王思彤,陳艷,羅雨嘉,楊緣緣,蔣志洋,蔣鑫怡,鐘樊,陳好,徐紅星,吳儼,段紅霞*,唐斌*
三種新型化合物對(duì)草地貪夜蛾海藻糖與幾丁質(zhì)代謝及生長(zhǎng)發(fā)育的影響
王思彤1,陳艷1,羅雨嘉1,楊緣緣1,蔣志洋2,蔣鑫怡1,鐘樊1,陳好1,徐紅星3,吳儼4,段紅霞2*,唐斌1*
1杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州 311121;2中國(guó)農(nóng)業(yè)大學(xué)理學(xué)院,北京 100193;3浙江省農(nóng)業(yè)科學(xué)院植物保護(hù)與微生物研究所,杭州310021;4貴陽(yáng)學(xué)院生物與環(huán)境工程學(xué)院,貴陽(yáng) 550005
【目的】幾丁質(zhì)是昆蟲外骨骼和圍食膜的主要成分,其合成始于海藻糖酶(trehalase,TRE),終于幾丁質(zhì)合成酶(chitin synthase,CHS),蛻皮與外表皮重塑過(guò)程則需要依靠幾丁質(zhì)酶(chitinase,CHT)完成。本研究通過(guò)注射3種新型化合物,檢測(cè)草地貪夜蛾()體內(nèi)海藻糖酶和幾丁質(zhì)酶活性、相關(guān)基因表達(dá)量并觀察其生長(zhǎng)發(fā)育,驗(yàn)證新型化合物對(duì)海藻糖酶及幾丁質(zhì)酶的抑制效果,對(duì)效果顯著的化合物進(jìn)行篩選,探究其調(diào)控草地貪夜蛾生長(zhǎng)發(fā)育的機(jī)理?!痉椒ā坷蔑@微注射法向草地貪夜蛾3齡幼蟲分別注射丁烯內(nèi)酯類化合物ZK-I-21、ZK-I-23和胡椒堿類似物ZK-PI-4。注射后48 h檢測(cè)其海藻糖酶活性、幾丁質(zhì)酶活性及相關(guān)糖含量的變化情況,并利用實(shí)時(shí)熒光定量PCR(qRT-PCR)在分子水平上測(cè)定4個(gè)關(guān)鍵基因(、、、)的相對(duì)表達(dá)量;觀察注射后草地貪夜蛾幼蟲至成蟲期間的表型變化,記錄發(fā)育過(guò)程中的死亡率及畸形情況。【結(jié)果】與對(duì)照組相比,注射ZK-I-21和ZK-PI-4后草地貪夜蛾膜結(jié)合型海藻糖酶活性分別為極顯著下降(<0.01)和顯著下降(<0.05)。qRT-PCR檢測(cè)結(jié)果顯示,注射ZK-I-21后表達(dá)量極顯著上升,表達(dá)量極顯著下降;注射ZK-I-23后表達(dá)量極顯著下降,表達(dá)量極顯著上升;注射ZK-PI-4后表達(dá)量極顯著下降。發(fā)育歷期觀察結(jié)果顯示,ZK-I-21使草地貪夜蛾6齡幼蟲發(fā)育歷期極顯著延長(zhǎng),同時(shí)蛹重變輕、蛹長(zhǎng)變短;ZK-I-23使5齡和6齡幼蟲長(zhǎng)度顯著縮短;ZK-PI-4使成蟲羽化率顯著降低。3種抑制劑均可紊亂草地貪夜蛾的海藻糖代謝進(jìn)而紊亂幾丁質(zhì)代謝,造成草地貪夜蛾蛻皮困難甚至死亡。【結(jié)論】ZK-I-21與ZK-PI-4是膜結(jié)合型海藻糖酶抑制化合物,ZK-I-23可抑制可溶性海藻糖酶基因的表達(dá),3種化合物均通過(guò)影響海藻糖代謝過(guò)程進(jìn)而導(dǎo)致幾丁質(zhì)代謝的紊亂,導(dǎo)致昆蟲蛻皮困難、畸形、生長(zhǎng)發(fā)育受影響。以上結(jié)果可為將來(lái)利用新型抑制劑調(diào)控害蟲生長(zhǎng)發(fā)育從而防控害蟲提供理論依據(jù),為綠色、高效殺蟲劑的研發(fā)提供支持。
草地貪夜蛾;海藻糖酶;幾丁質(zhì)酶;實(shí)時(shí)熒光定量 PCR;抑制劑
【研究意義】草地貪夜蛾()屬鱗翅目夜蛾科灰翅夜蛾屬,原生于美洲的亞熱帶和熱帶地區(qū)[1],于2019年1月入侵我國(guó)的云南地區(qū)并迅速擴(kuò)散[2]。該害蟲具有適應(yīng)性強(qiáng)、食性廣、繁殖和遷飛能力強(qiáng)及防控難度大等特點(diǎn)[3],破壞力極大。其幼蟲主要危害玉米、水稻、小麥等植株[4-5],造成減產(chǎn)甚至顆粒無(wú)收。傳統(tǒng)化學(xué)農(nóng)藥的使用不僅會(huì)使害蟲產(chǎn)生抗藥性,加大防控難度,還會(huì)破壞生態(tài)環(huán)境。因此,篩選安全有效的新型生物農(nóng)藥迫在眉睫?!厩叭搜芯窟M(jìn)展】幾丁質(zhì)廣泛存在于甲殼類動(dòng)物和昆蟲外骨骼中[6],是構(gòu)成昆蟲腸圍食膜、表皮和氣管等的主要成分[7-8]。幾丁質(zhì)合成通路始于海藻糖酶(trehalase,TRE)[9-10],終于幾丁質(zhì)合成酶(chitin synthase,CHS)[11-13]。其中海藻糖酶包含可溶性海藻糖酶(soluble trehalase,TRE1)和膜結(jié)合型海藻糖酶(membrane-bound trehalase,TRE2)[14]兩類,在幾丁質(zhì)合成通路具有重要的調(diào)控功能[15]。在昆蟲蛻皮過(guò)程中,幼蟲需蛻掉舊表皮,形成新表皮,幾丁質(zhì)合成酶為幾丁質(zhì)合成過(guò)程中最為關(guān)鍵的酶[9],幾丁質(zhì)酶(chitinase,CHT)為幾丁質(zhì)降解酶,這兩類酶在調(diào)控蛻皮過(guò)程中起著非常重要的作用[16],共同負(fù)責(zé)昆蟲的蛻皮過(guò)程[9,17]。由于海藻糖酶和幾丁質(zhì)酶的重要作用,使用海藻糖酶或幾丁質(zhì)酶抑制劑調(diào)控幾丁質(zhì)合成與代謝通路進(jìn)而影響害蟲蛻皮,成為害蟲防治上的一種非常重要的手段。海藻糖酶抑制劑基本作用機(jī)理是與海藻糖酶活性位點(diǎn)上的氨基酸通過(guò)氫鍵緊密結(jié)合形成復(fù)合物,競(jìng)爭(zhēng)性地抑制海藻糖酶的活性[18-20]。前人已從天然來(lái)源中分離出幾種有效的海藻糖酶抑制劑,如井岡霉素[21]、有效霉素、Salbostatin、海藻唑啉和單環(huán)亞胺糖(如DNJ)[22]及其衍生物、雙環(huán)亞氨基糖及其糖基衍生物[23]。近年來(lái)報(bào)道的幾丁質(zhì)酶抑制劑大多是通過(guò)虛擬篩選或以天然產(chǎn)物為先導(dǎo)發(fā)現(xiàn)的,缺少人工合成的,其中部分化合物具有很高的抑制活性,但其殺蟲活性仍有待探究和提高[24],幾丁質(zhì)酶抑制劑包括糖類(如脫乙酰殼多糖、阿洛氨菌素等)、肽類(如環(huán)五肽類、二肽類化合物、Psammaplin A等)和新型幾丁質(zhì)酶抑制劑(如香豆素類化合物、噻唑烷酮類化合物等)等[24-25]。核苷類似物(C21H18N2O6和C22H20N2O6)具備候選殺蟲藥物潛在活性[26-27],本研究所用丁烯內(nèi)酯類化合物ZK-I-21(C21H18N2O6)、ZK-I-23(C22H20N2O6)和胡椒堿類似物ZK-PI-4(C20H19NO4)能否作用于幾丁質(zhì)合成及潛在的分子調(diào)控機(jī)制有待進(jìn)一步研究?!颈狙芯壳腥朦c(diǎn)】海藻糖酶抑制劑注入幼蟲體內(nèi)后可有效抑制海藻糖酶活性[28-29],注射幾丁質(zhì)酶抑制劑則可以特異性地抑制幾丁質(zhì)酶活性,影響下游幾丁質(zhì)代謝通路,導(dǎo)致昆蟲因蛻皮困難而死亡。對(duì)草地貪夜蛾注射ZK-I-21、ZK-I-23、ZK-PI-4這3種新型抑制化合物,檢測(cè)幾丁質(zhì)代謝相關(guān)基因表達(dá)量及相關(guān)糖含量,并結(jié)合前人研究結(jié)果對(duì)化合物的抑制效果進(jìn)行評(píng)價(jià)?!緮M解決的關(guān)鍵問(wèn)題】以草地貪夜蛾作為試驗(yàn)對(duì)象注射ZK-I-21、ZK-I-23、ZK-PI-4,根據(jù)3種抑制化合物能否調(diào)節(jié)海藻糖代謝或幾丁質(zhì)代謝通路以及對(duì)生長(zhǎng)發(fā)育等指標(biāo)是否有影響,篩選抑制作用強(qiáng)的化合物,探討其作用機(jī)制,推動(dòng)綠色、高效生物殺蟲劑的研發(fā)。
試驗(yàn)于2020年9月至2021年6月在杭州師范大學(xué)完成。
供試草地貪夜蛾蟲源來(lái)自浙江省農(nóng)業(yè)科學(xué)院,飼養(yǎng)于杭州師范大學(xué)動(dòng)物適應(yīng)與進(jìn)化實(shí)驗(yàn)室。草地貪夜蛾幼蟲飼養(yǎng)在人工氣候箱內(nèi),成蟲飼養(yǎng)在人工氣候室內(nèi),條件為溫度(25±1)℃、相對(duì)濕度(60±10)%、光周期16L﹕8D。幼蟲飼喂人工飼料,成蟲飼喂10%蜂蜜水。以3齡第1天的草地貪夜蛾幼蟲作為試驗(yàn)對(duì)象,進(jìn)行化合物的顯微注射。
3種新型抑制化合物ZK-I-21、ZK-I-23、ZK-PI-4,由中國(guó)農(nóng)業(yè)大學(xué)合成并提供,其名稱、分子量及分子式見(jiàn)表1,使用2% DMSO溶解為2×10-3mmol·mL-1的化合物溶液用于后續(xù)注射。
DNA Marker DL2000、6×Loading buffer、熒光定量試劑SYBR Premix Ex Taq、PrimeScriptTMRT regeant Kit with gDNA Eraser試劑盒(Takara);Ambion T7轉(zhuǎn)錄試劑盒(T7 RiboMAXTMExpress RNAi system Promega Corporation,Madison,Wl);葡萄糖分析試劑盒(Sigma-Aldrich);幾丁質(zhì)酶試劑盒(蘇州科銘生物技術(shù)有限公司);Trizol試劑盒(Invitrogen);1×PBS Buffer(上海生工);BCA工作液(Beyotime,China);DEPC處理水(上海生工)等常規(guī)試劑(國(guó)藥集團(tuán)化學(xué)試劑有限公司)。
表1 3種抑制化合物信息
1.3.1 新型化合物的顯微注射 使用Eppendorf TransferMan? 4r顯微注射系統(tǒng)進(jìn)行注射,注射前調(diào)整泵出體積符合注射量。注射部位為草地貪夜蛾第2對(duì)胸足與第3對(duì)胸足之間;注射量為6×10-7mmol/頭(濃度為2×10-3mmol·mL-1,注射體積為300 nL)。以注射同體積的2% DMSO的草地貪夜蛾為對(duì)照組。不同注射組每24 h觀察一次,注射后48 h取材用于后續(xù)試驗(yàn),試驗(yàn)材料未區(qū)分雌雄。
1.3.2 總RNA的抽提及cDNA的合成 注射后48 h草地貪夜蛾幼蟲及組織的總RNA抽提采用Trizol試劑盒并按照產(chǎn)品說(shuō)明進(jìn)行提取。提取后用1%的瓊脂糖檢測(cè)總RNA的質(zhì)量,使用微量核酸測(cè)定儀NanoDropTM2000測(cè)定提取RNA的濃度及純度。根據(jù)PrimeScriptTMRT Reagent Kit with gDNA Eraser試劑盒說(shuō)明配置體系,進(jìn)行cDNA第一鏈的合成。
1.3.3 海藻糖和幾丁質(zhì)代謝途徑相關(guān)通路基因表達(dá)量的測(cè)定 使用SYBR Premix Ex Taq試劑盒進(jìn)行實(shí)時(shí)熒光定量PCR(qRT-PCR),以核糖體蛋白質(zhì)L10(ribosomal protein L10,RPL10)作為內(nèi)參基因[30],PCR引物見(jiàn)表2。PCR反應(yīng)體系(10 μL):primer F(10 pmol)0.4 μL、primer R(10 pmol)0.4 μL、模板cDNA 1 μL、RNase Free ddH2O 3.2 μL、TB Green 5 μL。PCR反應(yīng)程序:95℃預(yù)變性2 s,95℃變性30 s,59℃退火延伸30 s,35個(gè)循環(huán)。qRT-PCR數(shù)據(jù)采用2-ΔΔCT法進(jìn)行分析[31]。計(jì)算公式:2-ΔΔCT=2-[(CT待測(cè)組-CT待測(cè)RPL10)-(CT對(duì)照組-CT 對(duì)照RPL10)]。
1.3.4 海藻糖酶活性及糖含量的測(cè)定 將注射后7只草地貪夜蛾幼蟲放進(jìn)1.5 mL離心管中,進(jìn)行3次生物學(xué)重復(fù)。每個(gè)離心管中加入200 μL磷酸鹽緩沖溶液(PBS)超聲破碎30 min,破碎后加入800 μL PBS,4℃,1 000×g離心20 min。取350 μL上清,4℃,20 800×超離心60 min,另取350 μL上清用于海藻糖濃度(蒽酮法)和總糖原濃度(Sigma葡萄糖分析試劑盒)的測(cè)定。超離心后的上清用于可溶性海藻糖酶的測(cè)定;沉淀用PBS懸浮后用于膜結(jié)合型海藻糖酶和蛋白質(zhì)含量(貝博BCA試劑盒)的測(cè)定,具體步驟按照對(duì)應(yīng)試劑盒說(shuō)明書及文獻(xiàn)[32]操作。
表2 實(shí)時(shí)熒光定量PCR檢測(cè)基因引物序列
1.3.5 幾丁質(zhì)酶活性的測(cè)定 將注射后10只草地貪夜蛾幼蟲放進(jìn)1.5 mL離心管中,進(jìn)行3次生物學(xué)重復(fù),用于檢測(cè)幾丁質(zhì)酶活性。根據(jù)蘇州科銘生物技術(shù)有限公司的幾丁質(zhì)酶試劑盒說(shuō)明書進(jìn)行活性測(cè)定。
1.3.6 生長(zhǎng)發(fā)育觀察 注射新型抑制化合物后,每天對(duì)其幼蟲生長(zhǎng)狀況進(jìn)行觀察,記錄幼蟲死亡數(shù)、齡期,觀察幼蟲的蛻皮情況;待其成蛹,測(cè)量蛹重與蛹長(zhǎng),統(tǒng)計(jì)其化蛹天數(shù)、化蛹率、羽化率及死亡率。使用相機(jī)對(duì)蛻皮失敗或畸形個(gè)體拍照記錄,蛹在30 d后仍未孵化為成蟲,則認(rèn)為已死亡;羽化時(shí)如果成蟲無(wú)法從蛹中脫出或沒(méi)有正常展開翅則被認(rèn)為是畸形。使用Adobe Photoshop 2020對(duì)圖片進(jìn)行處理。
1.3.7 數(shù)據(jù)統(tǒng)計(jì)與分析 使用Microsoft Office Excel 2019軟件進(jìn)行數(shù)據(jù)整理與分析。以2% DMSO注射組為對(duì)照組,采用IBM SPSS Statistics 23軟件中的獨(dú)立樣本T檢驗(yàn)和單因素方差分析LSD法分析差異顯著性,數(shù)值用平均值±標(biāo)準(zhǔn)誤表示。使用GraphPad Prism 9軟件繪圖。
注射48 h后海藻糖酶活性測(cè)定結(jié)果顯示,3種新
型化合物抑制可溶性海藻糖酶活性效果不明顯,均與對(duì)照組無(wú)顯著性差異(圖1-A);ZK-I-21使膜結(jié)合型海藻糖酶活性極顯著下降,ZK-PI-4使膜結(jié)合型海藻糖酶活性顯著下降(圖1-B);注射3種化合物后海藻糖、葡萄糖和糖原含量均無(wú)顯著變化(圖1-C、1-D、1-E)。
注射3種新型化合物48 h后相關(guān)基因表達(dá)量檢測(cè)結(jié)果顯示,ZK-I-21處理組中的mRNA表達(dá)量與對(duì)照組相比極顯著升高,ZK-I-23處理組則極顯著下降(圖2-A);注射3種化合物后、的mRNA表達(dá)量與對(duì)照組相比,除ZK-I-23處理組中顯著上升,其他均無(wú)顯著變化(圖2-B、2-C);化合物ZK-I-21和ZK-PI-4處理后的mRNA表達(dá)量極顯著下降,ZK-I-23組極顯著上升(圖2-D)。
與對(duì)照組相比,注射ZK-I-21后幾丁質(zhì)酶活性極顯著上升,注射ZK-I-23與ZK-PI-4后幾丁質(zhì)酶活性顯著上升(圖3)。
ZK-I-21處理組中6齡幼蟲長(zhǎng)度,ZK-I-23處理組中5齡幼蟲與6齡幼蟲長(zhǎng)度與對(duì)照組相比均顯著減小,其余各組幼蟲長(zhǎng)度同樣變短,但與對(duì)照無(wú)顯著差異(表3)。各組化合物注射草地貪夜蛾后顯示發(fā)育有延遲或提前,但總體發(fā)育歷期差異不大,其中注射ZK-I-21后6齡幼蟲發(fā)育時(shí)間極顯著延長(zhǎng),而預(yù)蛹時(shí)間極顯著降低;注射3種化合物后4齡幼蟲發(fā)育時(shí)間均極顯著縮短(圖4)。蛹重和蛹長(zhǎng)測(cè)量結(jié)果顯示,注射ZK-I-21后草地貪夜蛾蛹重和蛹長(zhǎng)較對(duì)照組顯著降低(圖5)。
采用獨(dú)立樣本T檢驗(yàn)進(jìn)行數(shù)據(jù)分析,誤差用平均值的標(biāo)準(zhǔn)誤差表示。*代表差異顯著(<0.05),**代表差異極顯著(<0.01)。使用2% DMSO作為對(duì)照,下同
The independent sample T test was used for data analysis, and the error was represented by the standard error of the average.* indicated significant differences (<0.05), ** indicated extremely significant differences (<0.01).2% DMSO was used as control.The same as below
圖1 注射不同新型化合物后草地貪夜蛾海藻糖酶活性及相關(guān)糖含量
Fig.1 Trehalase activity and sugar content inafter injection of different novel compounds
圖2 注射不同新型化合物后草地貪夜蛾海藻糖與幾丁質(zhì)代謝通路關(guān)鍵基因mRNA表達(dá)量
圖3 注射不同新型化合物后草地貪夜蛾幾丁質(zhì)酶活性
表3 注射不同新型化合物后草地貪夜蛾不同齡期的幼蟲長(zhǎng)度
圖4 注射新型化合物后草地貪夜蛾的發(fā)育歷期
圖5 注射不同新型化合物后草地貪夜蛾蛹重、蛹長(zhǎng)
注射3種化合物后,草地貪夜蛾的死亡率均有所增加,特別是注射ZK-I-21后3齡、4齡幼蟲的死亡率極顯著高于對(duì)照組(圖6)。3種新型化合物均可致使草地貪夜蛾在發(fā)育過(guò)程中呈現(xiàn)類似的畸形狀態(tài),ZK-I-21致死效果最為明顯,其中死亡幼蟲表型包括黑化、蛻皮困難、干癟,蛹的表型包括蛻皮失敗、畸形化蛹,成蟲的表型包括翅畸形、無(wú)法破蛹等(圖7)。另外,注射ZK-PI-4可顯著降低成蟲的羽化率(圖8)。
圖6 注射不同新型化合物后草地貪夜蛾不同蟲態(tài)死亡率
圖7 不同新型化合物處理草地貪夜蛾后死亡表型發(fā)育變化
圖8 不同新型化合物處理草地貪夜蛾后化蛹率和羽化率
海藻糖是昆蟲的血糖[33],相關(guān)研究結(jié)果表明,海藻糖的合成和降解都能通過(guò)控制幾丁質(zhì)合成通路從而影響昆蟲發(fā)育[34]。海藻糖酶是昆蟲糖代謝與幾丁質(zhì)合成過(guò)程中必不可少的酶之一,其重要的代謝作用使其成為害蟲防控的靶標(biāo)。
楊萌萌[35]研究表明,向褐飛虱()體內(nèi)注射井岡霉素后,可溶性海藻糖酶與膜結(jié)合型海藻糖酶活性均顯著降低。本試驗(yàn)中,ZK-I-21和ZK-PI-4處理后雖然海藻糖含量與表達(dá)量均無(wú)顯著變化,但可極顯著或顯著降低膜結(jié)合型海藻糖酶活性(圖1-B),說(shuō)明ZK-I-21與ZK-PI-4與膜結(jié)合型海藻糖酶的活性位點(diǎn)特異性結(jié)合,能夠有效降低膜結(jié)合型海藻糖酶活性。井岡霉素能夠誘導(dǎo)大豆根瘤、百脈根瘤[36]中海藻糖的累積,但其他糖類并未增加;Hirayama等將吡咯烷亞氨基糖(DAB-1)和DNJ添加到蓖麻蠶()幼蟲的飼料中,觀察到血淋巴海藻糖濃度顯著增加[37],這些成熟的海藻糖酶抑制劑與海藻糖酶位點(diǎn)結(jié)合,抑制海藻糖酶活性,使海藻糖無(wú)法被分解,進(jìn)而刺激海藻糖酶基因表達(dá)量升高。ZK-I-21注射后的mRNA表達(dá)量極顯著高于對(duì)照組(圖2-A),可溶性海藻糖酶活性雖有下降但差異不顯著(圖1-A),因此推測(cè)的高表達(dá)可能與可溶性海藻糖酶活性下降有關(guān)。ZK-I-23注射后的mRNA表達(dá)量極顯著低于對(duì)照組(圖2-A),與前人研究的結(jié)論:注射海藻糖酶抑制劑后,海藻糖酶抑制劑能夠有效抑制海藻糖酶基因的表達(dá)[28-29]相符,但可溶性海藻糖酶活性并無(wú)顯著變化,因此推斷,ZK-I-23有望成為一種靶向抑制表達(dá)的基因抑制化合物。
幾丁質(zhì)是昆蟲外骨骼和圍食膜的主要成分,其合成、轉(zhuǎn)化和修飾與昆蟲的生長(zhǎng)發(fā)育聯(lián)系緊密[6,11,38]。幾丁質(zhì)酶是昆蟲體內(nèi)幾丁質(zhì)代謝過(guò)程關(guān)鍵酶,多數(shù)幾丁質(zhì)酶是內(nèi)切酶,可將昆蟲表皮分解為殼寡糖,再由少數(shù)外切酶進(jìn)行水解生成-N-乙酰葡萄糖胺,在昆蟲蛻皮過(guò)程中起關(guān)鍵作用[16],是昆蟲生長(zhǎng)調(diào)節(jié)劑的一個(gè)重要靶標(biāo)[38-41],其活性變化將直接影響幾丁質(zhì)的代謝過(guò)程。由于幾丁質(zhì)不存在于植物和脊椎動(dòng)物中,因此干擾其代謝被認(rèn)為是新型殺蟲劑的合適目標(biāo)[41]。
ZK-I-21與ZK-PI-4具有良好的抑制膜結(jié)合型海藻糖活性的能力,同時(shí),ZK-I-21與ZK-PI-4注射組表達(dá)量均極顯著下降,但表達(dá)量無(wú)明顯變化(圖2-C),這與前人研究:采用RNAi方法抑制褐飛虱任何一個(gè)的表達(dá)后,和在48 h的表達(dá)均顯著下降[42];向褐飛虱蟲體注射井岡霉素,48 h后6個(gè)幾丁質(zhì)酶(、、、、和)基因的表達(dá)均減少[28]相符。HUANG等研究發(fā)現(xiàn),ZK-PI-4的結(jié)構(gòu)類似物鬼臼毒素類化合物具有中等的殺蟲活性,可能會(huì)導(dǎo)致幾丁質(zhì)酶活性異常,進(jìn)而使中毒的黏蟲()表現(xiàn)生長(zhǎng)發(fā)育異常[43],由此證明ZK-PI-4與ZK-I-21可以通過(guò)競(jìng)爭(zhēng)海藻糖酶結(jié)合位點(diǎn),影響海藻糖酶活性,進(jìn)而導(dǎo)致幾丁質(zhì)酶基因表達(dá)量下降,從而紊亂幾丁質(zhì)代謝通路,幾丁質(zhì)代謝平衡被打破,草地貪夜蛾生理活動(dòng)無(wú)法正常進(jìn)行進(jìn)而蛻皮失敗導(dǎo)致死亡。海藻糖代謝通路相關(guān)基因表達(dá)被抑制可導(dǎo)致昆蟲體內(nèi)幾丁質(zhì)代謝的紊亂[42,44-45],ZK-I-23極顯著抑制的表達(dá),導(dǎo)致的mRNA表達(dá)量、幾丁質(zhì)酶活性顯著升高(圖2-A、2-C、圖3),表明ZK-I-23可以對(duì)草地貪夜蛾體內(nèi)的幾丁質(zhì)代謝產(chǎn)生影響,但對(duì)表達(dá)量與幾丁質(zhì)酶活性并無(wú)抑制作用。
幾丁質(zhì)代謝的異常往往會(huì)引起昆蟲幾丁質(zhì)含量的變化,進(jìn)而影響昆蟲正常的發(fā)育和形態(tài)構(gòu)造,導(dǎo)致生長(zhǎng)發(fā)育受阻,蛻皮、化蛹困難以致死亡。ZK-I-21組的草地貪夜蛾死亡率在3齡、4齡幼蟲中較其他組高(圖6),并且在死亡表型中(圖7)表現(xiàn)出顯著的致死效果,但致死效果與成熟的海藻糖酶抑制劑仍有差距,表型觀察可發(fā)現(xiàn)未死亡的草地貪夜蛾會(huì)表現(xiàn)出翅短小、遷飛能力差等情況,因此推測(cè)ZK-I-21可導(dǎo)致草地貪夜蛾的飛行能力變差,若在野外,其取食、躲避天敵、繁殖后代等能力均會(huì)受到一定影響。此外,ZK-I-21組的蛹長(zhǎng)顯著短于對(duì)照組且蛹重顯著輕于對(duì)照組(圖5),說(shuō)明ZK-I-21對(duì)草地貪夜蛾幼蟲生長(zhǎng)發(fā)育及蛹的形成影響較大。ZHAO等研究表明,的表達(dá)被抑制后,昆蟲的幾丁質(zhì)合成會(huì)被嚴(yán)重阻礙,導(dǎo)致其蛻皮困難,不能完成正常的生長(zhǎng)發(fā)育而死亡[34,46]。本試驗(yàn)在表型觀察中發(fā)現(xiàn),幼蟲期草地貪夜蛾的死亡大部分是由于蛻皮困難所引起的,可能正是ZK-I-21競(jìng)爭(zhēng)海藻糖酶活性位點(diǎn)進(jìn)而紊亂草地貪夜蛾幾丁質(zhì)合成過(guò)程的結(jié)果;另外,在6齡到成蛹期間一部分草地貪夜蛾由于無(wú)法成功化蛹而死亡,蛹期無(wú)法羽化造成成蟲畸形甚至死亡,可能是由于蟲體內(nèi)的能量代謝不足無(wú)法支持草地貪夜蛾完成化蛹,即ZK-I-21影響草地貪夜蛾化蛹及羽化過(guò)程的海藻糖與幾丁質(zhì)代謝。ZK-PI-4導(dǎo)致成蟲羽化率顯著下降(圖8-B),研究表明,當(dāng)海藻糖基因被干擾后,甜菜夜蛾()會(huì)出現(xiàn)化蛹畸形、展翅受阻[46];向褐飛虱注射海藻糖酶抑制劑井岡霉素后,出現(xiàn)了蛻皮困難、翅型異常等現(xiàn)象[47],這說(shuō)明ZK-PI-4能夠通過(guò)調(diào)控海藻糖代謝途徑進(jìn)而調(diào)節(jié)昆蟲蛻皮過(guò)程中的幾丁質(zhì)代謝。ZK-I-23處理導(dǎo)致5齡和6齡草地貪夜蛾幼蟲長(zhǎng)度顯著變短(表3),可能也是由于ZK-I-23通過(guò)影響海藻糖酶活性進(jìn)而影響了幾丁質(zhì)代謝過(guò)程。
ZK-I-21是膜結(jié)合型海藻糖酶的競(jìng)爭(zhēng)抑制化合物,對(duì)草地貪夜蛾幼蟲的生長(zhǎng)發(fā)育尤其是死亡率、蛹長(zhǎng)和蛹重有一定影響;ZK-I-23可抑制可溶性海藻糖酶基因的表達(dá),對(duì)晚齡的幼蟲體長(zhǎng)影響較大;ZK-PI-4是膜結(jié)合型海藻糖酶的競(jìng)爭(zhēng)抑制化合物,對(duì)成蟲的羽化率有一定影響。研究結(jié)果可為新型海藻糖酶抑制劑的開發(fā)提供理論依據(jù)。
[1] Todd E L, Poole R W.Keys and illustrations for the armyworm moths of the noctuid genusGuenée from the Western hemisphere.Annals of the Entomological Society of America,1980, 73(6): 722-738.
[2] 姜玉英, 劉杰, 謝茂昌, 李亞紅, 楊俊杰, 張曼麗, 邱坤.2019年我國(guó)草地貪夜蛾擴(kuò)散為害規(guī)律觀測(cè).植物保護(hù), 2019, 45(6): 10-19.
JIANG Y Y, LIU J, XIE M C, LI Y H, YANG J J, ZHANG M L, QIU K.Observation on law of diffusion damage ofin China in 2019.Plant Protection, 2019, 45(6): 10-19.(in Chinese)
[3] 孫曉飛.草地貪夜蛾的形態(tài)特征與防治方法.現(xiàn)代農(nóng)業(yè), 2019(12): 46-47.
SUN X F.Morphological characteristics and control methods of.Modern Agriculture, 2019(12): 46-47.(in Chinese)
[4] MONTEZANO D G, SPECHT A, SOSA-GóMEZ D R, Roque- Specht V F, Sousa-Silva J C, Paula-Moraes S V, Peterson J A, Hunt T E.Host plants of(Lepidoptera: Noctuidae) in the Americas.African Entomology, 2018, 26(2): 286-300.
[5] 張智, 林培炯, 陳智勇, 巴吐西, 姜玉英, 穆常青, 郭書臣, 王紹林, 盧潤(rùn)剛, 祁俊鋒, 張?jiān)苹?小麥中后期草地貪夜蛾為害特征觀察.植物保護(hù), 2021, 47(5): 297-301.
ZHANG Z, LIN P J, CHEN Z Y, BATUXI, JIANG Y Y, MU C Q, GUO S C, WANG S L, LU R G, QI J F, ZHANG Y H.Observation on the damage characteristics ofto wheat in middle and late stages.Plant Protection, 2021, 47(5): 297-301.(in Chinese)
[6] 張建珍.昆蟲幾丁質(zhì)代謝與植物保護(hù).中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7): 1301-1302.
ZHANG J Z.Insect chitin metabolism and plant protection.Scientia Agricultura Sinica, 2014, 47(7): 1301-1302.(in Chinese)
[7] ZHONG H Y, WEI C, ZHANG Y L.Gross morphology and ultrastructure of salivary glands of the mute cicadaDistant (Hemiptera: Cicadoidea).Micron, 2013, 45: 83-91.
[8] ZHU K Y, MERZENDORFER H, ZHANG W, ZHANG J, MUTHUKRISHNAN S.Biosynthesis, turnover, and functions of chitin in insects.Annual Review of Entomology, 2016, 61: 177-196.
[9] 唐斌, 魏蘋,陳潔, 王世貴, 張文慶.昆蟲海藻糖酶的基因特性及功能研究進(jìn)展.昆蟲學(xué)報(bào), 2012, 55(11): 1315-1321.
TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q.Progress in gene features and functions of insect trehalases.Acta Entomologica Sinica, 2012, 55(11): 1315-1321.(in Chinese)
[10] 劉曉健, 孫亞文, 崔淼, 馬恩波, 張建珍.飛蝗海藻糖酶基因的分子特性及功能.中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(22): 4375-4386.
LIU X J, SUN Y W, CUI M, MA E B, ZHANG J Z.Molecular characteristics and functional analysis of trehalase genes in.Scientia Agricultura Sinica, 2016, 49(22): 4375-4386.(in Chinese)
[11] 張文慶, 陳曉菲, 唐斌, 田宏剛, 陳潔, 姚瓊.昆蟲幾丁質(zhì)合成及其調(diào)控研究前沿.應(yīng)用昆蟲學(xué)報(bào), 2011, 48(3): 475-479.
ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAO Q.Insect chitin biosynthesis and its regulation.Chinese Journal of Applied Entomology, 2011, 48(3): 475-479.(in Chinese)
[12] KRAMER K J, DZIADIK-TURNER C, KOGA D.Chitin metabolism in insects//Comprehensive Insect Physiology Biochemistry Pharmacology, 1985, 3: 75-115.
[13] KRAMER K J, MUTHUKRISHNAN S.Chitin metabolism in insects//Comprehensive Molecular Insect Science, 2005, 4: 111-144.
[14] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G.Insights on the evolution of trehalose biosynthesis.BMC Evolutionary Biology, 2006, 6: 109.
[15] CHEN J, TANG B, CHEN H, YAO Q, HUANG X, CHEN J, ZHANG D, ZHANG W.Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.PLoS One, 2010, 5(4): e10133.
[16] ARAKANE Y, MUTHUKRISHNAN S.Insect chitinase and chitinase-like proteins.Cellular and Molecular Life Sciences, 2010, 67(2): 201-216.
[17] 唐斌, 張露, 熊旭萍, 汪慧娟, 王世貴.海藻糖代謝及其調(diào)控昆蟲幾丁質(zhì)合成研究進(jìn)展.中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(4): 697-707.
TANG B, ZHANG L, XIONG X P, WANG H J, WANG S G.Advances in trehalose metabolism and its regulation of insect chitin synthesis.Scientia Agricultura Sinica, 2018, 51(4): 697-707.(in Chinese)
[18] 范柯琴, 金利群, 鄭裕國(guó).海藻糖酶的酶學(xué)特性及其作為新農(nóng)藥靶標(biāo)的開發(fā)應(yīng)用.化學(xué)與生物工程, 2009, 26(4): 7-11.
FAN K Q, JIN L Q, ZHENG Y G.The enzymatic properties of trehalase and its exploitation as a target of new pesticides.Chemistry and Bioengineering, 2009, 26(4): 7-11.(in Chinese)
[19] WEGENER G, MACHO C, SCHL?DER P, KAMP G, ANDO O.Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle.The Journal of Experimental Biology, 2010, 213(22): 3852-3857.
[20] 王軍娥, 劉靜.昆蟲海藻糖酶的研究進(jìn)展.貴州農(nóng)業(yè)科學(xué), 2009, 37(4): 88-90.
WANG J E, LIU J.Research progress of insect trehalase.Guizhou Agricultural Sciences, 2009, 37(4): 88-90.(in Chinese)
[21] IWASA T, HIGASHIDE E, YAMAMOTO H, Shibata M.Studies on validamycins, new antibiotics.II.Production and biological properties of validamycins A and B.The Journal of Antibiotics,1971, 24(2): 107-113.
[22] NIWA T, INOUYE S, TSURUOKA T, KOAZE Y, NIIDA T.“Nojirimycin” as a potent inhibitor of glucosidase.Agricultural and Biological Chemistry,1970, 34: 966-968.
[23] MATASSINI C, PARMEGGIANI C, CARDONA F.New frontiers on human safe insecticides and fungicides: An opinion on trehalase inhibitors.Molecules, 2020, 25(13): 3013.
[24] 張婧瑜, 韓清, 蔣志洋, 李慧琳, 鄧?guó)Q飛, 朱凱, 李明君, 段紅霞.幾丁質(zhì)酶抑制劑及噻唑烷酮類化合物合成與農(nóng)用活性研究進(jìn)展.農(nóng)藥學(xué)學(xué)報(bào), 2021, 23(3): 421-437.
ZHANG J Y, HAN Q, JIANG Z Y, LI H L, DENG M F, ZHU K, LI M J, DUAN H X.Chitinase inhibitors and synthesis and agricultural bioactivity of thiazolidinones: a review.Chinese Journal of Pesticide Science, 2021, 23(3): 421-437.(in Chinese)
[25] SAGUEZ J, VINCENT C, GIORDANENGO P.Chitinase inhibitors and chitin mimetics for crop protection.Pest Technology, 2008, 2(2): 81-86.
[26] GAYAKHE V, KAPDI A R, BOROZDINA Y, SCHULZKE C.Crystal structure of 5-(dibenzo-furan-4-yl)-2′-deoxy-uridine.Acta Crystallographica Section E.Crystallographic Communications, 2017, 73(10): 1493-1496.
[27] MIKKELSEN N E, MUNCH-PETERSEN B, EKLUND H.Structural studies of nucleoside analog and feedback inhibitor binding tomultisubstrate deoxyribonucleoside kinase.The FEBS Journal, 2008, 275(9): 2151-2160.
[28] TANG B, YANG M, SHEN Q, XU Y, WANG H, WANG S.Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper,.Pesticide Biochemistry and Physiology, 2017, 137: 81-90.
[29] YANG M, ZHAO L,SHEN Q, XIE G, WANG S, TANG B.Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper.Pest Management Science, 2017, 73(1): 206-216.
[30] Gurusamy D, Mogilicherla K, Shukla J N, Palli S R.Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm,.Archives of Insect Biochemistry and Physiology, 2020, 104(4): e21678.
[31] LIVAK K J, SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod.Methods, 2001, 25(4): 402-408.
[32] 汪慧娟.褐飛虱糖原合成酶與糖原磷酸化酶基因特性、功能鑒定與調(diào)控分析[D].杭州: 杭州師范大學(xué), 2018.
WANG H J.Genetic characteristics, functional identification and regulation analysis of glycogen synthase andglycogen phosphorylase in[D]. Hangzhou: Hangzhou Normal University, 2018.(in Chinese)
[33] 于彩虹, 盧丹, 林榮華, 王曉軍, 姜輝, 趙飛.海藻糖——昆蟲的血糖.昆蟲知識(shí), 2008, 45(5): 832-837.
YU C H, LU D, LIN R H, WANG X J, JIANG H, ZHAO F.Trehalose—the blood sugar in insects.Chinese Bulletin of Entomology, 2008, 45(5): 832-837.(in Chinese)
[34] ZHAO L N, YANG M M, SHEN Q D, LIU X J, SHI Z K, WANG S G, TANG B.Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference.Scientific Reports, 2016, 6: 27841.
[35] 楊萌萌.海藻糖酶及其抑制劑(validamycin)對(duì)褐飛虱海藻糖和幾丁質(zhì)代謝的調(diào)控研究[D].杭州: 杭州師范大學(xué), 2016.
YANG M M.Regulating effects of trehalase and its inhibitor (validamycin) on the trehalose and chitin metabolism in[D].Hangzhou: Hangzhou Normal University, 2016.(in Chinese)
[36] LóPEZ M, HERRERA-CERVERA J A, IRIBARNE C, TEJERA N A, LLUC YANG H C.Growth and nitrogen fixation inandunder NaCl stress: nodule carbon metabolism.Journal of Plant Physiology, 2008, 165(6): 641-650.
[37] HIRAYAMA C, KONNO K, WASANO N, NAKAMURA M.Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases ofand domesticated silkworms: Enzymatic adaptation ofto mulberry defense.Insect Biochemistry and Molecular Biology,2007, 37(12): 1348-1358.
[38] MERZENDORFER H, ZIMOCH L.Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases.The Journal of Experimental Biology, 2003, 206(24): 4393-4412.
[39] 李瑤, 范曉軍.昆蟲幾丁質(zhì)酶及其在害蟲防治中的應(yīng)用.應(yīng)用昆蟲學(xué)報(bào), 2011, 48(5): 1489-1494.
LI Y, FAN X J.Insect chitinase and its application in insect pest control.Chinese Journal of Applied Entomology, 2011, 48(5): 1489-1494.(in Chinese)
[40] 馬龍, 戴武, 張春妮.氟鈴脲對(duì)棉鈴蟲的毒力及幾丁質(zhì)和幾丁質(zhì)酶的影響.西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 42(7): 141-147.
MA L, DAI W, ZHANG C N.Toxicity of hexaflumuron and its effects on chitin and chitinase of cotton bollworm,.Journal of Northwest A&F University (Natural Science Edition), 2014, 42(7): 141-147.(in Chinese)
[41] SAGUEZ J, DUBOIS F, VINCENT C, LABERCHE J C, SANGWAN- NORREEL B S, GIORDANENGO P.Differential aphicidal effects of chitinase inhibitors on the polyphagous homopteran(Sulzer).Pest Management Science, 2006, 62(12): 1150-1154.
[42] 張露, 朱世城, 鄭好, 沈祺達(dá), 王世貴, 唐斌.褐飛虱海藻糖酶基因在表皮幾丁質(zhì)代謝中的調(diào)控作用.中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(6): 1047-1056.
ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B.Regulatory function of trehalase genes on chitin metabolism in the cuticle of.Scientia Agricultura Sinica, 2017, 50(6): 1047-1056.(in Chinese)
[43] HUANG J, XU M, LI S, HE J, XU H.Synthesis of some ester derivatives of 4’-demethoxyepipodophyllotoxin/2’-chloro-4’- demethoxyepipodophyllotoxin as insecticidal agents against oriental armyworm,Walker.Bioorganic and Medicinal Chemistry Letters, 2017, 27(3): 511-517.
[44] 於衛(wèi)東, 潘碧瑩, 邱玲玉, 黃鎮(zhèn), 周泰, 葉林, 唐斌, 王世貴.兩個(gè)褐飛虱海藻糖轉(zhuǎn)運(yùn)蛋白基因的結(jié)構(gòu)及調(diào)控海藻糖代謝功能.中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(23): 4802-4812.
YU W D, PAN B Y, QIU L Y, HUANG Z, ZHOU T, YE L, TANG B, WANG S G.The structure characteristics and biological functions on regulating trehalose metabolism of twoin.Scientia Agricultura Sinica, 2020, 53(23): 4802-4812.(in Chinese)
[45] 張道偉, 康奎, 余亞婭, 匡富萍, 潘碧瑩, 陳靜, 唐斌.白背飛虱酚氧化酶原基因特性及其免疫應(yīng)答.中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(15): 3108-3119.
ZHANG D W, KANG K, Yu Y Y, KUANG F P, PAN B Y, CHEN J, TANG B.Characteristics and immune response of prophenoloxidase genes in.Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.(in Chinese)
[46] CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q.Disruption oflarval development by silencing chitin synthase gene A with RNA interference.Bulletin of Entomological Research, 2008, 98(6): 613-619.
[47] Chen J, Zhang D, Yao Q, Zhang J, Dong X, Tian H, Chen J, Zhang W.Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper,s.Insect Molecular Biology, 2010, 19(6): 777-786.
Effect of Three Novel Compounds on trehalose and chitin metabolismand Development of
WANG SiTong1, CHEN Yan1, LUO YuJia1, YANG YuanYuan1, JIANG ZhiYang2, JIANG XinYi1, ZHONG Fan1, CHEN Hao1, XU HongXing3, WU Yan4, DUAN HongXia2*, TANG Bin1*
1College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121;2College of Science, China Agricultural University, Beijing 100193;3Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021;4Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005
【Objective】Chitin is the main component of insect exoskeleton and peritrophic membrane.Its synthesis begins with trehalase and ends with chitin synthase.The process of molting and epidermal remodeling needs to be completed by chitinase.In this study, three novel compounds were injected to detect the activities of trehalase and chitinase, the expression levels of related genes in, and their growth and development were also observed.This study aims to verify the inhibitory effects of novel compounds on trehalase and chitinase, screen the compounds with obvious effects, and to explore the mechanism of their regulation on the growth and development of.【Method】Microinjection method was used to inject butenolactone analogues ZK-I-21, ZK-I-23 and piperine analogue ZK-PI-4 into the 3rd instar larvae of.The changes of trehalase activity, chitinase activity and related sugar content were detected 48 h after injection, and the relative expression levels of,,andwere measured at the molecular level by quantitative real-time PCR (qRT-PCR).The phenotypic changes ofwere observed during the process from larvae to adults after injection.Besides, the mortality and deformities during developmental period were recorded.【Result】Compared with the control group, the membrane-bound trehalase activity ofdecreased significantly after ZK-I-21 (<0.01) and ZK-PI-4 (<0.05) injection.The expression level ofwas significantly increased andwas significantly decreased after ZK-I-21 injection.After ZK-I-23 injection, the expression level ofwas significantly decreased, and the expression level ofwas significantly increased.The expression level ofwas significantly decreased after ZK-PI-4 injection.The observation results of developmental duration showed that ZK-I-21 significantly prolonged the developmental period of 6th instar larvae of, and at the same time, the pupa weight became lighter and the pupa length became shorter.In addition, ZK-I-23 significantly shortened the length of 5th and 6th instar larvae, and ZK-PI-4 caused a significant reduction in adult emergence rate.All the three inhibitors could disrupt trehalose metabolism ofand then disrupt chitin metabolism, resulting in difficulties in molting and even death.【Conclusion】ZK-I-21 and ZK-PI-4 are membrane-bound trehalase inhibitor compounds, and ZK-I-23 can inhibit the expression of soluble trehalase gene.The three compounds all lead to the disturbances of chitin metabolism by affecting the process of trehalose metabolism, which results in difficulties in molting, deformities, and impaired growth and development of insects.The above results can provide a theoretical basis for the future use of novel inhibitors to regulate the growth of pests and thus control them, and support to promote the development of green and efficient pesticides.
; trehalase; chitinase; qRT-PCR; inhibitor
2021-11-14;
2021-12-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0200504)、浙江省三農(nóng)六方項(xiàng)目(2020SNLF-17)、浙江省重點(diǎn)研發(fā)計(jì)劃(2020C02003)、國(guó)家自然科學(xué)基金(31371996)、貴陽(yáng)市人才培養(yǎng)項(xiàng)目(筑科合同[2021]43-16號(hào))
王思彤,E-mail:wst20010225@163.com。通信作者唐斌,E-mail:tbzm611@163.com。通信作者段紅霞,E-mail:hxduan@cau.edu.cn
(責(zé)任編輯 岳梅)