張 旭,張逍遙
(天津工業(yè)大學(xué)機(jī)械工程學(xué)院,天津 300387)
風(fēng)力機(jī)葉片結(jié)冰后其氣動(dòng)外形改變,表面粗糙度增加,導(dǎo)致捕獲風(fēng)能的效率降低。通過(guò)外部處理方式雖然在一定程度上可以改善結(jié)冰的不利影響,但卻具有一定的局限性,比如,噴灑融冰液體會(huì)腐蝕葉片且污染環(huán)境、微波加熱易除冰不充分甚至?xí)谷~片受損、噴涂特殊防冰涂層因涂料極易老化失效而需要經(jīng)常維護(hù)修補(bǔ)等。在生產(chǎn)制造之前設(shè)計(jì)出結(jié)冰條件下仍具有較好氣動(dòng)性能的葉片,則可從根本上解決此問(wèn)題,且成本低廉、實(shí)際應(yīng)用價(jià)值高。
利用鈍尾緣翼型設(shè)計(jì)葉片是一種提髙氣動(dòng)性能以及強(qiáng)度、剛度的有效措施[1],國(guó)內(nèi)外學(xué)者對(duì)此開(kāi)展了一系列的研究。Chao等[2]采用增加尾緣厚度法得到鈍尾緣翼型,采用所得翼型構(gòu)建NREL Phase VI鈍尾緣葉片并運(yùn)用計(jì)算流體力學(xué)(CFD)方法研究氣動(dòng)性能。Lee等[3]將鈍尾緣翼型應(yīng)用于葉片根部區(qū)域,并采用CFD方法研究葉片的氣動(dòng)特性以及結(jié)構(gòu)性能。Almohammadi等[4]利用風(fēng)洞實(shí)驗(yàn)并結(jié)合數(shù)值模擬方法研究發(fā)現(xiàn),鈍尾緣翼型對(duì)SB-VAWT風(fēng)力機(jī)的輸出特性有一定提升效果。韓中合等[5]利用原始翼型及其鈍尾緣改型設(shè)計(jì)葉片,并發(fā)現(xiàn)鈍尾緣葉片的輸出扭矩更大。吳江海[6]采用優(yōu)化所得鈍尾緣翼型構(gòu)建葉片,發(fā)現(xiàn)鈍尾緣翼型可在提升風(fēng)力機(jī)發(fā)電量的同時(shí)減小葉片載荷。張旭[7]等利用霜冰條件下優(yōu)化所得鈍尾緣翼型直接替換NREL Phase Ⅵ葉片原始翼型來(lái)構(gòu)建鈍尾緣葉片,數(shù)值分析其氣動(dòng)性能后發(fā)現(xiàn)結(jié)冰使葉片的輸出功率和扭矩減小,而采用鈍尾緣葉片可減弱這一不利影響。然而,由于優(yōu)化后鈍尾緣翼型的氣動(dòng)性能較原始翼型有較大的提升,且翼型沿葉展的扭角分布直接影響著葉片的氣動(dòng)外形,此外,相比于冰形較規(guī)則的霜冰,明冰的形狀更為復(fù)雜、不規(guī)則且存在棱角。因此有必要進(jìn)行沿葉展方向的扭角分布優(yōu)化,并分析明冰條件下葉片輸出特性。
本文通過(guò)四階多項(xiàng)式函數(shù)建立展向扭角分布參數(shù)化控制方程,并基于S809BT翼型利用坐標(biāo)轉(zhuǎn)換方程構(gòu)建NREL Phase VI鈍尾緣葉片。利用社會(huì)學(xué)習(xí)、Lévy飛行和貪婪算法改進(jìn)QSPO算法,結(jié)合葉素動(dòng)量(BEM)理論優(yōu)化扭角分布以最大化額定工況下風(fēng)能利用系數(shù),并分析明冰條件下扭角優(yōu)化前后尖、鈍尾緣葉片的輸出特性。
NREL Phase VI風(fēng)力機(jī)具有2個(gè)葉片,風(fēng)輪半徑R為5.029m,額定功率為19.8kW,轉(zhuǎn)速為71.63r/min,切入風(fēng)速為5m/s,沿葉展方向20%~25%處為翼型過(guò)渡段、25%至葉尖位置采用弦長(zhǎng)線性遞減的S809翼型。
采用四次多項(xiàng)式函數(shù)擬合NREL Phase VI葉片的扭角分布,如圖1所示??梢钥闯觯碾A多項(xiàng)式函數(shù)能準(zhǔn)確地表達(dá)扭角分布的規(guī)律。因此,扭角分布參數(shù)化控制方程為
φ=ξ0+ξ1r+ξ2r2+ξ3r3+ξ4r4
(1)
式中,r為葉片的展向長(zhǎng)度;φ為翼型的扭角;ξ0,ξ1,ξ2,ξ3,ξ4為控制方程系數(shù)。
圖1 擬合前后的NREL Phase VI葉片的扭角分布曲線
建立如圖2所示的局部平面直角坐標(biāo)系和空間直角坐標(biāo)系,翼型點(diǎn)的二維坐標(biāo)為(x′,y′),轉(zhuǎn)換到空間坐標(biāo)系后點(diǎn)的坐標(biāo)(x,y,z)為
(2)
式中,cr為葉片展向位置r處翼型的弦長(zhǎng)。
圖2 葉片幾何模型
S809BT翼型是由S809翼型進(jìn)行明冰前后的升力系數(shù)和升阻比同時(shí)最大為目標(biāo)的優(yōu)化得到,其尾緣厚度和其分配比為2.621%弦長(zhǎng)、1:28.40的,如圖3所示。
圖3 S809和S809BT翼型
將S809BT翼型替換S809翼型,構(gòu)建NREL Phase VI鈍尾緣葉片。為提升風(fēng)力機(jī)正常運(yùn)行時(shí)的輸出功率,對(duì)葉片扭角分布進(jìn)行優(yōu)化,優(yōu)化模型如下:
以四階多項(xiàng)式控制方程系數(shù)為設(shè)計(jì)變量X,即
X=(ξ0,ξ1,ξ2,ξ3,ξ4)
(3)
以最大化額定工況下葉片的風(fēng)能利用系數(shù)CPower為設(shè)計(jì)目標(biāo),即
f(X)=(CPower)
(4)
為使鈍尾緣葉片具有較好的氣動(dòng)外形特性,并減少多余的迭代次數(shù),設(shè)計(jì)變量需限定在合適的范圍內(nèi)??紤]到葉片的扭角從葉根到葉尖在一定范圍內(nèi)逐漸減小,因此設(shè)計(jì)變量的約束條件為
(5)
式中,Xmin和Xmax分別為X的最小和最大值;φmin和φmax分別為φ的最小和最大值。
3.2.1 基于社會(huì)學(xué)習(xí)的非最優(yōu)粒子位置更新
在QPSO算法中,第t次迭代時(shí),第a個(gè)粒子第g維度的勢(shì)阱中心pa,g(t)為
pa,g(t)=ra,g(t)Pbesta,g(t)+(1-ra,g(t))Gbestg(t)
(6)
式中,a=1,2…H;g=1,2…G;G為變量維數(shù);H為種群規(guī)模;ra,g(t)∈U(0,1);Pbesta,g(t)和Gbestg(t)分別為個(gè)體的和全局的最優(yōu)位置。
以最小值優(yōu)化為例,根據(jù)適應(yīng)度值將粒子降序排列,引入學(xué)習(xí)機(jī)制更新第h個(gè)非最優(yōu)粒子第g維度的勢(shì)阱中心p′h,g(t)的公式如下
(7)
(8)
式中,B為基本種群規(guī)模,且H=B+(G/10);α為指數(shù)系數(shù),本研究取0.5[8]。
下次迭代中第h個(gè)非最優(yōu)粒子第g維度的位置Xh,g(t+1)為
Xh,g(t+1)
(9)
式中,uh,g(t)∈U(0,1);Lh,g(t)為勢(shì)阱長(zhǎng)度,即
(10)
3.2.2 基于Lévy飛行和貪婪算法的最優(yōu)粒子位置更新
l=1,2,…L
(11)
式中,XH,g(t)為粒子H的原始位置;X1,g(t)為降序排列后的第一個(gè)粒子的位置;L為最大飛行次數(shù);φ0為步長(zhǎng)控制因子,設(shè)為1;隨機(jī)數(shù)v,μ均服從正態(tài)分布
(12)
式中,Γ為伽馬函數(shù),常數(shù)χ取1.5。
采用貪婪算法確定粒子H的最終位置XH(t+1):
(13)
利用XFOIL軟件計(jì)算小攻角下S809BT翼型的升、阻力系數(shù),并基于Montgomerie失速模型估算-180°~180°攻角范圍內(nèi)的氣動(dòng)系數(shù),如圖4所示。
圖4 S809BT翼型全流向升、阻力系數(shù)
利用BEM理論計(jì)算葉片的風(fēng)能利用率,并采用改進(jìn)的QPSO算法進(jìn)行優(yōu)化,優(yōu)化流程圖如圖5所示?;緟?shù)如下:葉尖速比為6,種群規(guī)模為15,CE系數(shù)為0.05,比例系數(shù)為0.01,最大Lévy飛行次數(shù)為100。從優(yōu)化迭代歷程圖6可看出,當(dāng)?shù)?00步時(shí),目標(biāo)函數(shù)已趨于收斂且優(yōu)化效果明顯。優(yōu)化前后NREL Phase VI鈍尾緣葉片的扭角分布如圖7。
圖5 展向扭角分布優(yōu)化流程
圖6 優(yōu)化迭代歷程
圖7 優(yōu)化前后的扭角分布曲線
記初始的、采用S809BT翼型和初始扭角分布的、采用S809BT翼型和優(yōu)化后扭角分布的葉片分別為S809、S809BT和S809BTOP葉片,計(jì)算3種葉片在葉尖速比為1~15時(shí)的風(fēng)能利用系數(shù),如圖8所示??梢钥闯?,S809葉片的風(fēng)能利用系數(shù)分別在葉尖速比低于6.5和超過(guò)6.5時(shí)明顯低于和高于S809BT葉片,在葉尖速比低于7和超過(guò)7時(shí)分別顯著低于和稍大于S809BTOP葉片。相較于S809BT葉片,S809BTOP葉片風(fēng)能利用系數(shù)在葉尖速比低于5時(shí)變化不大而為5~15時(shí)則明顯提升。此外,3種葉片的風(fēng)能利用系數(shù)均隨葉尖速比的增大先增大而后減小,S809BT和S809BTOP葉片最大風(fēng)能利用系數(shù)均大于S809葉片,且所對(duì)應(yīng)葉尖速比均減小。
圖8 S809、S809BT和S809BTOP葉片的風(fēng)能利用系數(shù)
3種葉片在轉(zhuǎn)速為70rpm、72rpm和80rpm時(shí)的風(fēng)能利用系數(shù)如圖9所示。可以看出,S809BT葉片的風(fēng)能利用系數(shù)在3種轉(zhuǎn)速下均隨風(fēng)速的增加先增大后減小。相較于70rpm時(shí),S809BT葉片的風(fēng)能利用系數(shù)在72rpm轉(zhuǎn)速下風(fēng)速低于8m/s時(shí)變化不大,8~15m/s時(shí)稍有增加;相較于70rpm和72rpm時(shí),80rpm轉(zhuǎn)速下風(fēng)速低于7.5m/s時(shí)減小而為7.5~15m/s時(shí)增加。相較于S809葉片,S809BT葉片風(fēng)能利用系數(shù)在70rpm轉(zhuǎn)速下風(fēng)速為5m/s、72rpm轉(zhuǎn)速下風(fēng)速為5~6.25m/s及80rpm轉(zhuǎn)速下風(fēng)速為5m/s時(shí)減小,在70rpm轉(zhuǎn)速下風(fēng)速超過(guò)5m/s、72rpm轉(zhuǎn)速下風(fēng)速超過(guò)6.25m/s時(shí)則明顯增加,80rpm轉(zhuǎn)速下風(fēng)速超過(guò)5m/s而小于6m/s時(shí)變化不大,6~15m/s時(shí)明顯增加??梢?jiàn),采用S809BT翼型構(gòu)建的鈍尾緣葉片的輸出性能有較大提升。
此外,S809BTOP葉片的風(fēng)能利用系數(shù)隨轉(zhuǎn)速和風(fēng)速的變化規(guī)律與S809BT葉片一致。但相較于S809BT葉片,S809BTOP葉片在各轉(zhuǎn)速下的風(fēng)能利用系數(shù)均有所增大。由此可見(jiàn),通過(guò)展向扭角的分布優(yōu)化,可以使得鈍尾緣葉片的輸出性能得到進(jìn)一步提升。
圖9 不同轉(zhuǎn)速和風(fēng)速下S809、S809BT和S809BTOP葉片的風(fēng)能利用系數(shù)
利用LEWICE軟件,對(duì)S809和S809BTOP葉片沿展向多個(gè)位置處截面翼型進(jìn)行表1所示明冰條件下的結(jié)冰冰形計(jì)算,獲得表面覆有明冰的葉片,明冰S909BTOP葉片如圖10所示。
表1 明冰條件
圖10 明冰S809BTOP葉片三維幾何模型
計(jì)算明冰條件下S809和S809BTOP葉片在葉尖速比為1~15時(shí)的風(fēng)能利用系數(shù),如圖11所示??梢钥闯?,相較于S809葉片,S809BTOP葉片的風(fēng)能利用系數(shù)在葉尖速比小于5和8~10范圍內(nèi)時(shí)基本不變,為5~8時(shí)明顯提升,超過(guò)10后則減小。S809和S809BTOP葉片的風(fēng)能利用系數(shù)均隨葉尖速比的增大先增加而后減小,且后者的最大風(fēng)能利用系數(shù)更大,所對(duì)應(yīng)的葉尖速比更小。
圖11 S809、S809BTOP葉片的風(fēng)能利用系數(shù)
明冰條件下S809和S809BTOP葉片在轉(zhuǎn)速為70rpm、72rpm和80rpm時(shí)的風(fēng)能利用系數(shù)如圖12所示。可以看出,S809和S809BTOP葉片的風(fēng)能利用系數(shù)分別在風(fēng)速為5m/s和6.5m/s時(shí)隨轉(zhuǎn)速的增加而逐漸減小,在此之后則隨轉(zhuǎn)速的增加而增加。相較于S809葉片,S809BTOP葉片的風(fēng)能利用系數(shù)在各轉(zhuǎn)速下風(fēng)速為5m/s時(shí)變化不大,70rpm和72rpm轉(zhuǎn)速下風(fēng)速為5~8m/s和15m/s、80rpm轉(zhuǎn)速下風(fēng)速超過(guò)5m/s而低于9m/s時(shí)明顯提升,70rpm和72rpm轉(zhuǎn)速下風(fēng)速在8~15m/s之間、80rpm轉(zhuǎn)速下風(fēng)速超過(guò)9m/s時(shí)則降低。
圖12 明冰條件下S809、S809BTOP葉片在不同轉(zhuǎn)速和風(fēng)速下的風(fēng)能利用系數(shù)
結(jié)明冰前后S809葉片和S809BTOP葉片在葉尖速比為1~15時(shí)的風(fēng)能利用系數(shù)如圖13??梢钥闯?,相較于干凈的S809葉片,結(jié)明冰后S809葉片的風(fēng)能利用系數(shù)在葉尖速比低于2時(shí)基本不變,為2~6時(shí)增大,超過(guò)6后則明顯減小。相較于干凈的S809BTOP葉片,結(jié)明冰后S809BTOP葉片的風(fēng)能利用系數(shù)在葉尖速比低于1.5和6~7之間時(shí)變化不大,在1.5~6范圍內(nèi)和超過(guò)7時(shí)則明顯減小。
圖13 結(jié)明冰前后S809、S809BTOP葉片的風(fēng)能利用系數(shù)
建立展向扭角分布參數(shù)化控制方程,并構(gòu)建S809BT葉片。利用社會(huì)學(xué)習(xí)、Lévy飛行和貪婪算法改進(jìn)QPSO算法,以額定工況下風(fēng)能利用系數(shù)最大為目標(biāo)優(yōu)化S809BT葉片扭角分布得到S809BTOP葉片,分析優(yōu)化前后尖、鈍尾緣葉片在明冰條件下的輸出特性。結(jié)果表明:
1) 結(jié)冰前,S809BT葉片風(fēng)能利用系數(shù)在葉尖速比低于6.5和超過(guò)6.5時(shí)分別明顯高于和低于尖尾緣葉片;S809BTOP葉片的風(fēng)能利用系數(shù)在葉尖速比為1~15時(shí)、低于7和超過(guò)7時(shí)分別高于S809BT葉片、明顯高于和略低于尖尾緣葉片。
2) 結(jié)冰后,尖尾緣葉片在葉尖速比超過(guò)6時(shí)、S809BTOP葉片在葉尖速比在1.5~6范圍內(nèi)和超過(guò)7時(shí)的風(fēng)能利用系數(shù)明顯減小。相較于尖尾緣葉片,S809BTOP葉片在葉尖速比為5~8、70rpm和72rpm轉(zhuǎn)速下風(fēng)速為5~8m/s和15m/s以及80rpm轉(zhuǎn)速下風(fēng)速為5m/s~9m/s時(shí)明顯提升。S809BTOP葉片在干凈及明冰條件下的最大風(fēng)能利用系數(shù)均明顯提升,且所對(duì)應(yīng)的葉尖速比減小。