有一次,4
8,20
5和4
12在分?jǐn)?shù)小屋一起玩變身游戲,它們先變成了1
2,4
1和1
3。緊接著,4
8 變成了0.5,20
5變成了4。輪到4
12了,它的身體開(kāi)始飛速地長(zhǎng)大,變成了0.333……幸虧4
8拿出了祖?zhèn)魉帯h(huán)丹,將4
12變成了0.3 ,分?jǐn)?shù)小屋才沒(méi)有被撐破。
這是怎么回事?為什么有些分?jǐn)?shù)可以變身成常見(jiàn)的小數(shù),而有些卻變成無(wú)限小數(shù)了呢?
我將4
12拿過(guò)來(lái),先在它身上做研究。4
12= 4
2×2×3,好像看不出有什么特別之處,于是我決定把其他的分?jǐn)?shù)2
80,6
57,66
99,1
21,7
50 也拿來(lái)做研究,今天我非要把它們研究明白不可。
我先對(duì)分?jǐn)?shù)進(jìn)行化簡(jiǎn),再將分母展開(kāi)成質(zhì)因數(shù)相乘的形式,最后化為小數(shù)。
2
80=1
40=1
2×2×2×5=0.025? ? ? ? ? ? ? ? ①
6
57=2
19=0.105263157……? ? ? ? ? ? ? ? ? ? ? ? ②
66
99=2
3=0.6? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?③
1
21=1
3×7=0.047619? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?④
7
50=7
2×5×5=0.14? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ⑤
這下子“搗蛋鬼”就被揪出來(lái)了!從式子中可以看出,分母的質(zhì)因數(shù)中只包含2和5(式子①、⑤)這兩個(gè)數(shù)字,那么分?jǐn)?shù)就可以化成一個(gè)有限小數(shù);如果分母的質(zhì)因數(shù)里有3,7,19(式子②、③、④)等這些“煩人”的數(shù),那么只要分子是除0外的任意數(shù),分?jǐn)?shù)化成小數(shù)后都會(huì)成為無(wú)限小數(shù)。
“病根”找到了,那么“病因”呢?一位合格的“數(shù)學(xué)醫(yī)生”可不能如此草率地下結(jié)論。于是,我繼續(xù)做了以下研究。
我先設(shè)一個(gè)任意正整數(shù)為a,則有a=a×1
10×10,記為⑥式。
在⑥式左右兩邊同時(shí)除以2,則有a÷2=a×1
10×10÷2=a×1
10×5。
在⑥式兩邊同時(shí)除以5,則有a÷5=a×1
10×10÷5=a×1
10×2。
看,任意一個(gè)正整數(shù)除以2時(shí)就等于這個(gè)數(shù)縮小10倍再放大5倍,所得的值不可能是無(wú)限小數(shù)。同理,任意一個(gè)正整數(shù)除以5時(shí)就等于這個(gè)數(shù)縮小10倍再放大2倍,也不可能得到無(wú)限小數(shù)。所以,當(dāng)分母只包含2和5,或者若干個(gè)2和若干個(gè)5的乘積時(shí),這個(gè)分?jǐn)?shù)都不可能化成無(wú)限小數(shù)。
我們還可以這樣理解。在除法中,如果除數(shù)是2或者5,或2n、5n等這些數(shù)時(shí),它們總會(huì)被十分位、百分位、千分位上含有0的數(shù)約掉,但3,6,7,9,11等數(shù)則無(wú)法被約掉,最后就變成無(wú)限小數(shù)了。
以上就是我對(duì)無(wú)限小數(shù)的診斷結(jié)果,大家覺(jué)得我這個(gè)“數(shù)學(xué)醫(yī)生”是否稱職?
指導(dǎo)老師 廖 寬
陳思怡? 5月3日? 15:47:35
羅逸真是華佗再世!通過(guò)你的診斷結(jié)果,我一下子就明白了分?jǐn)?shù)為什么會(huì)變成無(wú)限小數(shù)。但為什么還要再分為無(wú)限循環(huán)小數(shù)和無(wú)限不循環(huán)小數(shù)呢?統(tǒng)稱為無(wú)限小數(shù)不就行了嗎?請(qǐng)“神醫(yī)”在線解答!
劉秋月? 5月3日? 15:59:01
有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,其中無(wú)限循環(huán)小數(shù)是有理數(shù)。而無(wú)理數(shù)代表不能寫(xiě)作兩個(gè)整數(shù)之比的小數(shù),也就是無(wú)限不循環(huán)小數(shù)。兩者所屬的集合不同,所以有時(shí)候需要單獨(dú)分開(kāi)談。
高福奧? 5月3日? 16:30:21
原來(lái)數(shù)學(xué)也和我們班里一樣,有不少不安分的“刺頭”,并不都是性質(zhì)相同的“乖寶寶”,這讓我更加喜歡上了數(shù)學(xué)這個(gè)大家庭。
數(shù)學(xué)大王·中高年級(jí)2022年5期