盧英琦 孫忠人 胡其回 王瑞琪 尹洪娜
〔摘要〕 NLRP3炎癥小體是炎癥反應(yīng)過(guò)程中極為重要的因子,能參與多種疾病尤其是腦脊髓疾病的發(fā)生發(fā)展過(guò)程,可干預(yù)中樞神經(jīng)系統(tǒng)的調(diào)節(jié)與恢復(fù)。大量研究表明,中藥相應(yīng)提取物對(duì)NLRP3具有良好調(diào)節(jié)作用。本文就NLRP3炎癥小體啟動(dòng)與激活過(guò)程,在脊髓損傷、動(dòng)脈粥樣硬化、抑郁癥、缺血性腦卒中等腦脊髓疾病中的機(jī)制效應(yīng),以及中藥提取物治療相應(yīng)疾病的動(dòng)物實(shí)驗(yàn)研究進(jìn)行綜述,為臨床調(diào)節(jié)NLRP3炎癥小體提供有效依據(jù)。
〔關(guān)鍵詞〕 NLRP3炎癥小體;炎癥;腦脊髓疾病;中藥提取物;脊髓損傷;動(dòng)脈粥樣硬化;抑郁癥;缺血性腦卒中
〔中圖分類號(hào)〕R259 ? ? ? 〔文獻(xiàn)標(biāo)志碼〕A ? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2022.06.030
Mechanism of NLRP3 inflammasome and traditional Chinese medicine extract on
regulation of cerebrospinal diseases
LU Yingqi1, SUN Zhongren1, HU Qihui1, WANG Ruiqi1, YIN Hongna2*
(1. Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China; 2. The Second
Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150001, China)
〔Abstract〕 NLRP3 inflammasome is a very important factor in the process of inflammatory response. It can participate in the occurrence and development of a variety of diseases, especially cerebrospinal diseases, and can intervene in the regulation and recovery of the central nervous system. A large number of studies have shown that traditional Chinese medicine and its corresponding extracts have a good regulatory effect on NLRP3. This article mainly reviews the start-up and activation process of NLRP3 inflammasome, and its mechanism effects of cerebrospinal diseases such as spinal cord injury, atherosclerosis, depression and ischemic stroke, as well as the animal experimental studies of traditional Chinese medicine extracts in the treatment of these diseases, so as to provide effective basis for clinical regulation of NLRP3 inflammasome.
〔Keywords〕 NLRP3 inflammasome; inflammation; cerebrospinal diseases; traditional Chinese medicine extracts; spinal cord injury; atherosclerosis; depression; ischemic stroke
炎癥反應(yīng)是機(jī)體在應(yīng)對(duì)各種有害刺激的一種自然保護(hù)機(jī)制,適當(dāng)反應(yīng)是清除受損及死亡細(xì)胞、促進(jìn)組織修復(fù)的必要步驟[1],但過(guò)度炎性反應(yīng)反而會(huì)對(duì)細(xì)胞功能產(chǎn)生不利影響,導(dǎo)致局部及全身系統(tǒng)炎癥性病變[2]。MARTINON等[3]2002年首次提出炎性小體(inflammasome)概念,揭示細(xì)胞組織損傷、免疫過(guò)程及促炎因子[如半胱氨酸蛋白酶1(Caspase-1)]之間關(guān)系,即炎癥小體作為基本蛋白復(fù)合體,可引導(dǎo)免疫系統(tǒng)對(duì)致病刺激反應(yīng),引起Caspase-1裂解和釋放。因此,控制炎癥小體的形成及信號(hào)傳遞在機(jī)體防御疾病方面至關(guān)重要。
核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3, NLRP3)是Caspase-1激活過(guò)程中研究熱度最高、涉及最廣泛的調(diào)節(jié)因子,與各種炎癥相關(guān)的中樞神經(jīng)系統(tǒng)疾病有關(guān),主要集中在脊髓損傷(spinal cord injury, SCI)、動(dòng)脈粥樣硬化(atherosclerosis, AS)、腦缺血、抑郁癥等方面,已成為探索疾病形成和進(jìn)展的焦點(diǎn),同時(shí)也為中醫(yī)領(lǐng)域的研究提供新靶點(diǎn)。大量臨床經(jīng)驗(yàn)、實(shí)踐及系統(tǒng)性回顧分析表明,中醫(yī)藥領(lǐng)域在治療腦脊髓疾病方面療效確切,能促進(jìn)相關(guān)癥狀恢復(fù),對(duì)其治療機(jī)制的探索也日漸深入[4-7]。本文旨在探討NLRP3炎癥小體在腦脊髓疾病發(fā)揮的作用,以及中藥有效成分調(diào)節(jié)相關(guān)神經(jīng)系統(tǒng)疾病的活化機(jī)制,以期為臨床治療相關(guān)疾病提供科學(xué)可靠的依據(jù)。
1 NLRP3炎癥小體
NLRP3炎癥小體廣泛分布于巨噬細(xì)胞、小膠質(zhì)細(xì)胞、單核細(xì)胞中,其關(guān)鍵機(jī)制在于NLRP3啟動(dòng)激活過(guò)程及下游相應(yīng)分子在疾病中發(fā)揮的作用。它主要由NLRP3、凋亡相關(guān)蛋白ASC、半胱氨酸蛋白酶Caspase-1前體蛋白(pro-Caspase-1)3類效應(yīng)分子組成,可促進(jìn)Caspase-1活化。Caspase-1可將pro-IL-1β和pro-IL-18裂解為成熟的生物活性形式,即下游白細(xì)胞介素1β(interleukin-1β, IL-1β)及白細(xì)胞介素18(interleukin-18, IL-18)等促炎因子釋放[8]。IL-1β和IL-18可通過(guò)多種信號(hào)通路加速炎癥反應(yīng)進(jìn)程,導(dǎo)致神經(jīng)元的損傷和死亡[9]。
NLRP3炎癥小體的激活通常為雙信號(hào)模型,即啟動(dòng)(信號(hào)1)和激活(信號(hào)2)信號(hào)。巨噬細(xì)胞中,僅有NLRP3激活劑存在并不能誘導(dǎo)炎癥小體激活,信號(hào)1最初被認(rèn)為是由微生物和內(nèi)源性分子如Toll樣受體(toll-like receptors, TLR)、核苷酸寡聚化結(jié)構(gòu)域樣受體(nucleotide-binding and oligomerization domain-like receptors, NLR)、腫瘤壞死因子等通過(guò)激活NF-κB信號(hào)通路來(lái)誘導(dǎo)NLRP3和pro-IL-1β表達(dá)[10]。隨著研究不斷深入,目前發(fā)現(xiàn)髓樣分化因子(myeloid differentiation factor 88, MyD88)、白細(xì)胞介素-1受體相關(guān)激酶(interleukin-1 receptor associated kinase, IRAK)IRAK1和IRAK4[11-12]、凋亡信號(hào)因子如Caspase-8和Fas相關(guān)死亡結(jié)構(gòu)域蛋白(fas-associating protein with a novel death domain, FADD)[13]等在對(duì)NF-κB信號(hào)通路的激活過(guò)程中都發(fā)揮重要作用。
接受信號(hào)1后,由于NLRP3激活劑的化學(xué)成分及結(jié)構(gòu)的廣泛性,研究發(fā)現(xiàn)NLRP3炎癥小體的激活主要包括以下幾個(gè)方面:(1)離子通量可在共同信號(hào)激活過(guò)程中起主導(dǎo)作用[例如K+外流可介導(dǎo)巨噬細(xì)胞和單核細(xì)胞對(duì)三磷酸腺苷(adenosine triphosphate, ATP)及黑色素反應(yīng),從而促進(jìn)IL-1β成熟及裂解[14];Ca2+信號(hào)引發(fā)NLRP3炎癥小體組裝[15]];(2)損傷線粒體釋放的活性氧(reactive oxygen species, ROS)、線粒體DNA和心磷脂激活NLRP3[16];(3)溶酶體破裂導(dǎo)致細(xì)胞組織蛋白酶釋放到胞漿中,直接激活NLRP3[17]。
2 腦脊髓疾病NLRP3炎癥小體及中藥提取物調(diào)節(jié)機(jī)制
2.1 ?NLRP3與SCI
SCI可分為原發(fā)和繼發(fā)兩種,繼發(fā)性損傷可出現(xiàn)損傷局部血管破裂、水腫、脫髓鞘、神經(jīng)炎癥等病理變化[18],其中神經(jīng)炎癥反應(yīng)是損傷過(guò)程的關(guān)鍵。血腦屏障破壞會(huì)引起巨噬細(xì)胞、小膠質(zhì)細(xì)胞、中性粒細(xì)胞等炎癥細(xì)胞在損傷部位聚集,釋放促炎細(xì)胞因子如IL-1β和IL-18,介導(dǎo)機(jī)體對(duì)細(xì)胞損傷和局部感染的免疫反應(yīng)[19]。大鼠在SCI 3 d后,NLRP3的mRNA和蛋白表達(dá)顯著提升[20],神經(jīng)元和小膠質(zhì)細(xì)胞是其主要來(lái)源。嘌呤受體P2X7(purinergic receptor, P2X7R)是三磷酸腺苷(ATP)的門(mén)控調(diào)節(jié)蛋白,當(dāng)損傷發(fā)生時(shí),可通過(guò)與ATP結(jié)合開(kāi)放陽(yáng)離子通道,產(chǎn)生神經(jīng)級(jí)聯(lián)反應(yīng),促進(jìn)NLRP3過(guò)表達(dá),釋放IL-1β、IL-1等炎性細(xì)胞因子,加重?fù)p傷程度[21]。
ZHU等[22]在對(duì)大鼠造模后發(fā)現(xiàn)細(xì)胞內(nèi)促炎因子IL-1β、TNF-α和IL-6表達(dá)水平顯著升高,NF-κB和NLRP3存在過(guò)表達(dá)情況,漢黃芩苷可通過(guò)NF-κB/IκB和NLRP3/Caspase-1信號(hào)通路抑制促炎因子表達(dá)及NLRP3炎癥小體數(shù)量,有效減輕脊髓損傷引起的神經(jīng)炎癥。漢黃芩苷為中藥黃芩的主要成分之一,具有抗炎、抗病毒等藥理活性,不僅能參與調(diào)節(jié)NF-κB炎癥通路中的適配蛋白,還具有抗凋亡作用[23]。蔣偉宇等[24]發(fā)現(xiàn)SCI兔脊髓組織中NF-κB、Caspase-1表達(dá)明顯增多,剪切并激活pro-IL-1β,可促進(jìn)炎性反應(yīng)的發(fā)生,應(yīng)用白藜蘆醇激活沉默信息調(diào)節(jié)因子2相關(guān)酶1(silent mating-type information regulation 2 homolog 1, Sirt1),降低NF-κB對(duì)NLRP3的調(diào)節(jié),起到保護(hù)脊髓組織的作用。白藜蘆醇存在于多種植物(如花生、藜蘆、葡萄等)中,研究表明,白藜蘆醇可抑制線粒體氧化物ROS表達(dá),降低氧化損傷程度,從而控制NLRP3炎癥小體的水平[25]?;⒄溶站哂锌寡?、抗氧化、清除自由基和改善微循環(huán)的作用,LV等[26]通過(guò)對(duì)SCI模型大鼠給藥發(fā)現(xiàn)虎杖苷具有神經(jīng)保護(hù)作用,可有效改善大鼠運(yùn)動(dòng)功能,減輕小膠質(zhì)細(xì)胞炎癥,并抑制NLRP3的表達(dá)。
2.2 ?NLRP3與AS
AS是腦血管疾病發(fā)生的病理基礎(chǔ),嚴(yán)重危害人們健康,斑塊破裂和血栓形成是其致病關(guān)鍵環(huán)節(jié)[27]。血管長(zhǎng)期動(dòng)脈粥樣硬化性改變的重要原因是脂質(zhì)堆積、炎性細(xì)胞浸潤(rùn)和膽固醇水平的增高[28]。目前,AS的保守治療主要集中在降低血漿內(nèi)的膽固醇水平,然而,這種治療不能降低所有患者未來(lái)患腦血管疾病的風(fēng)險(xiǎn)。
NLRP3炎癥小體可以裂解IL-1家族細(xì)胞因子,將代謝紊亂和炎癥聯(lián)系在一起,在AS發(fā)病機(jī)制中存在廣泛作用。NLRP3啟動(dòng)信號(hào)TLR可通過(guò)受體激活NF-κB介導(dǎo)轉(zhuǎn)錄,研究發(fā)現(xiàn),人或小鼠動(dòng)脈硬化斑塊內(nèi)都能觀察到TLRs表達(dá)增加[29]。實(shí)驗(yàn)證實(shí),TLR信號(hào)關(guān)鍵適配蛋白MyD88的缺失可減少AS發(fā)生[30]。細(xì)胞表面的TLRs能參與識(shí)別與動(dòng)脈硬化發(fā)展有關(guān)的各種內(nèi)源性危險(xiǎn)信號(hào),如氧化型低密度脂蛋白(oxidized low-density lipoprotein, oxLDL)、細(xì)胞死亡相關(guān)分子等[31]。AS炎癥反應(yīng)的一個(gè)重要方面是低密度脂蛋白(low-density lipoprotein, LDL)被氧化,形成oxLDL,通過(guò)TLRs激活NLRP3炎癥小體[32]。oxLDL還可降低膽固醇在內(nèi)皮細(xì)胞中的外流,致使內(nèi)質(zhì)網(wǎng)應(yīng)激水平升高,在加速AS的進(jìn)程中充當(dāng)重要角色[33]。
此外,細(xì)胞外酸中毒是NLRP3的激活因素之一,動(dòng)脈粥樣硬化斑塊pH值低于正常[34]。晚期AS內(nèi)大量存在磷酸鈣晶體,研究表明,它能誘導(dǎo)巨噬細(xì)胞釋放大量IL-1β和IL-1α[35]。葛凡等[36]發(fā)現(xiàn)黃芪甲苷能降低NLRP3、IL-1β、ASC表達(dá),改善血管內(nèi)皮功能,恢復(fù)血管舒張。黃芪為補(bǔ)氣圣藥,臨床常用于升陽(yáng)固表、益氣補(bǔ)虛,黃芪甲苷作為其提取物,具有調(diào)節(jié)免疫、抗炎、血管保護(hù)等效應(yīng)。實(shí)驗(yàn)發(fā)現(xiàn),黃芪甲苷可通過(guò)降低低密度脂蛋白濃度來(lái)減少下游NLRP3表達(dá)[37],還可降低TLR4表達(dá)來(lái)改善血管內(nèi)皮功能[38]。HE等[39]證實(shí)高車前苷能減少ROS釋放,抑制NLRP3和Caspase-1活化,減輕血管炎性損傷。YAMAGATA等[40]發(fā)現(xiàn)芹菜素可通過(guò)降低人內(nèi)皮細(xì)胞白細(xì)胞黏附、NLRP3表達(dá)來(lái)減輕內(nèi)皮功能障礙。因此,NLRP3炎癥小體在AS治療和預(yù)測(cè)方面具有重要意義。
2.3 ?NLRP3與抑郁癥
抑郁癥是臨床常見(jiàn)精神性疾病之一,癥狀包括持續(xù)性情緒低迷、食欲減退、失眠等,嚴(yán)重會(huì)導(dǎo)致患者缺乏生活興趣,最終發(fā)展為自殘和自殺[41]。本病造成了巨大的社會(huì)負(fù)擔(dān),因其發(fā)病機(jī)制復(fù)雜,導(dǎo)致一部分患者應(yīng)用抗抑郁藥物后會(huì)出現(xiàn)療效不佳和反復(fù)易發(fā)等不良反應(yīng)[42]。研究表明,NLRP3與抑郁癥的發(fā)生發(fā)展具有重要作用,NLRP3主要在情緒調(diào)節(jié)區(qū)域,例如:海馬內(nèi)水平較高,易受壓力影響,抑郁模型大鼠血清及海馬區(qū)發(fā)現(xiàn)NLRP3、Caspase-1、ASC和IL-1β水平明顯增高[43]。同時(shí),抑郁應(yīng)激狀態(tài)下,會(huì)導(dǎo)致大腦內(nèi)線粒體功能紊亂,生成NLRP3炎癥小體激活因子之一ROS,誘發(fā)免疫細(xì)胞出現(xiàn)細(xì)胞焦亡,加重患者神經(jīng)炎癥程度[44]。
中藥抗抑郁治療可明顯改善抑郁癥狀,抑制NLRP3表達(dá),減輕海馬損傷。張蕾等[45]發(fā)現(xiàn)芒果苷能夠降低抑郁大鼠血清中NLRP3、Caspase-1和ASC水平。茯苓具有健脾寧心之效,是臨床治療抑郁癥常用藥物,陳可琢等[46]使用茯苓酸性多糖對(duì)抑郁模型大鼠進(jìn)行治療,結(jié)果顯示其可有效抑制NLRP3炎癥小體表達(dá),并對(duì)大鼠抑郁行為的恢復(fù)具有促進(jìn)作用。紅景天苷可通過(guò)TLR4調(diào)節(jié)NLRP3、Caspase-1激活,進(jìn)而減少腦組織血液中IL-6和TNF-α水平,從而改善抑郁癥癥狀[47]。
目前,與抑郁癥研究相關(guān)較多的腦-腸軸理論也與NLRP3炎癥小體具有緊密關(guān)聯(lián)。腸道菌群與大腦功能關(guān)系密切,可以通過(guò)調(diào)控菌群正常與否干預(yù)中樞神經(jīng)系統(tǒng)和自主神經(jīng)系統(tǒng)[48]。一項(xiàng)涉及237例抑郁焦慮患者腸道菌群構(gòu)成的實(shí)驗(yàn)發(fā)現(xiàn),與健康人相比,抑郁患者菌群改變明顯,可通過(guò)多種途徑干預(yù)抑郁癥狀[49]。腸道菌群代謝產(chǎn)物能通過(guò)血液調(diào)控中樞系統(tǒng)炎癥因子和免疫反應(yīng),腸內(nèi)NLRP3炎癥小體過(guò)度激活也會(huì)造成腸道菌群成分變化[50],將NLRP3-/-腸道菌群移植到正常小鼠內(nèi),對(duì)大腦功能有積極作用,也可有效抑制抑郁行為[51]。徐敏等[52]應(yīng)用益生菌調(diào)節(jié)小鼠腸道菌群,能抑制炎癥因子激活,降低NF-κB蛋白表達(dá)。
2.4 ?NLRP3與缺血性腦卒中
缺血性腦卒中多發(fā)于60歲以上老年人群,且由于不良生活習(xí)慣、工作壓力大等,近年來(lái)呈低齡化趨勢(shì),具有高致死率、高致殘率的特點(diǎn),對(duì)患者家庭和社會(huì)都造成沉重的心理和經(jīng)濟(jì)負(fù)擔(dān)。研究發(fā)現(xiàn),血管栓塞引起一系列不良反應(yīng),包括血氧供應(yīng)不足,腦血流量減少等,形成缺血-閉塞的惡性循環(huán)[53],并引發(fā)興奮性毒性、氧化應(yīng)激、炎癥和細(xì)胞凋亡等不良反應(yīng),危害神經(jīng)元和血管內(nèi)皮細(xì)胞,最終導(dǎo)致不可逆性損害。NLRP3炎癥小體在缺血性腦卒中過(guò)程中扮演重要角色,抑制其激活可減少腦梗死體積,降低血管和神經(jīng)的損傷程度,改善腦缺血預(yù)后[54]。線粒體功能障礙是激活NLRP3炎癥小體的重要因素之一,卒中發(fā)生后,腦組織內(nèi)硫氧還蛋白相互作用蛋白含量顯著提升,ROS能致其解離后與NLRP3結(jié)合,加快活化進(jìn)程[55]。NLRP3炎癥小體還可促進(jìn)膠質(zhì)細(xì)胞中IL-1β和IL-18含量增高,參與卒中后并發(fā)癥如抑郁、認(rèn)知功能障礙的發(fā)生[56]。
ASHAFAQ等[57]應(yīng)用白藜蘆醇治療腦缺血模型大鼠,可有效改善腦部氧化應(yīng)激反應(yīng),降低抗氧化酶和Na+-K+-ATP酶活性,進(jìn)而發(fā)揮腦保護(hù)作用。川芎嗪是從中藥川芎提取的有效成分之一,具有抗氧化、清除自由基、抗再灌注損傷的作用,目前,鹽酸川芎嗪注射液被廣泛應(yīng)用于治療腦卒中、冠心病等閉塞性腦血管疾病中[58]。李潔等[59]發(fā)現(xiàn)腦缺血再灌注后,大鼠腦組織內(nèi)NLRP3和小膠質(zhì)細(xì)胞標(biāo)記物Iba-1(ionized calcium binding adapter molecule 1, Iba-1)水平顯著提高,注射川芎嗪溶液可有效改善神經(jīng)功能缺損、降低梗死灶面積,并抑制ASC、Caspase-1和pro-Caspase-1等蛋白水平表達(dá),發(fā)揮抗炎、抑制細(xì)胞焦亡的效應(yīng)。姜黃素為姜黃的主要成分,具有改善線粒體功能障礙、抗氧化應(yīng)激、抗凋亡的腦保護(hù)作用[60]。RAN等[61]研究證實(shí),姜黃素可通過(guò)抑制NF-κB/NLRP3信號(hào)通路發(fā)揮效應(yīng),降低IL-1β和IL-18表達(dá),進(jìn)而減輕腦卒中繼發(fā)的白質(zhì)損害。
3 結(jié)語(yǔ)
炎性小體是人體組織受損后構(gòu)成局部炎性微環(huán)境的重要成分。腦脊髓疾病病程長(zhǎng),治療難度大,機(jī)體長(zhǎng)時(shí)間處于病態(tài)環(huán)境會(huì)改變相應(yīng)結(jié)構(gòu),就更需要多維度、多方式的治療手段。從中醫(yī)角度來(lái)說(shuō),炎性小體及炎性微環(huán)境與中醫(yī)病機(jī)、治療方面具有極大相關(guān)性。炎性小體致病性質(zhì)與熱邪類似,火熱之邪,其性炎上,易耗傷津液,有擾動(dòng)心神、動(dòng)風(fēng)、動(dòng)血的特點(diǎn),可化痰、致瘀、致虛等,而這些病理變化可加重?zé)嵝斑M(jìn)展,影響疾病進(jìn)程。所以,在用藥方面以清熱化痰、活血化瘀、固本扶正為治療原則。
中藥提取物是現(xiàn)代醫(yī)學(xué)對(duì)中藥有效性的進(jìn)一步完善,是中、西醫(yī)相結(jié)合的產(chǎn)物,也是臨床治療過(guò)程中對(duì)中醫(yī)藥應(yīng)用的有力補(bǔ)充,受到各界的廣泛關(guān)注。在治療腦脊髓疾病時(shí)針對(duì)炎癥小體病理特點(diǎn),應(yīng)用相應(yīng)中藥提取物如漢黃芩苷、白藜蘆醇、茯苓酸性多糖等,由不同通路發(fā)揮效應(yīng),有效降低相應(yīng)動(dòng)物模型血清中NLRP3炎癥小體含量,對(duì)其下游炎性因子也有很好的調(diào)控作用,適合臨床探求和應(yīng)用。
當(dāng)然,本文也存在一些不足之處,例如選取的腦脊髓疾病較少,僅探討與動(dòng)物實(shí)驗(yàn)相關(guān)的中藥提取成分對(duì)NLRP3炎癥小體的調(diào)控作用等,今后在研究過(guò)程中可適當(dāng)擴(kuò)大研究范圍,結(jié)合分子生物學(xué)、細(xì)胞生物學(xué)等技術(shù)從多角度對(duì)炎性小體及其調(diào)控機(jī)制進(jìn)行研究。
參考文獻(xiàn)
[1] SZRETTER K J, SAMUEL M A, GILFILLAN S, et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis[J]. Journal of Virology, 2009, 83(18): 9329-9338.
[2] ISLAM M T, BARDAWEEL S K, MUBARAK M S, et al. Immunomodulatory effects of diterpenes and their derivatives through NLRP3 inflammasome pathway: A review[J]. Frontiers in Immunology, 2020, 11: 572136.
[3] MARTINON F, BURNS K, TSCHOPP J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Molecular Cell, 2002, 10(2): 417-426.
[4] 王曉寶,蘇迎潔,王炎強(qiáng).中藥對(duì)缺血性腦卒中側(cè)支循環(huán)建立研究進(jìn)展[J].山西中醫(yī),2021,37(9):60-62.
[5] 馮 ?睿,赫明超,李 ?鉞,等.基于“腎腦相濟(jì)”理論探討補(bǔ)腎中藥調(diào)控腦作用的研究進(jìn)展[J].中華中醫(yī)藥雜志,2021,36(4):2179-2183.
[6] 付 ?薔,吳紅金.基于數(shù)據(jù)挖掘技術(shù)探討中藥治療冠心病伴焦慮抑郁的用藥規(guī)律[J].中西醫(yī)結(jié)合心腦血管病雜志,2021,19(15):2510-2515.
[7] 陳豪選,林少琴,倪小佳,等.中藥治療卒中后吞咽障礙的Meta分析[J].廣州中醫(yī)藥大學(xué)學(xué)報(bào),2021,38(8):1759-1768.
[8] WALSH J G, REINKE S N, MAMIK M K, et al. Rapid inflammasome activation in microglia contributes to brain disease in HIV/AIDS[J]. Retrovirology, 2014, 11: 35.
[9] WILMS H, SIEVERS J, RICKERT U, et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation[J]. Journal of Neuroinflammation, 2010, 7: 30.
[10] BAUERNFEIND F G, HORVATH G, STUTZ A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. Journal of Immunology, 2009, 183(2): 787-791.
[11] FERNANDES-ALNEMRI T, KANG S, ANDERSON C, et al. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome[J]. Journal of Immunology, 2013, 191(8): 3995-3999.
[12] LIN K M, HU W, TROUTMAN T D, et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2): 775-780.
[13] ANTONOPOULOS C, RUSSO H M, EL SANADI C, et al. Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling[J]. The Journal of Biological Chemistry, 2015, 290(33): 20167-20184.
[14] PLACENTI M A, KAUFMAN S B, GONZLEZ FLECHA F L, et al. Unexpected effects of K+ and adenosine triphosphate on the thermal stability of Na+, K+-ATPase[J]. The Journal of Physical Chemistry B, 2017, 121(19): 4949-4957.
[15] FESKE S, SKOLNIK E Y, PRAKRIYA M. Ion channels and transporters in lymphocyte function and immunity[J]. Nature Reviews Immunology, 2012, 12(7): 532-547.
[16] IYER S S, HE Q, JANCZY J R, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation[J]. Immunity, 2013, 39(2): 311-323.
[17] ORLOWSKI G M, COLBERT J D, SHARMA S, et al. Multiple cathepsins promote pro-IL-1β synthesis and NLRP3-mediated IL-1β activation[J]. Journal of Immunology, 2015, 195(4): 1685-1697.
[18] ECKERT M J, MARTIN M J. Trauma: spinal cord injury[J]. Surgical Oncology Clinics of North America, 2017, 97(5): 1031-1045.
[19] AHUJA C S, NORI S, TETREAULT L, et al. Traumatic spinal cord injury-repair and regeneration[J]. Neurosurgery, 2017, 80(3S): S9-S22.
[20] JIANG W, HUANG Y, HE F, et al. Dopamine D1 receptor agonist A-68930 inhibits NLRP3 inflammasome activation, controls inflammation, and alleviates histopathology in a rat model of spinal cord injury[J]. Spine, 2016, 41(6): E330-E334.
[21] TEWARI M, SETH P. Emerging role of P2X7 receptors in CNS health and disease[J]. Ageing Research Reviews, 2015, 24(Pt B): 328-342.
[22] ZHU Y L, ZHU H Z, WANG Z J, et al. Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NF-κB and NLRP3 inflammasome activation[J]. Experimental and Therapeutic Medicine, 2017, 14(4): 3304-3308.
[23] 李文媛,宋麗華.漢黃芩苷體外抗結(jié)腸癌作用及機(jī)制研究[J].中國(guó)藥物與臨床,2017,17(8):1119-1122,1257.
[24] 蔣偉宇,胡旭棟,陳云琳,等.白藜蘆醇抑制脊髓損傷兔的NLRP3炎癥小體活化[J].中國(guó)臨床藥理學(xué)與治療學(xué),2020,25(8):850-856.
[25] 孫玉潔,張楠楠,趙 ?萌.白藜蘆醇對(duì)大鼠腦組織缺血再灌注過(guò)程中細(xì)胞焦亡的調(diào)控作用及對(duì)小膠質(zhì)細(xì)胞NLRP3炎癥小體、Caspase-1及ZO-1的影響[J].海南醫(yī)學(xué)院學(xué)報(bào),2019,25(17): 1291-1294.
[26] LV R X, DU L L, LIU X Y, et al. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway[J]. International Immunopharmacology, 2019, 70: 28-36.
[27] 王 ?淼,劉 ?靜,趙 ?冬.中國(guó)心血管病預(yù)防指南(2017)動(dòng)脈粥樣硬化性心血管病發(fā)病危險(xiǎn)評(píng)估方法概述[J].中國(guó)循環(huán)雜志,2018,
33(S2):10-13.
[28] HANSSON G K, HERMANSSON A. The immune system in atherosclerosis[J]. Nature Immunology, 2011, 12(3): 204-212.
[29] MULLICK A E, SOLDAU K, KIOSSES W B, et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events[J]. The Journal of Experimental Medicine, 2008, 205(2): 373-383.
[30] JULIANA C, FERNANDES-ALNEMRI T, KANG S, et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation[J]. Journal of Biological Chemistry, 2012, 287(43): 36617-36622.
[31] HUANG H S, HUANG X Y, YU H Z, et al. Circular RNA circ-RELL1 regulates inflammatory response by miR-6873-3p/MyD88/NF-κB axis in endothelial cells[J]. Biochemical and Biophysical Research Communications, 2020, 525(2): 512-519.
[32] WEST X Z, MALININ N L, MERKULOVA A A, et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands[J]. Nature, 2010, 467(7318): 972-976.
[33] HANG L W, PENG Y, XIANG R, et al. Ox-LDL causes endothelial cell injury through ASK1/NLRP3-mediated inflammasome activation via endoplasmic Reticulum stress[J]. Drug Design, Development and Therapy, 2020, 14: 731-744.
[34] RAJAM?KI K, NORDSTR?M T, NURMI K, et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome[J]. The Journal of Biological Chemistry, 2013, 288(19): 13410-13419.
[35] PAZáR B, EA H K, NARAYAN S, et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro[J]. Journal of Immunology, 2011, 186(4): 2495-2502.
[36] 葛 ?凡,王文愷,朱景天,等.黃芪甲苷通過(guò)NLRP3炎性小體調(diào)節(jié)糖尿病動(dòng)脈粥樣硬化早期大鼠血脂及炎癥因子的研究[J].南京中醫(yī)藥大學(xué)學(xué)報(bào),2021,37(3):383-387.
[37] QIAN W B, CAI X R, QIAN Q H, et al. Astragaloside IV protects endothelial progenitor cells from the damage of ox-LDL via the LOX-1/NLRP3 inflammasome pathway[J]. Drug Design, Development and Therapy, 2019, 13: 2579-2589.
[38] LENG B, TANG F T, LU M L, et al. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway[J]. Life Sciences, 2018, 209: 111-121.
[39] HE B Q, ZHANG B B, WU F H, et al. Homo plantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome[J]. Journal of Cardiovascular Pharmacology, 2016, 67(1): 93-101.
[40] YAMAGATA K, HASHIGUCHI K, YAMAMOTO H, et al. Dietary apigenin reduces induction of LOX-1 and NLRP3 expression, leukocyte adhesion, and acetylated low-density lipoprotein uptake in human endothelial cells exposed to trimethylamine-N-oxide[J]. Journal of Cardiovascular Pharmacology, 2019, 74(6): 558-565.
[41] LIM G Y, TAM W W, LU Y X, et al. Prevalence of depression in the community from 30 countries between 1994 and 2014[J]. Scientific Reports, 2018, 8: 2861.
[42] PAPAKOSTAS G I, FAVA M, THASE M E. Treatment of SSRI-resistant depression: A meta-analysis comparing within-versus across-class switches[J]. Biological Psychiatry, 2008, 63(7): 699-704.
[43] 程虹毓,袁富強(qiáng).基于NLRP3/IL-1β通路研究中醫(yī)五行音樂(lè)抗抑郁的調(diào)節(jié)機(jī)制[J].中醫(yī)藥導(dǎo)報(bào),2020,26(16):6-9.
[44] HE W T, WAN H Q, HU L C, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion[J]. Cell Research, 2015, 25(12): 1285-1298.
[45] 張 ?蕾,趙國(guó)發(fā),李 ?楠,等.芒果苷通過(guò)作用于NLRP3炎癥小體發(fā)揮抗抑郁和神經(jīng)保護(hù)作用[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2021,41(3):265-272.
[46] 陳可琢,陳 ?實(shí),任潔貽,等.茯苓酸性多糖抗抑郁作用及其調(diào)節(jié)神經(jīng)遞質(zhì)和NLRP3通路機(jī)制研究[J].中國(guó)中藥雜志,2021,46(19): 5088-5095.
[47] 莫菁蓮,陳思丹,符乃光,等.紅景天苷介導(dǎo)TLR4調(diào)控小膠質(zhì)細(xì)胞激活對(duì)小鼠抑郁樣行為的改善作用[J].藥物評(píng)價(jià)研究,2021,44(9): 1869-1875.
[48] SANADA K, NAKAJIMA S, KUROKAWA S, et al. Gut microbiota and major depressive disorder: A systematic review and meta-analysis[J]. Journal of Affective Disorders, 2020, 266: 1-13.
[49] 莫瀚鈞,郎 ?林,柳理娜,等.抑郁、焦慮狀態(tài)人群的腸道菌群構(gòu)成[J].中國(guó)臨床醫(yī)學(xué),2021,28(3):433-443.
[50] PELLEGRINI C, ANTONIOLI L, CALDERONE V, et al. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications?[J]. Progress in Neurobiology, 2020, 191: 101806.
[51] ZHANG Y, HUANG R R, CHENG M J, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2[J]. Microbiome, 2019, 7(1): 116.
[52] 徐 ?敏,趙 ?莉,杜金城,等.益生菌混合物通過(guò)抑制NF-κB信號(hào)通路發(fā)揮抗?jié)冃越Y(jié)腸炎功效的研究[J].食品工業(yè)科技,2016, 37(17):348-351,365.
[53] 楊越旺,胡霞敏.炎性小體在缺血性腦卒中的研究進(jìn)展[J].中風(fēng)與神經(jīng)疾病雜志,2021,38(10):1140-1143.
[54] YANG F, WANG Z Y, WEI X B, et al. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke[J]. Journal of Cerebral Blood Flow and Metabolism, 2014, 34(4): 660-667.
[55] ISHRAT T, MOHAMED I N, PILLAI B, et al. Thioredoxin-interacting protein: A novel target for neuroprotection in experimental thromboembolic stroke in mice[J]. Molecular Neurobiology, 2015, 51(2): 766-778.
[56] WU D, ZHANG G C, ZHAO C Y, et al. Interleukin-18 from neurons and microglia mediates depressive behaviors in mice with post-stroke depression[J]. Brain, Behavior, and Immunity, 2020, 88: 411-420.
[57] ASHAFAQ M, INTAKHAB ALAM M, KHAN A, et al. Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats[J]. International Immunopharmacology, 2021, 94: 107494.
[58] ZHAO Y K, LIU Y, CHEN K J. Mechanisms and clinical application of tetramethylpyrazine (an interesting natural compound isolated from Ligusticum wallichii): Current status and perspective[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 2124638.
[59] 李 ?潔,馬賢德.川芎嗪抑制CIRI大鼠小膠質(zhì)細(xì)胞活化發(fā)揮抗炎作用機(jī)制的實(shí)驗(yàn)研究[J].免疫學(xué)雜志,2021,37(9):759-765.
[60] 孫博宇,張世陽(yáng),趙靖楠,等.姜黃素對(duì)腦卒中保護(hù)機(jī)制和作用靶點(diǎn)研究進(jìn)展[J].腦與神經(jīng)疾病雜志,2022,30(2):129-133.
[61] RAN Y Y, SU W, GAO F H, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 1552127.