溫彥威,吳戰(zhàn)武,祁 瑋,左海麗,樓 陽(yáng),錢建國(guó),翟杰明
(上海航天動(dòng)力技術(shù)研究所,湖州 313002)
以異佛爾酮二異氰酸酯(IPDI)為固化劑、端羥基聚丁二烯(HTPB)為粘合劑的推進(jìn)劑(IPDI型HTPB推進(jìn)劑)因具有藥漿適用期長(zhǎng)、力學(xué)性能和貯存性能優(yōu)良、可研制高固體含量和高燃速推進(jìn)劑配方等優(yōu)點(diǎn),自20世紀(jì)70年代開(kāi)始研制以來(lái),成為世界各國(guó)復(fù)合固體推進(jìn)劑的主要品種,并應(yīng)用于國(guó)內(nèi)外多個(gè)型號(hào)的固體火箭發(fā)動(dòng)機(jī)裝藥[1-2]。高硅氧纖維增強(qiáng)熱固性酚醛樹(shù)脂復(fù)合材料(玻璃鋼)因其具有輕質(zhì)高強(qiáng)、耐熱性好等優(yōu)點(diǎn),是一種性能優(yōu)良的熱防護(hù)材料[3-4],國(guó)內(nèi)外常采用玻璃鋼作為中小型固體火箭發(fā)動(dòng)機(jī)的絕熱材料。
作為發(fā)動(dòng)機(jī)燃燒室裝藥的主要界面之一,推進(jìn)劑/襯層界面在粘接強(qiáng)度建立過(guò)程中,推進(jìn)劑和襯層均由多組分料漿同步固化而形成。因此,影響界面粘接的因素非常多,往往是燃燒室裝藥中最弱的界面,并成為決定發(fā)動(dòng)機(jī)結(jié)構(gòu)完整性和工作可靠性的關(guān)鍵點(diǎn)[5-6]。其中,IPDI型HTPB推進(jìn)劑由于固含量高、IPDI反應(yīng)活性相對(duì)較低、組分遷移對(duì)基體聚合反應(yīng)影響較大等原因,容易在近界面推進(jìn)劑(距襯層0~1 mm的推進(jìn)劑)區(qū)域形成弱強(qiáng)度層,嚴(yán)重時(shí)會(huì)導(dǎo)致界面脫粘[7-11]。
本課題組前期的研究表明,三元乙丙絕熱層中水等含活潑氫的小分子遷移也是導(dǎo)致近界面IPDI型HTPB推進(jìn)劑軟化的重要因素[12]。本文主要針對(duì)工程應(yīng)用中存在的IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼粘接體系中近界面推進(jìn)劑軟化現(xiàn)象進(jìn)行分析,并對(duì)采取的近界面推進(jìn)劑增強(qiáng)措施開(kāi)展研究,從玻璃鋼材料熱失重、對(duì)固化催化劑以及固化劑IPDI的影響等方面開(kāi)展分析。
IPDI型HTPB推進(jìn)劑(HTPB/Al/AP/IPDI體系)按配方捏合程序進(jìn)行混合而得;襯層為HTPB/IPDI配方體系;三元乙丙絕熱層是以芳綸漿粕為主要填料的配方,均按生產(chǎn)工藝自制;玻璃鋼材料由上海復(fù)合材料科技有限公司提供;膠粘劑BN-01,自制;催化劑采用襯層中的乙酰丙酮鐵,溶液的溶劑采用增塑劑癸二酸二辛酯。
1.2.1 紅外光譜分析
測(cè)試條件:室溫,掃描次數(shù)為32次,測(cè)試范圍為4000~400 cm-1,分辨率為2 cm-1。
1.2.2 熱穩(wěn)定性
變溫下熱穩(wěn)定性,采用日本精工EXSTAR6200熱重/差熱聯(lián)用分析儀(TG/DTA),升溫速率 10 ℃/min,測(cè)試溫度范圍為20~900 ℃。恒溫下熱穩(wěn)定性,將玻璃鋼試樣放置在(80±1)℃的恒溫烘箱中,跟蹤測(cè)試其質(zhì)量變化。
1.2.3 凝膠含量測(cè)試
取適量近界面0~1 mm的HTPB推進(jìn)劑樣品稱重后,用甲苯抽提,抽提后的凝膠經(jīng)洗滌、烘干后稱重,計(jì)算可得其凝膠含量。
1.2.4 界面粘接性能測(cè)試
采用WDW-5J型電子萬(wàn)能試驗(yàn)機(jī)測(cè)試IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼絕熱層粘接體系的聯(lián)合扯離強(qiáng)度。
大量研究表明,絕熱材料是影響推進(jìn)劑/襯層界面粘接性能的重要因素[13]。表1比較了三元乙丙絕熱層、玻璃鋼和不含絕熱層的IPDI型HTPB推進(jìn)劑/襯層/絕熱層(或金屬)體系的界面粘接性能,以及玻璃鋼分別對(duì)IPDI和TDI型HTPB推進(jìn)劑襯層/玻璃鋼界面粘接性能的影響,其中數(shù)據(jù)均為多次實(shí)驗(yàn)的均值。
結(jié)果表明,IPDI型HTPB推進(jìn)劑/襯層/三元乙丙絕熱層界面粘接性能良好,聯(lián)合扯離強(qiáng)度與推進(jìn)劑本體強(qiáng)度比值達(dá)到了0.83,接近于IPDI型HTPB推進(jìn)劑/襯層/金屬界面粘接體系。然而,玻璃鋼對(duì)IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼粘接體系中近界面推進(jìn)劑的影響較大,其粘接強(qiáng)度明顯低于三元乙丙絕熱層和不含絕熱層的粘接體系,聯(lián)合扯離強(qiáng)度與推進(jìn)劑本體強(qiáng)度的比值僅為0.53,且試件拉伸測(cè)試的破壞面推進(jìn)劑有發(fā)粘現(xiàn)象,這表明該粘接體系中近界面推進(jìn)劑未能正常固化,強(qiáng)度偏低。
同時(shí)可以看到,TDI型HTPB推進(jìn)劑/襯層/玻璃鋼界面仍具有良好的粘接性能,聯(lián)合扯離強(qiáng)度與推進(jìn)劑本體強(qiáng)度比值為0.83,與三元乙丙絕熱層和不含絕熱層的粘接體系相當(dāng)。這表明玻璃鋼材料對(duì)IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼界面粘接性能的不利影響可能與IPDI異常消耗有關(guān),IPDI反應(yīng)活性較TDI低,推進(jìn)劑澆注時(shí)仍有大量游離的IPDI分子[6],近界面推進(jìn)劑中IPDI向襯層遷移以及玻璃鋼中活性小分子向近界面推進(jìn)劑遷移并與其中的IPDI發(fā)生副反應(yīng)都將導(dǎo)致固化劑額外損失[14],使近界面推進(jìn)劑實(shí)際參與固化反應(yīng)的固化劑用量偏低,進(jìn)一步導(dǎo)致近界面推進(jìn)劑固化程度下降,表現(xiàn)為界面粘接強(qiáng)度下降。此外,如果玻璃鋼材料中組分遷移導(dǎo)致近界面推進(jìn)劑的固化催化劑失效,反應(yīng)速度明顯減緩,也有可能導(dǎo)致其固化程度下降,不利于界面粘接強(qiáng)度的建立。
2.2.1 玻璃鋼材料的熱失重
圖1為玻璃鋼在20~900 ℃的熱失重曲線??梢钥闯?,隨著溫度的升高,玻璃鋼熱失重較為明顯,其中在較低溫度下已開(kāi)始出現(xiàn)明顯的失重現(xiàn)象,溫度達(dá)到100 ℃時(shí)的熱失重為1.2%,熱失重達(dá)到第一個(gè)平臺(tái)期的失重率約為5%。
圖2為玻璃鋼材料在80 ℃恒溫烘干條件下的失重曲線??梢钥闯?,玻璃鋼材料烘干24 h的失重率為2.5%,繼續(xù)烘干至100 h左右達(dá)到熱失重平衡,失重率約為3%。
圖1和圖2的熱失重曲線表明,玻璃鋼材料中存在一定量的游離小分子物質(zhì),結(jié)合玻璃鋼原材料酚醛樹(shù)脂合成以及玻璃鋼復(fù)合材料制備成型工藝分析,認(rèn)為這些小分子物質(zhì)可能是苯酚、乙醇和水等對(duì)界面粘接具有不利影響的活性組分,在襯層預(yù)固化和藥柱固化過(guò)程中會(huì)向襯層乃至近界面推進(jìn)劑擴(kuò)散遷移并發(fā)生副反應(yīng)。此外,玻璃鋼基體酚醛樹(shù)脂表面含有大量酚羥基,也可與襯層中的固化劑IPDI發(fā)生反應(yīng),進(jìn)而加大近界面推進(jìn)劑與襯層中固化劑的濃度差,在一定程度上加劇近界面推進(jìn)劑中游離IPDI向襯層的遷移。
圖1 玻璃鋼材料的熱失重曲線
圖2 玻璃鋼材料在80 ℃恒溫烘干條件下的失重曲線
2.2.2 玻璃鋼材料小分子物質(zhì)分析
玻璃鋼的基體樹(shù)脂為鋇酚醛樹(shù)脂,其合成工藝路線如圖3所示。
圖3 鋇酚醛樹(shù)脂合成工藝路線圖
因此,鋇酚醛樹(shù)脂中的殘留小分子一般主要有苯酚、水和乙醇。此外,結(jié)合文獻(xiàn)[15]分析,鋇酚醛樹(shù)脂的固化反應(yīng)主要有以下兩種:
(1)酚核上的羥甲基與其他酚核上的臨位或?qū)ξ换顫姎浞磻?yīng),失去1分子水,生成次甲基鍵:
(2)2個(gè)酚核上的羥甲基相互反應(yīng),失去1分子水,生成二芐基醚:
可見(jiàn),酚醛樹(shù)脂在固化反應(yīng)過(guò)程中會(huì)釋放出水。
根據(jù)上述分析,玻璃鋼材料中包含的小分子物質(zhì)主要有苯酚、水和乙醇,這些物質(zhì)都含有活潑氫,遷移至界面區(qū)域均可與襯層、推進(jìn)劑中的固化劑發(fā)生副反應(yīng),導(dǎo)致襯層和近界面推進(jìn)劑的固化參數(shù)偏離設(shè)計(jì)[16-17]。此外,苯酚和乙醇都是單官能度物質(zhì),與固化劑發(fā)生副反應(yīng)后還可對(duì)分子鏈封端,導(dǎo)致聚合物分子鏈無(wú)法繼續(xù)增長(zhǎng),嚴(yán)重時(shí)會(huì)導(dǎo)致聚合物無(wú)法正常固化成型。
(1)苯酚與異氰酸酯固化劑的反應(yīng)
(2)乙醇與異氰酸酯固化劑的反應(yīng)
(3)水與異氰酸酯固化劑的反應(yīng)
采用紅外光譜分析了玻璃鋼烘干時(shí)的逸出物,譜圖見(jiàn)圖4。結(jié)果表明,玻璃鋼中殘留的小分子主要有水和苯酚,遷移至界面都將對(duì)產(chǎn)生不利影響。
圖4 玻璃鋼溶出物脫水后的紅外光譜圖
2.2.3 玻璃鋼材料對(duì)催化劑的影響
將玻璃鋼試片浸泡于催化劑溶液48 h后,采用紅外光譜分別對(duì)催化劑溶液和浸泡了玻璃鋼試片的催化劑溶液進(jìn)行了對(duì)比分析,結(jié)果如圖5所示,兩者的紅外光譜基本一致,沒(méi)有明顯差異。因此,可認(rèn)為玻璃鋼材料對(duì)固化催化劑沒(méi)有影響。
圖5 催化劑溶液的紅外圖譜
進(jìn)一步通過(guò)調(diào)節(jié)襯層催化劑(與推進(jìn)劑催化劑相同)溶液濃度驗(yàn)證了上述推斷,在0.5%的基礎(chǔ)上將催化劑溶液濃度分別提高至0.8%和1%,測(cè)試了催化劑溶液濃度對(duì)界面粘接強(qiáng)度的影響。表2結(jié)果表明,隨著催化劑溶液濃度的提高,界面粘接強(qiáng)度沒(méi)有隨之提高,反而降低。這表明玻璃鋼材料不會(huì)導(dǎo)致催化劑失效,否則近界面推進(jìn)劑中的催化劑會(huì)得到補(bǔ)償,加快反應(yīng)速度,提高固化交聯(lián)程度,進(jìn)而提高界面粘接強(qiáng)度。提高催化劑濃度導(dǎo)致聯(lián)合扯離強(qiáng)度下降的原因主要是襯層中催化劑濃度提高加快了其中IPDI的反應(yīng)速度,導(dǎo)致近界面推進(jìn)劑與襯層中固化劑的濃度差,使近界面推進(jìn)劑中游離的IPDI更容易向襯層遷移而額外損失,加劇了固化參數(shù)偏離設(shè)計(jì)的程度。
表2 催化劑溶液濃度對(duì)界面粘接性能的影響
2.2.4 玻璃鋼材料對(duì)固化反應(yīng)的影響
在界面粘接的作用力中,化學(xué)鍵合對(duì)界面粘接的貢獻(xiàn)最大[18]。丁羥推進(jìn)劑與襯層粘接界面的化學(xué)鍵合作用是通過(guò)固化劑IPDI中—NCO與粘合劑、擴(kuò)鏈劑和交聯(lián)劑等組分中含有活潑氫基團(tuán)(如—OH、—NH)的化學(xué)反應(yīng)而建立。
圖6為襯層本體及其在玻璃鋼表面固化反應(yīng)時(shí)—NCO剩余百分?jǐn)?shù)隨反應(yīng)時(shí)間的變化曲線。可見(jiàn),襯層在玻璃鋼表面固化反應(yīng)時(shí)—NCO的消耗速度明顯快于本體,反應(yīng)24 h后,襯層本體及其在玻璃鋼表面的—NCO剩余百分?jǐn)?shù)分別為18.6%和14.2%,而且在整個(gè)固化反應(yīng)過(guò)程中,襯層本體的—NCO剩余百分?jǐn)?shù)始終高于玻璃鋼表面的襯層,這表明玻璃鋼中有活性小分子逸出,擴(kuò)散遷移至襯層并與其中的固化劑IPDI發(fā)生了化學(xué)反應(yīng),使其消耗速度快于襯層本體。因此,可以推斷,由于襯層成型厚度通常都很薄,玻璃鋼中的這些活性組分很容易遷移至近界面推進(jìn)劑并與其中的IPDI發(fā)生副反應(yīng),導(dǎo)致其固化參數(shù)偏離設(shè)計(jì),強(qiáng)度偏度,形成弱強(qiáng)度層。
圖6 襯層本體及其在玻璃鋼表面固化反應(yīng)時(shí)—NCO剩余百分?jǐn)?shù)隨反應(yīng)時(shí)間的變化曲線
2.3.1 膠粘劑BN-01對(duì)界面粘接性能的影響
根據(jù)上述分析結(jié)果,結(jié)合相關(guān)文獻(xiàn)分析,在玻璃鋼與襯層間增加了一層富含異氰酸根活性基團(tuán)的膠粘劑BN-01,并研究了BN-01對(duì)IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼界面粘接性能的影響。
成型了不同厚度膠粘劑BN-01的試件粘接性能見(jiàn)表3,其中膠粘劑的厚度通過(guò)BN-1涂覆量控制,由于成型厚度極薄,采用5%的BN-1乙酸乙酯溶液涂覆。結(jié)果表明,當(dāng)膠粘劑BN-01厚度為0.04~0.08 mm時(shí),可顯著提高界面粘接性能,聯(lián)合扯離強(qiáng)度較不含BN-01的粘接體系分別提高了54.7%、71.0%和29.3%,與推進(jìn)劑本體強(qiáng)度的比值從0.53分別提高至0.82、0.91和0.69。其中,當(dāng)涂刷厚度為0.06 mm時(shí),提升幅度最大,涂刷厚度進(jìn)一步提高到0.08 mm時(shí),聯(lián)合扯離強(qiáng)度出現(xiàn)下降,這是由于膠粘劑涂刷量過(guò)大,遷移到界面推進(jìn)劑中,BN-01中的—NCO導(dǎo)致界面推進(jìn)劑的固化參數(shù)過(guò)高,聚合物提前封端,導(dǎo)致交聯(lián)網(wǎng)絡(luò)產(chǎn)生缺陷,進(jìn)而強(qiáng)度出現(xiàn)降低。
表3 膠粘劑BN-01對(duì)界面粘接性能的影響
圖7為三個(gè)粘接體系試件的近界面推進(jìn)劑狀態(tài)??梢?jiàn),不含膠粘劑BN-01時(shí),粘接試件拉伸測(cè)試后的近界面推進(jìn)劑存在發(fā)粘現(xiàn)象,斷裂面很快出現(xiàn)明顯的光澤,表明該區(qū)域推進(jìn)劑固化交聯(lián)程度低;在玻璃鋼與襯層間增加了0.04~0.06 mm膠粘劑BN-01的粘接試件未出現(xiàn)該現(xiàn)象,近界面推進(jìn)劑固化交聯(lián)正常,表明該區(qū)域推進(jìn)劑得到有效增強(qiáng)。
(a)Thickness of 0 mm (b)Thickness of 0.04 mm (c)Thickness of 0.06 mm
進(jìn)一步比較分析膠粘劑BN-01對(duì)粘接試件近界面推進(jìn)劑凝膠含量的影響。由表4可知,玻璃鋼與襯層間膠粘劑BN-01厚度為0、0.04、0.06、0.08 mm時(shí)的近界面推進(jìn)劑凝膠含量分別為2.68%、3.68%、3.96%和3.56%,相比不含膠粘劑BN-01的粘接試件,BN-01厚度0.06 mm時(shí)近界面推進(jìn)劑凝膠含量提高了47.8%,與聯(lián)合扯離強(qiáng)度的明顯提高相吻合。
表4 膠粘劑BN-01對(duì)近界面推進(jìn)劑凝膠含量的影響
上述結(jié)果表明,富含異氰酸根的膠粘劑BN-01可通過(guò)與玻璃鋼中活性小分子反應(yīng)而阻擋其進(jìn)一步向近界面推進(jìn)劑遷移,降低了近界面推進(jìn)劑中IPDI的額外消耗,使其固化交聯(lián)反應(yīng)更接近于本體推進(jìn)劑,達(dá)到了較高的固化交聯(lián)程度和強(qiáng)度,相當(dāng)于增強(qiáng)了粘接界面。
2.3.2 膠粘劑BN-01對(duì)燃燒室裝藥界面粘接質(zhì)量的影響
根據(jù)上述數(shù)據(jù)結(jié)果和分析,玻璃鋼材料中活性小分子物質(zhì)向襯層及近界面推進(jìn)劑擴(kuò)散遷移,并與其中的固化劑IPDI發(fā)生副反應(yīng)是導(dǎo)致近界面推進(jìn)劑形成弱強(qiáng)度層的根本原因,在玻璃鋼與襯層間增加一層膠粘劑BN-01,可有效增強(qiáng)近界面推進(jìn)劑強(qiáng)度。
基于此,進(jìn)一步通過(guò)發(fā)動(dòng)機(jī)燃燒室裝藥進(jìn)行了驗(yàn)證,試驗(yàn)結(jié)果見(jiàn)圖8。
(a)Thickness of 0 mm (b)Thickness of 0.06 mm
結(jié)果表明,IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼界面不含膠粘劑BN-01時(shí),推進(jìn)劑藥柱固化成型后出現(xiàn)了大面積脫粘,如圖8(a)所示。在玻璃鋼與襯層間成型0.06 mm的膠粘劑BN-01后,燃燒室裝藥界面粘接正常,未出現(xiàn)脫粘的問(wèn)題,如圖8(b)所示。以上結(jié)果驗(yàn)證了膠粘劑B-01對(duì)增強(qiáng)IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼界面粘接的有效性。
(1)玻璃鋼材料中的活性小分子物質(zhì)額外消耗近界面推進(jìn)劑中固化劑IPDI是導(dǎo)致近界面推進(jìn)劑形成弱強(qiáng)度層的根本原因。
(2)在玻璃鋼與襯層間增加膠粘劑BN-01可有效消除近界面弱強(qiáng)度層的形成,顯著增強(qiáng)IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼粘接體系近界面推進(jìn)劑強(qiáng)度。當(dāng)BN-01成型厚度為0.06 mm時(shí),近界面推進(jìn)劑凝膠含量提高了47.8%,聯(lián)合扯離強(qiáng)度提高了71.0%,界面粘接強(qiáng)度大幅度提高。
(3)在帶玻璃鋼殼體裝藥前采用膠粘劑BN-01預(yù)處理,可有效解決IPDI型HTPB推進(jìn)劑/襯層/玻璃鋼裝藥界面粘接質(zhì)量問(wèn)題。