, Bussy U, Huerta B, Davidson PJ, Whyard S, Li WM. TGF-β Signaling plays a pivotal role during developmental biliary atresia in sea lamprey ()., 2019, 4(2): 219–234.
[55] Chung-Davidson YW, Yeh CY, Bussy U, Li K, Davidson PJ, Nanlohy KG, Brown CT, Whyard S, Li WM. Hsp90 and hepatobiliary transformation during sea lamprey metamorphosis., 2015, 15: 47.
[56] Mohanty SK, Donnelly B, Temple H, Ortiz-Perez A, Mowery S, Lobeck I, Dupree P, Poling HM, McNeal M, Mourya R, Jenkins T, Bansal R, Bezerra J, Tiao G. High mobility group box 1 release by cholangiocytes governs biliary atresia pathogenesis and correlates with increases in afflicted infants., 2021, 74(2): 864–878.
[57] Sampaziotis F, Muraro D, Tysoe OC, Sawiak S, Beach TE, Godfrey EM, Upponi SS, Brevini T, Wesley BT, Garcia-Bernardo J, Mahbubani K, Canu G, Gieseck R 3rd, Berntsen NL, Mulcahy VL, Crick K, Fear C, Robinson S, Swift L, Gambardella L, Bargehr J, Ortmann D, Brown SE, Osnato A, Murphy MP, Corbett G, Gelson WTH, Mells GF, Humphreys P, Davies SE, Amin I, Gibbs P, Sinha S, Teichmann SA, Butler AJ, See TC, Melum E, Watson CJE, Saeb-Parsy K, Vallier L. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver., 2021, 371(6531): 839–846.
Research progress of bile acids tolerance mechanism in lamprey biliary atresia
Heng Yang1,2, Yue Pang1,2, Qingwei Li1,2
Biliary atresia (BA) is a rare biliary disease in infants and young children, which is characterized by fibrosclerotic bile duct disease, leading to extrahepatic and intrahepatic bile duct obstruction or occlusion. The bile acids cannot be excreted to the intestinal tract, which causes serious damage to the liver parenchyma cells, and eventually leads to life-threatening cirrhosis and chronic liver failure. At present, the pathogenesis of biliary atresia is unknown. The sequential treatment of “first Gexi” and “l(fā)ater transplantation” is nowadays widely adopted in the clinic. Gossi operation (Kasai) can prolong the survival time of autologous liver by the establishment of bile drainage channel. However, it is necessary for patients to perform liver transplantation with the emergence of complications such as portal hypertension and primary cholangitis. Lampreys are the only vertebrates whose bile duct can disappear spontaneously in the process of growth and development. Lampreys have complete biliary system at the larval stage, but in the process of metamorphosis, lampreys show developmental biliary atresia, bile duct and gallbladder gradually degenerate until the whole biliary system is completely lost, and hepatocytes undergo rearrangement and fine structural changes at the same time. It has been found that lampreys can maintain normal plasma bile acid levels when the symptoms of biliary atresia are formed in during metamorphosis, so that liver cirrhosis and hepatic failure do not occur, thereby adapting to and surviving biliary atresia and cholestasis. To explore the application of bile acids tolerance in biliary atresia, we summarize the recent research progress on the mechanism of bile acids tolerance caused by biliary atresia in lampreys, and further provide a reference for the development of diagnosisandtreatments of human biliary atresia.
lampreys; metamorphosis; biliary atresia; cholestasis; tolerance mechanism
2021-08-11;
2021-09-22;
2021-11-24
國家自然科學基金項目(編號:31772884,32070518 ),遼寧省興遼英才計劃領軍人才項目(編號:XLYC2002093),遼寧省科技項目(編號:2019-MS-218),遼寧省教育廳項目(編號:LJ2020012)和大連市科技創(chuàng)新基金項目(編號:2018J12SN079) 資助 [Supported by the National Natural Science Foundation of China(Nos.31772884, 32070518), Liaoning Climbing Scholar, the Distinguished Professor of Liaoning (No.XLYC2002093), the Program of Science and Technology of Liaoning Province (No.2019-MS-218), the Project of the Educational Department of Liaoning Province(No.LJ2020012), and the Science and Technology Innovation Fund Research Project of Dalian City (No. 2018J12SN079)]
楊恒,在讀碩士研究生,專業(yè)方向:細胞生物學。E-mail: yangheng199811@163.com
逄越,博士,教授,研究方向:分子免疫進化。E-mail: pangyue01@163.com
李慶偉,博士,教授,研究方向:細胞遺傳學。E-mail: liqw@263.net
10.16288/j.yczz.21-295
(責任編委: 姜長濤)