摘 要:在新課改背景下,研究性學(xué)習(xí)既是熱點,也是難點,為培養(yǎng)學(xué)生實踐能力與創(chuàng)新精神提供了重要途徑,進而對學(xué)生深入學(xué)習(xí)有著重要作用.如此,本文以高中數(shù)學(xué)為例,談相應(yīng)的研究性學(xué)習(xí)教學(xué)策略.
關(guān)鍵詞:高中數(shù)學(xué);研究性學(xué)習(xí);教學(xué);策略
中圖分類號:G632?? 文獻標(biāo)識碼:A?? 文章編號:1008-0333(2022)27-0008-03
在高中數(shù)學(xué)教學(xué)中,若是能夠引進一種注重培養(yǎng)學(xué)生主動收集、加工、處理信息與解決問題能力的“教與學(xué)”的方式,且可以促進學(xué)生獲取良好情感經(jīng)驗,與“教與學(xué)”的方式相配合,便必然能夠提升學(xué)生的學(xué)習(xí)層次,并實現(xiàn)素質(zhì)教育的有效落實,研究性學(xué)習(xí)剛好與之相符.研究性學(xué)習(xí)強調(diào)關(guān)注教師教的方式與學(xué)生學(xué)的方式的轉(zhuǎn)變,在雙方的互動與配合下開展深入學(xué)習(xí),進而提升課堂教學(xué)效率.而且在這一過程中,教師的教學(xué)能力與學(xué)生的學(xué)習(xí)能力均會得到提升,也能進一步增強學(xué)生的研究意識,有利于高中生數(shù)學(xué)核心素養(yǎng)的發(fā)展.
1 立足課堂,引導(dǎo)學(xué)生走進研究性學(xué)習(xí)
時至今日,我們必須承認(rèn)課堂仍是學(xué)校教育的主陣地,對此,立足課堂來開展研究性學(xué)習(xí)教學(xué)是廣大教師所必須知曉與落實的.在高中數(shù)學(xué)課中,為讓研究成分更加充足,應(yīng)對以下三方面進行著重把握:一是對知識背景予以揭示,通過引領(lǐng)學(xué)生追隨數(shù)學(xué)家的研究足跡,讓學(xué)生認(rèn)識、體驗到數(shù)學(xué)家在面對一個新問題時所采用的研究與創(chuàng)造方法;二是對問題情境進行創(chuàng)設(shè),通過向?qū)W生樹立一個個內(nèi)容豐富、形象生動的對象,讓他們產(chǎn)生身臨其境之感,從而一個主體的身份來展開研究;三是對思維過程做到暴露,不僅要向?qū)W生展示成功的研究案例,而且還應(yīng)恰當(dāng)?shù)恼故疽恍┦“咐?,以此引?dǎo)學(xué)生知曉研究探索的反復(fù)與艱辛,并體驗氛圍與真諦.
比如對于“不等式”的新課教授,在課上,一位學(xué)生提出了這樣的一個問題:“已知兩個正實數(shù)x,y,滿足x+y=4,求1x+4y的最小值.”對于學(xué)生的提問,筆者并沒有進行解題過程的直接講解,而是將問題拋給學(xué)生,讓他們進行思考解決.在學(xué)生探討、思考與書寫答案的過程中,筆者發(fā)現(xiàn)一部分學(xué)生給出了這樣的答案:由已知得4=x+y≥2xy,因為xy≤2,1x+4y≥24xy=4xy≥2,所以1x+4y的最小值為2.針對該解法,可以讓學(xué)生就其正誤進行判斷與討論,進而發(fā)現(xiàn)這種解法存在錯誤,同時鼓勵他們列舉出自己的解法,明確自身解法的正確性.當(dāng)在肯定最小值為94的正確性時,學(xué)生對之前的錯誤解法必然存在一定的疑惑:“為什么每一步看似合情合理,卻又存在錯誤呢?”這時,教師不妨引導(dǎo)學(xué)生去共同尋找原因,發(fā)現(xiàn)是兩次使用基本不等式,其中xy≤2的等號成立需要滿足x=y,而1x+4y≥24xy的等號成立時,就必須是4x=y,因為都是正數(shù),所以兩個等號是無法同時成立的,進而判斷這種解法是錯誤的.
另外在整個教學(xué)過程中,需要教師關(guān)注學(xué)生邏輯思維能力的培養(yǎng),不可就題論題,將教育停留于表面,更多的要將學(xué)生的潛能充分挖掘出來,調(diào)動他們的學(xué)習(xí)積極性來主動參與課堂活動.就像是上述的“不等式”的新課教授,雖然只是研究了一道題目,但是卻形成了異常活躍的課堂氛圍,而教師也成為當(dāng)中的普通成員,通過引導(dǎo)學(xué)生發(fā)現(xiàn)問題與分析問題,為學(xué)生提供了豐富的課堂參與機會與廣闊的思考空間,并且能夠借此展示他們的思維過程,在探究、交流中集中群體智慧,幫助學(xué)生由學(xué)會轉(zhuǎn)為會學(xué).
2 題目開放,推進學(xué)生主動學(xué)習(xí)探究
向?qū)W生設(shè)置開放性的數(shù)學(xué)題目,能夠讓學(xué)生在經(jīng)歷探究過程的基礎(chǔ)上而逐漸掌握數(shù)學(xué)研究的方法與思想.那么何為“數(shù)學(xué)開放題”呢?一般指“思路或答案不唯一且在設(shè)問方式上要求學(xué)生進行多層次、多角度、多方位思考的數(shù)學(xué)問題.”也就是說,數(shù)學(xué)開放題強調(diào)引發(fā)學(xué)生新舊認(rèn)知結(jié)構(gòu)的沖突,通過對命題產(chǎn)生新的理解而發(fā)現(xiàn)新問題,以此培養(yǎng)學(xué)生的數(shù)學(xué)思維與增強題目的研究性,并幫助其進行新認(rèn)知結(jié)構(gòu)的主動建構(gòu).學(xué)生解答數(shù)學(xué)開放題的過程,實際上也是他們主動探究與體會數(shù)學(xué)問題形成的過程,能夠體現(xiàn)出學(xué)生的實際學(xué)習(xí)狀態(tài),同時促進學(xué)生更為全面的觀察、分析、思考與歸納問題.而對于教師而言,通過觀察學(xué)生在整個探究過程中的表現(xiàn),能夠進一步提升因材施教的效果,有利于培養(yǎng)學(xué)生思維的發(fā)散性與靈活性,增強學(xué)生數(shù)學(xué)學(xué)習(xí)的美感與成功感.
如針對于“幾何圖形”的相關(guān)知識,筆者設(shè)計了這樣一道題目:“學(xué)校準(zhǔn)備在大門旁的一塊矩形土地上開拓出一個新的國旗升降臺,但要求實際面積是整個矩形地塊的一半,請同學(xué)們展示思考,設(shè)計出合理的方案.”顯而易見,這道題是典型的一道數(shù)學(xué)開放題,題目中并未對國旗升降臺的形狀及圖案進行規(guī)定,而這也恰恰增強了題目的趣味性與吸引力.在學(xué)生的思考與設(shè)計過程中,國旗升降臺既可是圓形的、也可是矩形的,但都要圍繞“所設(shè)計國旗升降臺面積為矩形地塊面積的一半”的要求來開展,強調(diào)培養(yǎng)學(xué)生的創(chuàng)新意識與獨立思考的能力,體現(xiàn)出新的教育理念.
在高中數(shù)學(xué)教學(xué)中開展研究性學(xué)習(xí),需要充分借助合適的載體來做到有效推進.數(shù)學(xué)開放題作為滿足現(xiàn)代教育發(fā)展需要的一個重要載體,也是數(shù)學(xué)研究性學(xué)習(xí)的教學(xué)切入口,通過引入開放題,能夠促進數(shù)學(xué)教育的個性化與開放性,同時滿足了高中生的求知欲望,調(diào)動了其學(xué)習(xí)積極性,有利于培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力與創(chuàng)新精神.
3 主題閱讀,提升學(xué)生信息處理能力
在高中數(shù)學(xué)研究性學(xué)習(xí)教學(xué)中開展主題閱讀,要求在確定一個數(shù)學(xué)主題的情況下,由教師或是學(xué)生自己來選擇一些與之相關(guān)的文獻內(nèi)容供學(xué)生進行自主閱讀學(xué)習(xí),進而達成既定的閱讀目標(biāo).在當(dāng)前的信息社會下,網(wǎng)絡(luò)教學(xué)資源的合理運用是高中生主題閱讀中的重要形式,包括利用網(wǎng)上搜集的各種數(shù)據(jù)、資料展開合理選取、合作學(xué)習(xí)、分享成果等,以此提升高中數(shù)學(xué)主題閱讀的質(zhì)量與效率.同時,開展高中數(shù)學(xué)主題閱讀的目的還在于培養(yǎng)學(xué)生搜集、加工、表達與分享信息等能力,這樣更有利于學(xué)生在未來能夠自覺地適應(yīng)先學(xué)后教的學(xué)習(xí)方式,促進學(xué)生的自主發(fā)展.
在數(shù)學(xué)主題閱讀中,需要教師做到以下幾點:其一,及時轉(zhuǎn)變教學(xué)觀念.數(shù)學(xué)主題閱讀不與常規(guī)教學(xué)一般,其涉及范圍常常超出了教材、課堂內(nèi)容、教材參考資料等相關(guān)內(nèi)容,因此要求教師及時地更新自身的知識儲備,并且做到教學(xué)理念的轉(zhuǎn)變.其二,結(jié)合教學(xué)實際選題.關(guān)于閱讀主題的選擇,需要教師充分結(jié)合教學(xué)實際,選擇與之相關(guān)的閱讀材料與主題.一般而言,數(shù)學(xué)材料是較難閱讀與理解的,因此在學(xué)生閱讀初期,教師應(yīng)充分考慮所選閱讀材料的可讀性,同時對文章的難度與長度進行控制,確保材料的生動有趣性,為學(xué)生留下廣闊的思考余地.其三,充分尊重個體差異.針對不同學(xué)生存在的差異性,教師可設(shè)計一些個性化的閱讀作業(yè),讓學(xué)生依照閱讀要求與提示自主完成閱讀,實現(xiàn)對閱讀材料的有效理解.同時,教師也可只是給出一個閱讀方向或主題,讓學(xué)生去自主尋找相關(guān)的閱讀材料,再由小組探究的形式交流閱讀心得與體會,培養(yǎng)學(xué)生獨立思考與挖掘信息的能力,而教師也要做到參與其中.其四,依照學(xué)生反饋安排講評.當(dāng)學(xué)生在經(jīng)歷個人閱讀或是小組合作閱讀后,所得出的反饋信息自然地成為了教師講評的重要參考內(nèi)容,而活動中學(xué)生的各種體驗與收獲,也應(yīng)成為教師講評的重要內(nèi)容,以此做到對學(xué)生的科學(xué)、全面評價.
4 組織實驗,不斷豐富學(xué)生數(shù)學(xué)經(jīng)驗
一直以來,人們普遍認(rèn)為數(shù)學(xué)教學(xué)就是圍繞“數(shù)學(xué)概念、公式、定理、試題”而進行的教學(xué)活動,且數(shù)學(xué)學(xué)科是一門系統(tǒng)、嚴(yán)謹(jǐn)?shù)难堇[科學(xué),但大量歷史資料表明,數(shù)學(xué)不僅包括邏輯推理的過程,還有實驗這一重要內(nèi)容,因此更像是一門實驗性的歸納科學(xué).計算機的產(chǎn)生與應(yīng)用對數(shù)學(xué)研究的方式進行了改變,進而對數(shù)學(xué)實驗的內(nèi)涵也實現(xiàn)了極大地豐富與發(fā)展.數(shù)學(xué)實驗現(xiàn)初步被界定為:“為檢驗?zāi)骋粩?shù)學(xué)思想、獲取某一數(shù)學(xué)理論及解決某一問題,實驗者在數(shù)學(xué)思維影響與特定實驗環(huán)境下運用一定的手段而進行的研究、探索活動.”數(shù)學(xué)實驗有著多種形式,例如“數(shù)學(xué)建?!?、“實驗幾何”等,引導(dǎo)學(xué)生參與不同形式的數(shù)學(xué)實驗活動,能夠幫助學(xué)生形成良好的數(shù)學(xué)意識及豐富的數(shù)學(xué)經(jīng)驗,進而有利于其解題能力、想象力及嚴(yán)謹(jǐn)學(xué)習(xí)態(tài)度的發(fā)展.如此而言,利用數(shù)學(xué)實驗?zāi)軌蚴寡芯啃詫W(xué)習(xí)更具針對性與探索性.
如針對“軌跡方程”習(xí)題的研究,題目內(nèi)容是“從極點作圓ρ=2acosθ的弦,求各弦中點的軌跡方程.”基于此,可以幾何畫板為載體開展數(shù)學(xué)實驗,引導(dǎo)學(xué)生進行研究性學(xué)習(xí).首先,教師可在屏幕上進行動態(tài)演示,接下來再啟發(fā)學(xué)生將相關(guān)的坐標(biāo)方程求出來,并在屏幕上將具體的線段表示出來,最后要求學(xué)生猜想極坐標(biāo)方程的曲線形狀.基于上述要求,可讓學(xué)生利用計算機來自由地展開實驗,同時實現(xiàn)對n值的任意鍵入,使屏幕上出現(xiàn)不同的形狀,這樣能夠很好地引發(fā)學(xué)生的認(rèn)知沖突,進而激發(fā)起其強烈的學(xué)習(xí)興趣與好奇心,這是傳統(tǒng)教學(xué)方式所無法比擬的.
如今,數(shù)學(xué)實驗越來越受到廣大師生的青睞,其在研究性學(xué)習(xí)教學(xué)活動中的運用,一方面使學(xué)生對數(shù)學(xué)本質(zhì)的認(rèn)識進行了改變,另一方面依托計算機技術(shù)的高速發(fā)展讓實驗內(nèi)容及形式更加豐富多彩,增強了研究性學(xué)習(xí)的趣味性,值得人們重視與廣泛應(yīng)用.
總之,當(dāng)前在高中階段開展研究性學(xué)習(xí)僅是推進課堂教學(xué)的一種積極探索,并不意味著其有著很高的適用性,但其在培養(yǎng)學(xué)生學(xué)科核心素養(yǎng)、突出學(xué)生主體地位、吸引學(xué)生興趣、激發(fā)學(xué)生探求欲望、針對性教學(xué)有著突出的優(yōu)勢.伴隨著學(xué)生對研究性學(xué)習(xí)的參與,其發(fā)現(xiàn)問題、分析問題與解決問題的能力會大大提升,同時,思維成長空間也在不斷變大,可使高中生逐漸形成科學(xué)的數(shù)學(xué)思維,這無論對當(dāng)前的數(shù)學(xué)學(xué)習(xí),還是其未來發(fā)展都有著重要作用.
參考文獻:
[1]宮雪.高中數(shù)學(xué)中研究性學(xué)習(xí)的教學(xué)策略[J].科學(xué)與財富,2017(14):115.
[2] 李桂鋒.研究性學(xué)習(xí)在高中數(shù)學(xué)教學(xué)中的應(yīng)用策略探究[J].軟件(教育現(xiàn)代化)(電子版),2019(11):114.
[3] 李智通.高中數(shù)學(xué)教學(xué)中“研究性學(xué)習(xí)”模式的構(gòu)建[J].數(shù)學(xué)大世界(小學(xué)三四年級輔導(dǎo)版),2020(02):11-12.
[4] 圖爾蓀江·穆合塔爾.關(guān)于在高中數(shù)學(xué)教學(xué)中開展研究性學(xué)習(xí)的思考[J].山海經(jīng):教育前沿,2021(5):1.
[5] 李秀杰.研究性學(xué)習(xí)在高中數(shù)學(xué)課堂教學(xué)中的實踐探究[J].科學(xué)咨詢,2021(26):1.
[6] 羅新春.高中數(shù)學(xué)教學(xué)中開展研究性學(xué)習(xí)的思考[J].試題與研究(高考版),2021(12):2.
[責(zé)任編輯:李 璟]
收稿日期:2022-06-25
作者簡介:劉明花(1978.11-),女,甘肅省慶陽人,本科,中學(xué)一級教師,從事高中數(shù)學(xué)教學(xué)研究.