徐碧云, 肖義麗, 曹 煒
有限域上線性化多項(xiàng)式與正規(guī)基
徐碧云1, 肖義麗1, 曹 煒2*
(1.寧波大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 浙江 寧波 315211; 2.閩南師范大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 福建 漳州 363000)
有限域; 正規(guī)基; 線性化多項(xiàng)式
1986年, Pei等[4]證明了定理2.
2001年, Chang等[5]進(jìn)一步證明了定理1和定理2的充分條件也是必要的, 從而得到了定理3.
線性化多項(xiàng)式的許多相關(guān)性質(zhì)與結(jié)論可參考文獻(xiàn)[1,8-11].
引理2[1]
推論2
引理3[1]
定理5[12]
證明
由容斥原理得:
引理4 由定義4, 得到如下集合:
證明 由于
又因?yàn)?/p>
所以
可得:
由定義4可得式(3), 同理可得式(4)~(6).
引理5 假設(shè)
由引理4可以得到:
由歐拉函數(shù)性質(zhì)得:
由定義4得:
即式(8)得證.
所以
其中:
定理6
由容斥原理和引理5可得:
則由式(10), 得到:
[1] Lidl R, Niederreiter H. Finite Fields[M]. Cambridge: Cambridge University Press, 1997.
[2] Mullen G L, Panario D. Handbook of Finite Fields[M]. London: Chapman and Hall, 2013.
[3] Perlis S. Normal bases of cyclic fields of prime-power degree[J]. Duke Mathematical Journal, 1942, 9(3):507- 517.
[4] Pei D, Wang C, Omura J. Normal basis of finite field GF(2)[J]. IEEE Transactions on Information Theory, 1986, 32(2):285-287.
[5] Chang Y, Truong T K, Reed I S. Normal bases over GF(q)[J]. Journal of Algebra, 2001, 241(1):89-101.
[6] Huang H, Han S M, Cao W. Normal bases and irreducible polynomials[J]. Finite Fields and Their Applications, 2018, 50:272-278.
[7] Hachenberger D. Characterizing normal bases via the trace map[J]. Communications in Algebra, 2004, 32(1): 269-277.
[8] Zan H X, Cao W. Powers of polynomials and bounds of value sets[J]. Journal of Number Theory, 2014, 143:286- 292.
[9] Polverino O, Zullo F. On the number of roots of some linearized polynomials[J]. Linear Algebra and Its Applications, 2020, 601:189-218.
[10] Polverino O, Zini G, Zullo F. On certain linearized polynomials with high degree and kernel of small dimension[J]. Journal of Pure and Applied Algebra, 2021, 225(2):106491.
[11] Hu W Y, Zhang Z C, Tu Z H, et al. Efficient computation of the nearest polynomial by linearized alternating direction method[J]. Applied Mathematics and Computation, 2021, 395:125860.
[12] von zur Gathen J, Giesbrecht M. Constructing normal bases in finite fields[J]. Journal of Symbolic Computation, 1990, 10(6):547-570.
Linearized polynomials and normal bases in finite fields
XU Biyun1, XIAO Yili1, CAO Wei2*
( 1.School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China;2.School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, China )
finite field; normal basis; linearized polynomial
O156
A
1001-5132(2022)02-0022-05
2021?04?24.
寧波大學(xué)學(xué)報(bào)(理工版)網(wǎng)址: http://journallg.nbu.edu.cn/
國家自然科學(xué)基金(11871291).
徐碧云(1996-), 女, 廣東揭陽人, 在讀碩士研究生, 主要研究方向: 數(shù)論. E-mail: 675070711@qq.com
曹煒(1974-), 男, 湖北潛江人, 博士/教授, 主要研究方向: 數(shù)論與密碼學(xué). E-mail: caowei@nbu.edu.cn
(責(zé)任編輯 史小麗)