蔡林秀 ??〗堋〗鈴?qiáng) 張曦 王亞晶 高俊
【摘要】 目的:探究唑來膦酸對(duì)D-半乳糖導(dǎo)致成骨細(xì)胞損傷的拮抗作用。方法:以小鼠成骨細(xì)胞MC3T3-E1為研究對(duì)象,以MTT法觀察不同濃度梯度(15、20、30 mg/mL)D-半乳糖及不同濃度梯度(10-8、10-7、10-6、10-5、10-4、10-3mol/L)唑來膦酸對(duì)成骨細(xì)胞活性的影響。以20 mg/mL
D-半乳糖環(huán)境培養(yǎng)成骨細(xì)胞建立D-半乳糖導(dǎo)致成骨細(xì)胞損傷模型,觀察不同濃度梯度(0.01、0.05、0.1、0.25、0.5 μmol/L)唑來膦酸對(duì)D-半乳糖導(dǎo)致成骨細(xì)胞活性損傷的拮抗作用。結(jié)果:隨著D-半乳糖濃度的升高(15、20、30 mg/mL),成骨細(xì)胞活性逐漸減弱。與對(duì)照組相比,較低濃度的(10-8、10-7mol/L)唑來膦酸干預(yù)下的實(shí)驗(yàn)組成骨細(xì)胞活性升高(P<0.05),而較高濃度的(10-5、10-4、10-3mol/L)唑來膦酸干預(yù)下的實(shí)驗(yàn)組成骨細(xì)胞活性降低(P<0.000 1)。以0.01、0.05 μmol/L
的唑來膦酸干預(yù)48 h后的實(shí)驗(yàn)組成骨細(xì)胞活性均較模型組升高(P<0.05)。結(jié)論:D-半乳糖能夠?qū)е鲁晒羌?xì)胞活性下降。0.01、0.05 μmol/L唑來膦酸對(duì)D-半乳糖導(dǎo)致成骨細(xì)胞活性損傷具有拮抗作用。
【關(guān)鍵詞】 唑來膦酸 D-半乳糖 成骨細(xì)胞
Antagonistic Effect of Zoledronate on Osteoblast Injury Induced by D-galactose/CAI Linxiu, CHANG Junjie, XIE Qiang, ZHANG Xi, WANG Yajing, GAO Jun. //Medical Innovation of China, 2022, 19(07): 027-032
[Abstract] Objective: To investigate the antagonistic effects of Zoledronate on the inhibition of osteoblasts viability induced by D-galactose. Method: Taking mouse osteoblast MC3T3-E1 as the research object, the effects of different concentration gradients (15, 20, 30 mg/mL) of D-galactose and different concentration gradients (10-8,?10-7, 10-6, 10-5, 10-4, 10-3mol/L) of Zoledronate on osteoblast activity were observed by MTT method. Osteoblasts induced by D-galactose were cultured in 20 mg/mL D-galactose environment to establish an osteoblast injury model, and the antagonistic effect of Zoledronate on the activity of D-galactose induced osteoblasts was observed at different concentration gradient (0.01, 0.05, 0.1, 0.25, 0.5 μmol/L). Result: With the increase of D-galactose concentration (15, 20, 30 mg/mL), the activity of osteoblasts decreased gradually. Compared with the control group, the osteoblast activity of the experimental groups with lower concentration (10-8, 10-7 mol/L) of Zoledronate were increased (P<0.05), while the osteoblast activity of the experimental groups with higher concentration (10-5, 10-4, 10-3mol/L) Zoledronate were decreased (P<0.000 1). The osteoblast activity of the experimental groups were treated by 0.01 and 0.05 μmol/L
Zoledronate for 48 h were higher than that in the model group (P<0.05). Conclusion: D-galactose can decrease osteoblast activity. 0.01 and 0.05 μmol/L Zoledronate have antagonistic effect on D-galactose induced osteoblast activity injury.gzslib202204021641[Key words] Zoledronate D-galactose Osteoblast
First-authors address: Changzhou Chinese Traditional Medicine Hospital Affiliated to Chinese Traditional Medicine University of Nanjing, Changzhou 213003, China
doi:10.3969/j.issn.1674-4985.2022.07.007
骨質(zhì)疏松癥是一種由于成骨細(xì)胞骨形成和破骨細(xì)胞骨吸收平衡失調(diào)造成骨組織微觀結(jié)構(gòu)惡化、骨量減少、骨強(qiáng)度降低的一種慢性骨代謝疾病[1]。雙膦酸鹽(bisphosphonates,BPs)是臨床首選使用的治療骨質(zhì)疏松癥最有效的藥物之一[1]。唑來膦酸屬于含氮雙膦酸鹽,目前已有大量研究提供證據(jù)支持唑來膦酸通過抑制破骨細(xì)胞的形成和促進(jìn)成熟破骨細(xì)胞的調(diào)亡調(diào)節(jié)骨吸收,從而在提高骨密度、促進(jìn)骨愈合、預(yù)防骨質(zhì)疏松繼發(fā)性骨折等方面發(fā)揮積極作用,但其對(duì)于成骨細(xì)胞的影響仍有諸多不同觀點(diǎn)[2-4]。
半乳糖是一種還原糖,機(jī)體內(nèi)適量的D-半乳糖可以經(jīng)由肝臟途徑代謝,過量堆積的D-半乳糖則無法代謝,隨后轉(zhuǎn)化形成晚期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)在組織中蓄積,從而誘導(dǎo)細(xì)胞的損傷[5]。AGEs是一類由還原糖以及蛋白質(zhì)、脂類或核酸在非酶促反應(yīng)下形成的一種復(fù)合物。年齡、飲食等因素都會(huì)影響個(gè)體代謝過程中的糖基化反應(yīng)產(chǎn)生AGEs,蓄積在人體中的AGEs已經(jīng)被證實(shí)在一些慢性疾病中起著關(guān)鍵的病理生理作用[6]。近年來國(guó)外有研究關(guān)注蛋白質(zhì)無酶糖基化可能影響骨重塑的假說,認(rèn)為AGEs能通過與特定的受體結(jié)合觸發(fā)下游信號(hào)通路促進(jìn)氧化應(yīng)激等反應(yīng),造成細(xì)胞損傷,影響骨代謝平衡[7]。
在本研究中,筆者采用MTT法檢測(cè)不同濃度D-半乳糖對(duì)成骨細(xì)胞活性的影響,選取合適的濃度建立D-半乳糖誘導(dǎo)的成骨細(xì)胞損傷模型。檢測(cè)不同濃度唑來膦酸對(duì)成骨細(xì)胞的活性水平的影響,以及不同濃度唑來膦酸對(duì)D-半乳糖誘導(dǎo)成骨細(xì)胞活性水平損傷的影響。評(píng)估不同濃度的唑來膦酸對(duì)D-半乳糖誘導(dǎo)下成骨細(xì)胞損傷的拮抗作用,旨在為進(jìn)一步研究唑來膦酸對(duì)成骨細(xì)胞的影響及影響機(jī)制提供合理的參考,現(xiàn)報(bào)道如下。
1 材料與方法
1.1 材料 小鼠成骨細(xì)胞株MC3T3-E1、α-MEM培養(yǎng)基購(gòu)于上海中喬新舟生物科技公司;胎牛血清購(gòu)于南京錦在生物科技公司;0.25%含EDTA胰蛋白酶、青/鏈霉素混合液、PBS緩沖液、MTT試劑盒購(gòu)于上海碧云天生物科技有限公司;D-半乳糖、唑來膦酸單水化合物購(gòu)于上海阿拉丁生化科技公司。
1.2 方法
1.2.1 成骨細(xì)胞培養(yǎng) 將凍存的MC3T3-E1細(xì)胞復(fù)蘇,接種于含10%胎牛血清、1%青/鏈霉素的α-MEM培養(yǎng)瓶中,置于37 ℃、5% CO2的細(xì)胞恒溫培養(yǎng)箱中培養(yǎng)。待細(xì)胞生長(zhǎng)至密度達(dá)到80%后,采用0.25%的胰蛋白酶進(jìn)行細(xì)胞傳代,隔天換液1次。
1.2.2 MTT法檢測(cè)不同濃度D-半乳糖對(duì)成骨細(xì)胞活性的影響 取處于對(duì)數(shù)生長(zhǎng)期的MC3T3-E1細(xì)胞,利用酶消化法制備細(xì)胞懸液。調(diào)整細(xì)胞濃度后以每孔100 μL(5×103個(gè)/孔)接種入96孔板。設(shè)置不同濃度梯度的D-半乳糖為實(shí)驗(yàn)組(15、20、30 mg/mL),同時(shí)設(shè)置0 mg/mL D-半乳糖為對(duì)照組。每組設(shè)置6個(gè)復(fù)孔板。靜置于細(xì)胞培養(yǎng)箱中培養(yǎng)24 h。隨后,每孔加入5 mg/mL MTT溶液20 μL,繼續(xù)孵育4 h。孵育時(shí)間結(jié)束后,每孔加入150 μL Formazan溶解液(formazan solvent),搖床震蕩10 min,促使藍(lán)紫色沉淀完全溶解。最后在酶聯(lián)免疫檢測(cè)儀上檢測(cè)每個(gè)孔的吸光度值(OD值),檢測(cè)波長(zhǎng)為570 nm。細(xì)胞存活率(%)=[(測(cè)定組OD值-空白組OD值)/(對(duì)照組OD值-空白組OD值)]×100%。
1.2.3 MTT法檢測(cè)不同濃度唑來膦酸對(duì)成骨細(xì)胞活性的影響 將MC3T3-E1成骨細(xì)胞以每孔100 μL(5×103個(gè)細(xì)胞/孔)接種入96孔板。設(shè)置不同濃度梯度的唑來膦酸為實(shí)驗(yàn)組(10-8、10-7、10-6、10-5、10-4、10-3mol/L),同時(shí)設(shè)置不加藥物干預(yù)為對(duì)照組。每組濃度設(shè)置6個(gè)復(fù)孔,于37 ℃細(xì)胞培養(yǎng)箱中培養(yǎng)48 h后,用上述MTT法測(cè)定成骨細(xì)胞活性。
1.2.4 MTT法檢測(cè)不同濃度唑來膦酸對(duì)D-半乳糖誘導(dǎo)的成骨細(xì)胞活性損傷的影響 將MC3T3-E1成骨細(xì)胞以每孔100 μL(5×103個(gè)細(xì)胞/孔)接種入96孔板。將細(xì)胞分為正常組、模型組及實(shí)驗(yàn)組,正常組僅加入培養(yǎng)基,模型組加入濃度為20 mg/mL的D-半乳糖,實(shí)驗(yàn)組加入濃度為20 mg/mL的D-半乳糖及終濃度分別為0.01、0.05、0.1、0.25、0.5 μmol/L的唑來膦酸。每組均設(shè)置6個(gè)復(fù)孔,于相同條件下培養(yǎng)48 h后,用上述MTT法檢測(cè)細(xì)胞活性。
1.3 統(tǒng)計(jì)學(xué)處理 所有實(shí)驗(yàn)數(shù)據(jù)均以(x±s)表示,應(yīng)用GraphPad Prism7軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析,組間比較采用t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。相關(guān)圖形應(yīng)用GraphPad Prism7軟件繪制。
2 結(jié)果
2.1 不同濃度D-半乳糖對(duì)成骨細(xì)胞活性的影響 對(duì)照組(0 mg/mL)的細(xì)胞活性為(100.00±10.16)%,隨著D-半乳糖濃度的升高(15、20、30 mg/mL),成骨細(xì)胞活性逐漸減弱,分別為(107.60±5.15)%、(87.79±3.85)%、(74.31±3.27)%。當(dāng)D-半乳糖濃度增加到20 mg/mL時(shí),實(shí)驗(yàn)組細(xì)胞活性低于對(duì)照組(P<0.05)。當(dāng)D-半乳糖濃度增加到30 mg/mL時(shí),實(shí)驗(yàn)組成骨細(xì)胞活性顯著低于對(duì)照組(P<0.000 1)。見圖1。gzslib2022040216412.2 不同濃度唑來膦酸對(duì)成骨細(xì)胞活性的影響 濃度為10-8、10-7mol/L的實(shí)驗(yàn)組成骨細(xì)胞活性為(113.90±6.86)%、(112.62±7.50)%,均高于對(duì)照組(100.00±9.88)%(P<0.05)。濃度為10-6 mol/L的實(shí)驗(yàn)組成骨細(xì)胞活性(100.50±7.04)%與對(duì)照組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。濃度為10-5、10-4、10-3mol/L的實(shí)驗(yàn)組成骨細(xì)胞活性為(50.48±3.65)%、(5.42±0.62)%、(4.75±1.13)%,均顯著低于對(duì)照組(P<0.000 1)。見圖2。
2.3 不同濃度唑來膦酸對(duì)D-半乳糖誘導(dǎo)的成骨細(xì)胞損傷的影響 與正常組成骨細(xì)胞活性(100.00±10.66)%相比,模型組(56.73±11.54)%顯著降低(P<0.000 1)。以濃度為0.01與0.05 μmol/L唑來膦酸干預(yù)48 h后的實(shí)驗(yàn)組成骨細(xì)胞活性為(76.60±10.76)%、(75.92±13.02)%,均高于模型組(P<0.05)。0.1 μmol/L的實(shí)驗(yàn)組成骨細(xì)胞活性(56.41±9.40)%與模型組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。0.5 μmol/L的實(shí)驗(yàn)組成骨細(xì)胞活性為(38.52±12.06)%低于模型組(P<0.05)。見圖3。
3 討論
D-半乳糖是目前公認(rèn)的糖類致衰誘導(dǎo)劑,被廣泛應(yīng)用于衰老動(dòng)物模型構(gòu)建和體外細(xì)胞衰老模型的復(fù)制。在體外,經(jīng)D-半乳糖干預(yù)的細(xì)胞表現(xiàn)出線粒體功能失調(diào)、過度晚期糖基化產(chǎn)物形成和氧化應(yīng)激等特征[5]。在體內(nèi),高水平的D-半乳糖能夠誘導(dǎo)包括大腦、心臟、肝臟、骨骼、骨骼肌等不同器官和組織發(fā)生炎癥、線粒體功能障礙及細(xì)胞凋亡等變化[5]。D-半乳糖造成細(xì)胞損傷的一個(gè)機(jī)制是過高水平的D-半乳糖因無法正常代謝,與大分子蛋白質(zhì)或肽的游離氨基結(jié)合不可逆的轉(zhuǎn)化為AGEs,大量積聚的AGEs通過與晚期糖基化終產(chǎn)物受體(receptor for AGEs,RAGE)結(jié)合,啟動(dòng)下游信號(hào)級(jí)聯(lián)反應(yīng),引起細(xì)胞和組織損傷[5-8]。
AGEs已被證實(shí)在骨質(zhì)疏松癥、神經(jīng)退行性疾病、動(dòng)脈粥樣硬化和某些腫瘤的發(fā)病發(fā)展機(jī)制中發(fā)揮作用,骨骼組織和細(xì)胞在人體中更新相對(duì)緩慢,隨著年齡增長(zhǎng)和外部環(huán)境多因素影響,骨組織易受到累積的AGEs影響[6,10]。有研究表明AGEs-RAGE軸對(duì)細(xì)胞的作用機(jī)制為二者結(jié)合后促進(jìn)細(xì)胞內(nèi)活性氧(reactive oxygen species,ROS)的產(chǎn)生,再激活多條細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)通路,觸發(fā)核轉(zhuǎn)錄因子κB(nuclearfactor-kappaB,NF-κB)、絲裂原活化的蛋白激酶(mitogen activated protein kinase,MAPKs)等細(xì)胞內(nèi)傳導(dǎo)通道的活化,引起大量促炎細(xì)胞因子、生長(zhǎng)因子和黏附分子等的表達(dá)和釋放,激活炎癥過程,觸發(fā)細(xì)胞分解代謝失衡,最終抑制細(xì)胞增殖或誘導(dǎo)凋亡,使骨重塑紊亂[6,11-12]。Meng等[13]通過對(duì)人成骨細(xì)胞hFOB1細(xì)胞系的研究發(fā)現(xiàn),低劑量AGEs修飾的牛血清白蛋白刺激成骨細(xì)胞增殖,高劑量AGEs修飾的牛血清刺激細(xì)胞凋亡,提出AGEs主要通過RAGE/Raf/MEK/ERK(receptor of advanced glycation end products/Raf protein/mitogen-activated protein kinase/extracellular signal-regulated kinase/extracellular signal-regulated kinase)通路影響成骨細(xì)胞的增殖。另有一項(xiàng)研究證明一種典型的晚期糖基化產(chǎn)物戊糖苷對(duì)成骨細(xì)胞活性具有劑量依賴性負(fù)性調(diào)節(jié)作用[5]。本研究中,以含D-半乳糖培養(yǎng)基對(duì)成骨細(xì)胞進(jìn)行體外培養(yǎng),成骨細(xì)胞活性檢測(cè)的結(jié)果表明隨著半乳糖濃度(15、20、30 mg/mL)的升高,D-半乳糖對(duì)成骨細(xì)胞活性的抑制作用增加。
雙膦酸鹽是一類目前臨床上應(yīng)用最為廣泛的抗骨質(zhì)疏松癥藥物,唑來膦酸是雙膦酸鹽第三代藥物,唑來膦酸的分子結(jié)構(gòu)式中含有雜環(huán)結(jié)構(gòu)的氨基,這使其在抗骨質(zhì)疏松治療方面比不含氮的雙膦酸鹽類藥物療效更佳,是目前治療骨質(zhì)疏松性癥的臨床一線用藥[1-2]。以往諸多研究已經(jīng)證明了唑來膦酸通過抑制核因子-κB配體受體激活劑(receptor activator of nuclear factor kappa-B,RANKRANKL)誘導(dǎo)的NF-κB活化和c-Jun氨基末端激酶磷酸化信號(hào)通路,抑制破骨細(xì)胞分化生成來調(diào)節(jié)骨代謝[2-4]。
然而,唑來膦酸對(duì)成骨細(xì)胞的影響尚存在許多不同觀點(diǎn)。有研究表明唑來膦酸作為一種含氮BPs能夠刺激成骨細(xì)胞的活性,調(diào)節(jié)多種生長(zhǎng)因子和細(xì)胞因子的分泌,促進(jìn)骨髓基質(zhì)細(xì)胞向成骨細(xì)胞系的分化,并能夠抑制糖皮質(zhì)激素作用后的成骨細(xì)胞凋亡[14-15]。Basso等[16]以人成骨細(xì)胞MG63細(xì)胞系為研究對(duì)象,發(fā)現(xiàn)唑來膦酸對(duì)成骨細(xì)胞的細(xì)胞毒性作用表現(xiàn)為電子顯微鏡下成骨細(xì)胞形態(tài)改變,以及堿性磷酸酶(alkaline phosphatase,ALP)和骨鈣素(osteocalcin,OCN)的基因表達(dá)下降。該研究者的另一項(xiàng)研究評(píng)估了接種于經(jīng)不同濃度唑來膦酸預(yù)處理鈦板上的人成骨細(xì)胞細(xì)胞黏附性和細(xì)胞活性,結(jié)果顯示接種到經(jīng)0.5及1.5 ?mol/L濃度唑來膦酸處理后鈦盤上的成骨細(xì)胞存活率均降低[17]。Huang等[18]研究結(jié)果顯示高濃度(>10 ?mol/L)的唑來膦酸誘導(dǎo)成骨細(xì)胞凋亡,低濃度(≤1 ?mol/L)的唑來膦酸通過下調(diào)BMP-2(bone morphogenetic protein-2,BMP-2)抑制成骨細(xì)胞的分化。Scala等[15]比較雙膦酸鹽、阿侖膦酸和利塞膦酸對(duì)破骨前樣細(xì)胞RAW264.7和成骨前樣細(xì)胞MC3T3-E1的影響,研究結(jié)果顯示3×10-8、3×10-7mol/L的唑來膦酸能提高成骨細(xì)胞MC3T3-E1的細(xì)胞活性并誘導(dǎo)顯著的礦化。Acil等[19]評(píng)估唑來膦酸和阿侖膦酸對(duì)人成骨細(xì)胞、人牙齦成纖維細(xì)胞和人骨肉瘤細(xì)胞系的凋亡和促炎細(xì)胞因子基因表達(dá)情況的研究結(jié)果顯示,在唑來膦酸給藥下成骨細(xì)胞的增殖和細(xì)胞活力以劑量依賴性方式受到負(fù)面影響,且表現(xiàn)出炎癥細(xì)胞因子IL-6、IL-12表達(dá)的增加。諸多有關(guān)唑來膦酸對(duì)成骨細(xì)胞作用相關(guān)研究結(jié)果表現(xiàn)出不同結(jié)論,所以針對(duì)唑來膦酸對(duì)成骨細(xì)胞作用的深入研究具有較大意義。本研究結(jié)果顯示較低濃度的(10-8、10-7mol/L)唑來膦酸有促進(jìn)成骨細(xì)胞活性的作用,較高濃度的(10-5、10-4、10-3mol/L)唑來膦酸則對(duì)成骨細(xì)胞的活性的表現(xiàn)出顯著的抑制作用,推測(cè)唑來膦酸對(duì)成骨細(xì)胞活性的影響可能與濃度有關(guān),其具體濃度范圍及作用機(jī)制仍有待進(jìn)一步的研究。gzslib202204021642雙膦酸鹽能否拮抗D-半乳糖等糖類致衰劑誘導(dǎo)AGEs致細(xì)胞損傷也值得深入研究。Gangoiti等[20]的研究表明唑來膦酸可能通過阻斷AGEs介導(dǎo)的ROS生成對(duì)成骨細(xì)胞活性影響起正向調(diào)節(jié)作用。其后續(xù)文獻(xiàn)[21]發(fā)現(xiàn)低濃度(10-8 mol/L)的阿侖膦酸能夠逆轉(zhuǎn)AGEs誘導(dǎo)的成骨細(xì)胞凋亡和細(xì)胞形態(tài)改變。本研究結(jié)果顯示0.01、0.05 μmol/L的唑來膦酸濃度具有拮抗D-半乳糖致成骨細(xì)胞損傷的作用(P<0.05)。
綜上所述,本研究評(píng)估了不同濃度唑來膦酸對(duì)成骨細(xì)胞活性的影響,初步探討唑來膦酸對(duì)D-半乳糖導(dǎo)致的成骨細(xì)胞損傷的拮抗作用。本研究的不足之處在于未在基因、蛋白質(zhì)組學(xué)方面做更進(jìn)一步的深入研究。有關(guān)D-半乳糖誘導(dǎo)AGEs的產(chǎn)生繼而通過損傷成骨細(xì)胞活性來影響骨形成促成骨質(zhì)疏松的發(fā)展,有著一系列的可能性。這一問題的進(jìn)一步澄清,以及針對(duì)唑來膦酸對(duì)于成骨細(xì)胞及AGEs作用途徑的研究將為唑來膦酸在骨質(zhì)疏松癥臨床治療中的應(yīng)用提供合理的循證實(shí)驗(yàn)依據(jù)。
參考文獻(xiàn)
[1]中華醫(yī)學(xué)會(huì)骨質(zhì)疏松和骨礦鹽疾病分會(huì).原發(fā)性骨質(zhì)疏松癥診療指南(2017)[J].中國(guó)骨質(zhì)疏松雜志,2019,25(3):281-309.
[2] ORYAN A,SAHVIEH S.Effects of bisphosphonates on osteoporosis:Focus on zoledronate[J].Life Sci,2021(264):118681.
[3] WANG L,F(xiàn)ANG D,XU J,et al.Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis:a brief review[J].BMC Cancer,2020,20(1):1059.
[4]黃曉林,廖健,洪偉,等.破骨細(xì)胞形成過程中唑來膦酸的作用途徑及機(jī)制[J].中國(guó)組織工程研究,2019,23(17):2716-2721.
[5] AZMAN K F,ZAKARIA R.D-Galactose-induced accelerated aging model:an overview[J].Biogerontology,2019,20(6):763-782.
[6] MOLDOGAZIEVA N T,MOKHOSOEV I M,MELNIKOVA T I,et al.Oxidative stress and advanced lipoxidation and glycation end products(ALEs and AGEs)in aging and age-related diseases[J].Oxid Med Cell Longev,2019,2019:3085756.
[7] REYNAERT N L,GOPAL P,RUTTEN E P A,et al.Advanced glycation end products and their receptor in age-related,non-communicable chronic inflammatory diseases;Overview of clinical evidence and potential contributions to disease[J].International Journal of Biochemistry & Cell Biology,2016,81(Pt B):403-418.
[8] AYDIN F,KALAZ E B,KUCUKGERGIN C,et al.Carnosine treatment diminished oxidative stress and glycation products in serum and tissues of D-galactose-treated rats[J].Current Aging Science,2018,11(1):10-15.
[9] SHWE T,PRATCHAYASAKUL W,CHATTIPAKORN N,et al.
Role of D-galactose-induced brain aging and its potential used for therapeutic interventions[J].Experimental Gerontology,2018,101:13-36.
[10] FOURNET M,BONTE F,DESMOULIERE A.Glycation Damage:A Possible Hub for Major Pathophysiological Disorders and Aging[J].Aging and Disease,2018,9(5):880-900.
[11] CHEN J,JING J,YU S,SONG M,et al.Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis[J].American Journal of Translational Research,2016,8(5):2169-2178.
[12] CHEN H,LIU W,WU X,et al.Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2,P38 and STAT3 signalling pathways[J].International Immunopharmacology,2017,52:143-149.gzslib202204021642[13] MENG H Z,ZHANG W L,LIU F,et al.Advanced Glycation End Products Affect Osteoblast Proliferation and Function by Modulating Autophagy Via the Receptor of Advanced Glycation End Products/Raf Protein/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase/Extracellular Signal-regulated Kinase(RAGE/Raf/MEK/ERK)Pathway[J].Journal of Biological Chemistry,2015,290(47):28189-28199.
[14] MARUOTTI N,CORRADO A,NEVE A,et al.Bisphosphonates:effects on osteoblast[J].European Journal of Clinical Pharmacology,2012,68(7):1013-1018.
[15] SCALA R,MAQOUD F,ANGELELLI M,et al.Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts:Cell Proliferation and Mineralization Effect[J].Cancers(Basel),2019,11(2):206.
[16] BASSO F G,SILVEIRA TURRIONI A P,HEBLING J,et al.Zoledronic acid inhibits human osteoblast activities[J].Gerontology,2013,59(6):534-541.
[17] BASSO F G,PANSANI T N,CARDOSO L M,et al.Influence of bisphosphonates on the behavior of osteoblasts seeded onto titanium discs[J].Brazilian Dental Journal,2020,31(3):304-309.
[18] HUANG X,HUANG S,GUO F,et al.Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro[J].Molecular Medicine Reports,2016,13(1):613-622.
[19] ACIL Y,ARNDT M L,GULSES A,et al.Cytotoxic and inflammatory effects of alendronate and zolendronate on human osteoblasts,gingival fibroblasts and osteosarcoma cells[J].Journal of Cranio-Maxillo-Facial Surgery,2018,46(4):538-546.
[20] GANGOITI M V,CORTIZO A M,ARNOL V,et al.Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cellls[J].European Journal of Pharmacology,2008,600(1-3):140-147.
[21] GANGOITI M V,ANBINDER P S,CORTIZO A M,et al.
Morphological changes induced by advanced glycation endproducts in osteoblastic cells:effects of co-incubation with alendronate[J].Acta Histochem,2013,115(7):649-657.