• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      耐磨高熵合金制備工藝研究進(jìn)展

      2022-12-21 07:51:30邢秋瑋王萬年李國舉張昕喆張新房陳占興
      精密成形工程 2022年12期
      關(guān)鍵詞:磨損率耐磨性金屬元素

      邢秋瑋,王萬年,李國舉,張昕喆,張新房,陳占興

      耐磨高熵合金制備工藝研究進(jìn)展

      邢秋瑋a,王萬年a,李國舉b,張昕喆b,張新房a,陳占興a

      (鄭州航空工業(yè)管理學(xué)院 a.材料科學(xué)與工程學(xué) b.航空宇航學(xué)院,鄭州 450046)

      耐磨高熵合金具有主元多、強(qiáng)度高、硬度大、磨損率低和耐高溫等特征,應(yīng)用前景廣闊,是近幾十年發(fā)展起來的一種新型耐磨材料。圍繞耐磨高熵合金的主要制備工藝與耐磨性能的影響因素兩方面,對(duì)近年來耐磨高熵合金的主要研究進(jìn)展進(jìn)行了綜述。重點(diǎn)闡述了固、液、氣態(tài)成型的耐磨高熵合金制備技術(shù),總結(jié)了影響高熵合金耐磨性的因素,包括金屬元素與非金屬元素在內(nèi)的多種元素對(duì)高熵合金耐磨性能的影響,說明了高熵合金及其碳氮化物涂層耐磨性能的研究進(jìn)展。耐磨高熵合金的制備工藝較多,應(yīng)根據(jù)合金形態(tài)成分的不同選擇合適的制備方法;通過添加金屬或非金屬元素誘導(dǎo)硬質(zhì)相析出仍是提高合金耐磨性能的主要手段;有些高熵合金或高熵合金涂層在高溫、潤滑等條件下也能夠表現(xiàn)出優(yōu)異的耐磨性能。

      高熵合金;耐磨性能;固溶強(qiáng)化;第二相強(qiáng)化;高熵合金涂層

      近年來,高熵合金因其特殊結(jié)構(gòu)與優(yōu)異性能在材料工程領(lǐng)域引起了極大關(guān)注。高熵合金一般含有4個(gè)或以上主要元素,其內(nèi)部組織可以是單相或多相[1-2]。由于每種主元均具有較高的摩爾含量,有時(shí)也被稱為多主元合金或復(fù)雜濃度合金[3-4]。一般認(rèn)為,高熵合金性能的增強(qiáng)源于多個(gè)主元形成的化學(xué)無序特征引起的高熵效應(yīng)[5-7]。經(jīng)過近20 a的研究,在高熵合金系中已經(jīng)發(fā)現(xiàn)了較多引人矚目的性能,如良好熱穩(wěn)定性[8-9]、反常低溫韌性[10-11]、較高硬度及耐磨性[12–14]、高抗氧化性[15-16]、優(yōu)異耐腐蝕性[17-19]和抗輻照性[20–23]、良好軟磁性[24-27]等。

      磨損是一種常見的材料失效形式,如何提高材料的耐磨性能一直是材料科學(xué)領(lǐng)域研究的重要問題之一。高熵合金是一種極具潛力的新型耐磨材料,具有獨(dú)特的組織結(jié)構(gòu)及高強(qiáng)度、高硬度等特征。此外,高熵合金良好的低溫韌性、耐熱性及耐腐蝕性也有利于在極端條件下的應(yīng)用。因此,高熵合金的耐磨性能近年來越來越受到研究者的關(guān)注,已涌現(xiàn)出大量相關(guān)研究成果。為此,簡要介紹了耐磨高熵合金的固、液、氣態(tài)成型技術(shù),并總結(jié)了近年來耐磨高熵合金領(lǐng)域的研究進(jìn)展。

      1 耐磨高熵合金制備工藝

      耐磨高熵合金的主元多、成分復(fù)雜,針對(duì)不同合金的加工方法也不同。成型材料的形態(tài)及組織結(jié)構(gòu)受到加工過程中金屬元素的中間相態(tài)的影響較大[28]。因此,根據(jù)加工過程中金屬元素的中間相態(tài)不同,耐磨高熵合金制備技術(shù)大體可分為固態(tài)、液態(tài)和氣態(tài)成型技術(shù)。

      1.1 固態(tài)成型技術(shù)

      耐磨高熵合金的固態(tài)成型技術(shù)主要包括各種燒結(jié)技術(shù),尤其適用于難熔高熵合金的制備。該技術(shù)首先將各種原料粉末均勻混合,然后在高溫下進(jìn)行燒結(jié)。燒結(jié)所用的原料粉末可選用主元對(duì)應(yīng)元素的純金屬粉末或二元、三元合金粉末,通過燒結(jié)擴(kuò)散作用使成分均勻。也可以直接使用高熵合金粉末進(jìn)行燒結(jié)。

      1.1.1 放電離子燒結(jié)

      放電離子燒結(jié)技術(shù)將金屬粉末混合均勻后置于導(dǎo)電的石墨模具中,在金屬粉末兩端施加壓力并通入電流,利用金屬粉末自身產(chǎn)生的焦耳熱燒結(jié)樣品。該方法具有燒結(jié)速度快、燒結(jié)溫度高、樣品組織致密等優(yōu)點(diǎn),是制備耐磨高熵合金的常用方法,尤其是含有較多難熔元素的耐磨高熵合金,如AlCoCrFeNiTi0.5[29]、CuMoTaWV[30]、(CrMnFeHf)7.14(TiTaV)23.81[31]等,大直徑樣品還可作為磁控濺射耐磨高熵合金涂層的靶材。放電離子燒結(jié)制備的(CrMnFeHf)7.14(TiTaV)23.81圓盤形樣品見圖1。其中,圖1上部所示的直徑60 mm的大尺寸樣品主要用于磁控濺射靶材,下部所示的直徑12 mm小尺寸樣品可直接用于摩擦測(cè)試,樣品表面的黑環(huán)為摩擦測(cè)試后的磨痕。該方法的燒結(jié)溫度能夠影響其制備高熵合金的組織及耐磨性能。例如,在更高溫度下放電離子燒結(jié)的TiAlMoSiW具有較低的摩擦因數(shù)[32-33]。

      圖1 放電離子燒結(jié)制備的(CrMnFeHf)7.14(TiTaV)23.81耐磨高熵合金靶材(上)與摩擦測(cè)試樣品(下)

      1.1.2 熱壓燒結(jié)

      熱壓燒結(jié)是在燒結(jié)的升溫過程中對(duì)金屬粉末施加壓力,從而強(qiáng)化金屬元素間的擴(kuò)散作用,促進(jìn)粉末間的傳熱傳質(zhì)。與放電離子燒結(jié)不同的是,熱壓燒結(jié)的加熱方式一般通過外部電熱元件而非金屬粉末自發(fā)熱進(jìn)行(圖2)。用該方法制備的AlFeTiCrZnCu[34]、Ni?Cr?Co?Ti?V[35]等高熵合金均表現(xiàn)出良好的耐磨性能。此外,如果將高熵合金粉末鋪展于基體表面形成粉末薄層后進(jìn)行熱壓燒結(jié),還可以制備高熵合金涂層。Shang等[36]先將純金屬粉末機(jī)械合金化為高熵合金粉,再通過熱壓燒結(jié)技術(shù)在Q235鋼表面制備了AlCrFeNi涂層,該涂層表現(xiàn)出了優(yōu)異的耐磨性能。

      圖2 熱壓燒結(jié)耐磨高熵合金示意圖

      1.2 液態(tài)成型技術(shù)

      液態(tài)成型主要指包含熔化–凝固過程的各種熔覆及熔煉技術(shù)。由于在液相混合過程中的原子遷移速度比固態(tài)擴(kuò)散作用更快,液態(tài)成型更有利于高熵合金形成均勻簡單的組織結(jié)構(gòu),合金的組織結(jié)構(gòu)也更接近于相圖預(yù)測(cè)。目前,塊體耐磨高熵合金的液態(tài)成型技術(shù)主要包括電弧熔煉及感應(yīng)熔煉技術(shù),耐磨高熵合金涂層的液態(tài)成型目前主要使用激光熔覆技術(shù),其他如利用熱噴涂[37]、離子熔覆[38]等技術(shù)制備的耐磨高熵合金涂層也有少量報(bào)道。

      1.2.1 電弧熔煉

      電弧熔煉技術(shù)是將金屬原料放置于水冷銅坩堝中,在氬氣氣氛下用電弧槍進(jìn)行引弧,通過電弧產(chǎn)生的高溫熔煉合金(圖3)。由于電弧溫度較高,該方法更適用于難熔金屬,在熔煉低沸點(diǎn)或揮發(fā)性金屬元素時(shí)則燒損較為嚴(yán)重。有時(shí)也配合電磁攪拌技術(shù),使金屬液混合更加均勻。相比固態(tài)燒結(jié)技術(shù),該方法制備的耐磨高熵合金更易于產(chǎn)生簡單均勻的組織結(jié)構(gòu)。如CoCrCuFeNiSi(表示摩爾分?jǐn)?shù),分別為0.3、0.6)高熵合金[39],使用放電離子燒結(jié)技術(shù)制備的樣品中含有NiCoFe面心立方相、富銅面心立方相與σ相;而使用電弧熔煉技術(shù)制備的樣品則僅生成面心立方單相。

      圖3 電弧熔煉耐磨高熵合金示意圖

      1.2.2 感應(yīng)熔煉

      感應(yīng)熔煉技術(shù)通過感應(yīng)線圈加熱水冷銅坩堝中的純金屬原料,利用金屬的導(dǎo)電性,在原料內(nèi)部生成感應(yīng)電流,產(chǎn)生焦耳熱熔化形成合金。由于電磁攪拌作用的存在,能夠得到較為均勻的耐磨高熵合金。感應(yīng)熔煉可熔化的金屬熔點(diǎn)范圍要低于電弧熔煉,但可制備質(zhì)量在千克級(jí)的樣品。如Tong等[14]用真空感應(yīng)熔煉了AlCoCrCuFeNi(為0~3.0)耐磨高熵合金,其耐磨性能類似于具有相同硬度的鐵合金。

      1.2.3 激光熔覆

      激光熔覆技術(shù)是先在基材表面覆蓋材料,再利用高能激光源將其同基材表面薄層共同熔化并覆蓋于材料表面。該技術(shù)可制備微米至毫米級(jí)的耐磨高熵合金涂層。目前報(bào)道的激光熔覆耐磨高熵涂層有TiVCrAlSi[40]、MoFeCrTiWAlNb[41]、FeNiCoAlCu[42]和CoCrBFeNiSi[43]等。此外,熔覆高熵涂層的耐磨性還能通過改變制備參數(shù)進(jìn)行調(diào)節(jié)。如Co34Cr29B14Fe8Ni8Si7涂層的非晶相含量會(huì)受到熔覆功率的影響,熔覆功率越高,非晶相含量越低,涂層的耐磨性能越差[44]。Guo等[41]研究了不同功率及掃描速率下激光熔覆MoFeCrTiWAlNb高熵合金涂層的耐磨性能,發(fā)現(xiàn)在2.6 kW與4 mm/s時(shí)具有最低的磨損率,且磨損率隨著能量密度的提升而增加。

      1.3 氣態(tài)成型技術(shù)

      高熵合金在氣態(tài)下成型更易于克服液態(tài)成型中多主元混合不均勻、難熔元素熔化不充分等問題,主要用于制備高熵合金涂層或高熵陶瓷涂層。目前,主要的高熵合金氣態(tài)成型技術(shù)包含磁控濺射技術(shù),以及在磁控濺射基礎(chǔ)上發(fā)展的反應(yīng)濺射技術(shù),其他技術(shù)如真空蒸鍍、離子鍍等則較少報(bào)道。這主要是由于大部分高熵合金所含元素熔點(diǎn)較高且成分復(fù)雜,使用濺射技術(shù)制備不易受到合金熔點(diǎn)等因素限制。此外,磁控濺射還具有工作溫度較低,對(duì)基片的熱效應(yīng)較小等優(yōu)點(diǎn)。

      1.3.1 磁控濺射

      磁控濺射是通過電離出的氬離子轟擊金屬靶材,金屬原子受到濺射后氣態(tài)化并沉積于基片表面形成耐磨高熵合金涂層(圖4)。與激光熔覆相比,磁控濺射的高熵合金涂層厚度較低,約為數(shù)百納米到幾微米,如該方法制備的CuMoTaWV[45]、TiTaHfNbZr[46]耐磨涂層厚度約為1 μm。在靶材的選擇上既可以通過多個(gè)中低熵合金靶材共濺射的方式沉積,也可以直接濺射通過固相燒結(jié)、感應(yīng)熔煉等方式制備高熵合金靶材。

      圖4 多靶磁控濺射耐磨高熵合金涂層示意圖

      1.3.2 反應(yīng)濺射

      根據(jù)高熵合金涂層中所含非金屬元素的不同,參與濺射的反應(yīng)氣體可以是氮?dú)?、氧氣或烷烴類氣體。反應(yīng)濺射技術(shù)制備的高熵合金涂層,其耐磨性一般優(yōu)于對(duì)應(yīng)的不含非金屬元素的合金涂層。非金屬元素對(duì)高熵合金耐磨性的強(qiáng)化作用表現(xiàn)在兩方面,一是少量加入的非金屬元素能夠溶于高熵合金基體中,起到表面強(qiáng)化作用;二是大量加入的非金屬元素會(huì)與高熵合金中的某些主元形成陶瓷相,產(chǎn)生硬質(zhì)相強(qiáng)化作用。如(AlCrMnMoNiZr)N高熵合金氮化物涂層,在氮含量較低時(shí)能夠保持非晶態(tài),在高氮含量時(shí)則生成NaCl型氮化物[47]。

      2 高熵合金耐磨性能影響因素

      對(duì)耐磨高熵合金領(lǐng)域的研究,目前主要集中于不同條件下不同成分合金耐磨性能的演變規(guī)律研究。在成分上,主要通過微合金化或加元法調(diào)控高熵合金的組織結(jié)構(gòu),實(shí)現(xiàn)對(duì)耐磨性能的改善;在形態(tài)上,主要通過薄膜化抑制多相形成并降低合金成本;在摩擦環(huán)境上,主要研究不同溫度下高熵合金的摩擦行為及高熵合金的潤滑機(jī)理。

      2.1 合金化對(duì)高熵合金耐磨性能影響

      目前,通過合金化改善高熵合金耐磨性能的研究較多,其主要的強(qiáng)化機(jī)理可歸類為2種,一種是通過添加元素調(diào)控高熵合金的組織結(jié)構(gòu),誘導(dǎo)硬質(zhì)相生成并提高其體積分?jǐn)?shù),利用第二相強(qiáng)化作用提高其耐磨性能。添加元素以金屬元素為主,其含量往往較高或直接作為主元添加;另一種方法是將小分子非金屬元素固溶于高熵合金晶格間隙,利用固溶強(qiáng)化作用提高合金的耐磨性能,由于晶格間隙固溶能力有限,元素添加量往往較低。

      2.1.1 Al對(duì)高熵合金耐磨性能影響

      Al元素在自然界中具有密度小、分布廣泛等特征,在高熵合金中加入Al元素能夠降低合金質(zhì)量與成本。在一些高熵合金中,Al含量的改變還能夠引起組織結(jié)構(gòu)的變化,進(jìn)而影響其耐磨性能。典型的例子是AlCoCrFeNi,以及在此基礎(chǔ)上添加1~2種主元形成的高熵合金,其組織結(jié)構(gòu)往往會(huì)隨著鋁含量的改變發(fā)生相結(jié)構(gòu)變化或單相-多相轉(zhuǎn)變。其中,硬質(zhì)相含量的改變能夠顯著影響高熵合金的耐磨性能。例如,對(duì)AlCoCrFeNi的研究發(fā)現(xiàn)[48],由于較軟的面心立方相含量較高,Al0.3CoCrFeNi合金的磨損率要高于其他成分合金。納米劃痕測(cè)試也表明[49],相比面心立方結(jié)構(gòu)的鑄態(tài)AlCoCrFeNi高熵合金,體心立方結(jié)構(gòu)的高熵合金明顯具有較低的磨損率。而在AlCoCrCuFeNi中[14,50],Al含量的提高能夠促使合金由面心立方結(jié)構(gòu)向體心立方結(jié)構(gòu)轉(zhuǎn)變,使合金硬度上升,磨損率下降。Gasan等[51]對(duì)高熵合金AlCoCrFeMoNi摩擦行為的研究發(fā)現(xiàn),Al含量增加能夠提高合金中硬質(zhì)σ相的體積分?jǐn)?shù),而鋁含量較高的Al1.5CoCrFeMoNi合金由于硬質(zhì)相 σ、B2 與體心立方相含量較高,因而磨損率較低。在FeCoCrNiMn中加入Al元素后[52],在晶粒細(xì)化及體心立方相沉淀的雙重作用下,得到的FeCoCrNiMnAl具有良好的室溫耐磨性能。

      2.1.2 Co對(duì)高熵合金耐磨性能影響

      相比其他鐵族元素,Co元素價(jià)格較為昂貴,一些研究集中于如何用廉價(jià)元素替代傳統(tǒng)高熵合金中的Co,并保持與原合金相當(dāng)?shù)哪湍バ阅?。Zhao等[53]研究了在高熵合金中用Al替代Co對(duì)耐磨性能的影響,發(fā)現(xiàn)隨著Al含量升高樣品的磨痕深度明顯降低(圖5)。Shu等[54]研究了用Co替代Fe來提高激光熔覆FeCoCrBNiSi高熵合金涂層的非晶形成能力,發(fā)現(xiàn)鐵鈷比增大會(huì)減少涂層中非晶相的比例,加劇高溫下的氧化磨損,降低合金的高溫耐磨性能。Kumar等[55]研究了Al0.4FeCrNiCo(分別為0、0.25、0.5、1.0)高熵合金的摩擦行為,發(fā)現(xiàn)磨損機(jī)制主要為黏著磨損、塑性變形及分層磨損,而在Co含量較高與氧含量較低時(shí)氧化磨損影響較小。

      圖5 鋁鈷比變化對(duì)高熵合金耐磨性能的影響[53]

      2.1.3 Ti對(duì)高熵合金耐磨性能影響

      在一些高熵合金中加入Ti元素不僅能夠降低合金密度,還能有效改善其耐磨性能。Wang等[56]在離子熔覆CoCrFeMnNi高熵合金涂層中添加Ti,發(fā)現(xiàn)CoCrFeMnNi高熵合金涂層的室溫磨損機(jī)制為磨粒磨損,而(CoCrFeMnNi)85Ti15高熵合金涂層在室溫下的磨損機(jī)制則主要為氧化磨損與接觸疲勞,其高溫耐磨性能5.5倍于CoCrFeMnNi高熵合金涂層。Nong等[57]用Ti替代AlCoCrFeNi高熵合金中的Co,發(fā)現(xiàn)AlCrFeNiTi具有較好的耐磨性能,磨損機(jī)制主要為分層黏著磨損與氧化磨損。Wang等[58]對(duì)比了AlCrCuFeNi與AlCrCuFeNiTi0.5高熵合金的耐磨性能,發(fā)現(xiàn)AlCrCuFeNi在添加Ti后磨損機(jī)制由磨粒磨損變?yōu)轲ぶp。L?bel等[59]研究了不同Ti含量AlCoCrFeNiTi高熵合金的耐磨性能,發(fā)現(xiàn)除往復(fù)磨損外,高熵合金的球盤摩擦測(cè)試與劃痕測(cè)試的磨損深度均小于軸承鋼EN1.3505。Chuang等[31]研究了Ti和Al含量變化對(duì)AlCo1.5CrFeNi1.5Ti高熵合金耐磨性的影響,發(fā)現(xiàn)Co1.5CrFeNi1.5Ti與Al0.2Co1.5CrFeNi1.5Ti由于內(nèi)部硬質(zhì)η相的生成,使硬度與耐磨性顯著提高,尤其是Al0.2Co1.5CrFeNi1.5Ti合金,其耐磨性3.6倍于SUJ2軸承鋼,2倍于SKH51高速鋼。

      2.1.4 其他金屬元素對(duì)高熵合金耐磨性能影響

      Verma等[60]研究了Cu元素對(duì)CoCrFeNi耐磨性能的影響,發(fā)現(xiàn)在CoCrFeNi中加入Cu后得到的CoCrFeNiCu在室溫及高溫下的磨損率都有所降低。Yadav等[61]通過放電離子燒結(jié)技術(shù)制備了(CuCrFeTi Zn)100-xPb與(AlCrFeMnV)100-xBi高熵合金復(fù)合材料,其中Pb與Bi以彌散相形式分布于高熵合金基體上?;瑒?dòng)摩擦測(cè)試結(jié)果顯示,隨著Pb含量上升,(Cu CrFeTiZn)100-xPb高熵合金復(fù)合材料的滑動(dòng)摩擦因數(shù)無明顯變化,但磨損率卻降低了21%。同時(shí),Bi含量的提升能夠降低(AlCrFeMnV)100-xBi高熵合金復(fù)合材料的滑動(dòng)摩擦因數(shù)與磨損率,由于彌散相及高熵合金相的強(qiáng)韌性作用,使2種材料的摩擦性能得以提升。

      對(duì)于耐磨高熵合金,難熔金屬元素作為合金化元素能夠起到提升高溫性能、調(diào)節(jié)合金硬度及組織結(jié)構(gòu)、形成高溫氧化物潤滑層等作用[62–64]。Chen等[65]研究了添加V元素對(duì)Al0.5CoCrCuFeNi耐磨性能的影響,發(fā)現(xiàn)當(dāng)V元素的摩爾分?jǐn)?shù)從0.4上升至1.2時(shí),Al0.5CoCrCuFeNiV合金的耐磨性上升約20%,當(dāng)為1.0~1.2時(shí)合金的耐磨性能最佳。Jiang等[66]發(fā)現(xiàn),添加Nb能夠提高CoCrFeNiNb共晶高熵合金中硬脆Laves相的體積分?jǐn)?shù),降低合金塑性,提高其耐磨性能。其中,CoCrFeNiNb1.2高熵合金耐磨性最佳。Yu等[67]的研究則表明,在室溫下CoCrFeNiNb0.5的耐磨性最低。Yang等[68]發(fā)現(xiàn),Mo元素能夠降低CoCrCuFeNiMo高熵合金的摩擦因數(shù)。

      2.1.5 非金屬元素對(duì)高熵合金耐磨性能影響

      一些非金屬元素也能夠作為合金化元素影響高熵合金的耐磨性能,由于非金屬元素與金屬元素相比原子半徑差異較大,其往往具有特殊的強(qiáng)化機(jī)制。Kumar等[39]發(fā)現(xiàn)Si含量的提高能夠改善CoCrCuFe NiSi(分別為0、0.3、0.6、0.9)的耐磨性,主要是由于Si與其他元素的原子半徑錯(cuò)配帶來的固溶強(qiáng)化作用。Jin等[69]研究了AlCoCrFeNiSi(分別為0、0.5、1.0、1.5、2.0) 高熵合金發(fā)現(xiàn),Si元素的添加能夠提高合金的硬度、抗壓強(qiáng)度與耐磨性能,而磨損機(jī)制主要為磨粒磨損。Poletti等[70]在FeCoCrNiW0.3高熵合金中加入原子數(shù)分?jǐn)?shù)5%的C,該合金具有與Co基高溫合金相當(dāng)?shù)哪湍バ阅?。Hsu 等[13]在面心立方CuCoNiCrAl0.5Fe高熵合金中添加B元素,制備的CuCoNiCrAl0.5FeB合金顯示出比SUJ2鋼更高的耐磨性能。

      非金屬元素的另一種應(yīng)用是在高熵合金表面離子注入氮、硼等小分子非金屬元素,利用表面強(qiáng)化作用提高合金的耐磨性能。Wang等[71]采用離子氮化法在AlCoCrFeNi高熵合金表面形成氮化層,表面氮化后高熵合金的磨損率明顯降低,但動(dòng)摩擦因數(shù)卻有所提高,其磨損機(jī)制已由磨粒磨損轉(zhuǎn)變?yōu)槟チDp與黏著磨損。Tang等[72]通過離子氮化Al0.3CrFe1.5MnNi0.5高熵合金表面后,比未氮化之前耐磨性能提高了49~80倍,比氮化鋼試樣耐磨性能提高了22~55倍。Nishimoto等[73]通過離子氮化CoCrFeMnNi高熵合金表面后發(fā)現(xiàn),氮化表面后合金的耐磨性能有了明顯改善。Lindner等[74]通過粉末填充滲硼法對(duì)CoCrFeMnNi與CoCrFeNi高熵合金進(jìn)行表面強(qiáng)化發(fā)現(xiàn),滲硼后表面磨損機(jī)制由黏著磨損轉(zhuǎn)變?yōu)槟チDp,滲硼層形成能夠顯著提高合金的耐磨性。Hou等[75]同樣使用粉末填充滲硼法強(qiáng)化了Al0.25CoCrFeNi高熵合金表面,由于(Ni,Co,Fe)2B與CrB硼化層的形成,表面硼化后的合金具有高出原合金12倍的耐磨性能。

      2.2 薄膜化對(duì)高熵合金耐磨性能影響

      由于摩擦發(fā)生于材料表面,通過表面沉積高熵合金薄膜提高基材耐磨性能,夠有效降低生產(chǎn)成本、提高生產(chǎn)效率。此外,低維高熵合金由于在成形過程中散熱充分、易于冷卻,更傾向于形成簡單致密的結(jié)構(gòu),有利于耐磨性能的提升。目前高熵合金二維化的主要技術(shù)有2種,一是基于熔覆技術(shù)制備的高熵合金涂層,二是基于濺射技術(shù)制備的高熵合金薄膜。前者可歸為液態(tài)成型技術(shù),后者則屬于氣態(tài)成型技術(shù),2種方法制備的高熵涂層在組織結(jié)構(gòu)與性能上存在較大差異。其中,通過在磁控濺射技術(shù)的沉積氣氛中添加反應(yīng)氣體,又能夠制備高熵合金氮化物、碳化物涂層等多種高熵陶瓷涂層。

      2.2.1 高熵合金涂層的耐磨性能

      耐磨高熵合金涂層主要基于熔覆技術(shù)與磁控濺射技術(shù)制備。其中,基于熔覆技術(shù)制備的耐磨高熵合涂層,其凝固過程的冷卻速率要高于熔煉技術(shù)制備的塊體樣品,具有形成耐磨非晶相的趨勢(shì)。Shu等[43]在碳鋼上激光熔覆Co34Cr29B14Fe8Ni8Si7涂層,表面能夠形成85.1%的非晶相層,且在高溫下具有與晶相層不同的磨損機(jī)制。而Huang等[40]在Ti?6Al?4V基片上熔覆TiVCrAlSi涂層,形成了金屬間化合物(Ti,V)5Si3與體心立方固溶體相,由于硬質(zhì)相(Ti,V)5Si3對(duì)磨粒磨損與黏著磨損的抑制作用,以及韌性固溶體相對(duì)裂紋生長的限制作用,兩者結(jié)合提高了涂層的耐磨性能。磁控濺射技術(shù)制備的高熵合金涂層的均勻性及表面粗糙度均優(yōu)于激光熔覆。由于冷卻速率、等離子體特性、基片轟擊等因素,復(fù)雜多相的形成受到抑制,更易于形成無定形相或單相,因而具有高硬度、高耐磨性等特征。表面濺射(CrMnFeHf)7.14(TiTaV)23.81涂層能夠顯著降低不銹鋼基體的磨損率[4](圖6)。在Ti?6Al?4V基片上濺射TiTaHfNbZr涂層后,基片表面的耐磨性能及硬度均有所提升[76]。在鋼基體表面濺射CuMoTaWV涂層后,在室溫及300 ℃時(shí)的耐磨性均得到改善[45]。

      2.2.2 高熵合金氮化物涂層的耐磨性能

      高熵合金氮化物涂層主要通過反應(yīng)濺射法制備,通過在磁控濺射技術(shù)的基礎(chǔ)上通入氮?dú)庾鳛榉磻?yīng)氣體,向涂層中引入氮元素。由于主元間的高熵效應(yīng),高熵合金氮化物涂層的硬度及耐磨性往往優(yōu)于傳統(tǒng)鈦鋁系耐磨涂層。如(TiZrNbHfTa)N涂層,其耐磨性能要優(yōu)于二元氮化物TiN涂層[77]。通過調(diào)節(jié)涂層沉積時(shí)的氮?dú)饬髀蕘砜刂仆繉又泻?,從而影響涂層的組織及性能最終影響高熵合金氮化物涂層的耐磨性能。Sha等[78]發(fā)現(xiàn),隨著氮?dú)饬髀实纳撸?FeMnNiCoCr)N涂層的相結(jié)構(gòu)會(huì)發(fā)生改變,其耐磨性能也會(huì)升高。Cheng等[79]在不同氮?dú)饬髀氏轮苽淞?AlCrMoTaTiZr) N涂層,在氮?dú)饬髀?0%時(shí)具有較低的磨損率。Ren等[47]研究則發(fā)現(xiàn),氮?dú)饬髀试?~0.2時(shí)涂層具有較低的摩擦因數(shù),氮?dú)饬髀实纳叻炊鴷?huì)降低涂層的耐磨性能。此外,沉積時(shí)的加速電壓也能夠影響高熵合金氮化物涂層的耐磨性能,如(AlCrNbSiTiMo)N涂層在–100 V偏壓時(shí)磨損率最低[80]。

      2.2.3 高熵合金碳化物涂層的耐磨性能

      高熵合金碳化物涂層的制備方法與高熵合金氮化物涂層一樣,常采用反應(yīng)濺射法,區(qū)別在于反應(yīng)氣體一般選用烷烴類氣體,以使涂層獲得碳元素。國外羅馬尼亞光電研究所的Braic等[77, 81-83]對(duì)此類薄膜研究較多,并開發(fā)了多種具有優(yōu)良耐磨性能的高熵碳化物涂層,如(TiAlCrNbY)C[81]、(TiZrNbHfTa)C[77,82]等。其中,非晶態(tài)的(CuSiTiYZr)C涂層耐磨性能遠(yuǎn)超(TiZr)C涂層,且在碳與金屬的原子數(shù)分?jǐn)?shù)比為1.3時(shí)具有最低的磨損率與動(dòng)摩擦因數(shù)[83]。由于游離碳非晶相的形成,高碳含量的(CrCuNbTiY)C涂層的耐磨性能更好[84]。除碳含量外,沉積溫度對(duì)高熵合金碳化物涂層也有一定影響,如在較高沉積溫度下制取的(CrCuNbTiY)C涂層具有更高的硬度與更好的耐磨性能[84]。

      圖6 室溫下不銹鋼基片(左)與濺射(CrMnFeHf)7.14(TiTaV)23.81涂層后(右)表面磨痕深度對(duì)比[4]

      2.3 摩擦環(huán)境對(duì)高熵合金耐磨性能影響

      目前,圍繞摩擦環(huán)境條件的研究主要集中在摩擦溫度與摩擦介質(zhì)的改變對(duì)高熵合金耐磨性能的影響。由于高熵合金具有優(yōu)良的相熱穩(wěn)定及高溫力學(xué)性能[85],其在高溫下的摩擦性能一直備受研究者關(guān)注。此外,由于應(yīng)用領(lǐng)域的拓展,要求高熵合金在不同液態(tài)介質(zhì)中也能夠保持良好的摩擦性能。

      2.3.1 溫度影響

      高熵合金由于良好的強(qiáng)韌性及結(jié)構(gòu)穩(wěn)定性,在高溫下往往具有優(yōu)異的耐磨性能。溫度對(duì)高熵合金摩擦過程的影響主要體現(xiàn)在兩方面,一是高溫對(duì)高熵合金具有等溫退火作用,對(duì)耐磨性能有一定影響,如AlFeCrCoNiTi0.5高熵合金在800 ℃退火5 h后摩擦因數(shù)會(huì)降低[86];二是高熵合金中含有的某些常見金屬如Cu、Ti、V等在高溫下易于氧化,這些金屬氧化物附著于接觸面形成釉質(zhì)層,能夠起到一定的潤滑作用,從而降低涂層在高溫下的摩擦因數(shù)與表面磨損率,如放電離子燒結(jié)AlFeCrCoNiTi0.5高熵合金,當(dāng)高溫原位摩擦?xí)r在表面形成保護(hù)性氧化層,能夠減低其高溫摩擦因數(shù)[29]。

      高溫氧化層的生成是高熵合金高溫磨損率降低的主要原因。例如,由于表面氧化物的形成,Al0.25CoCrFeNi高熵合金在300 ℃以上時(shí)摩擦因數(shù)會(huì)降低[87]。在(CrMnFeHf)7.14(TiTaV)23.81高熵合金[31]中由于氧化釩釉質(zhì)層的生成,隨溫度升高磨損率下降,在600 ℃時(shí)具有優(yōu)異的耐磨性能(圖7)。CuMoTaWV高熵合金由于氧化銅的生成,在400 ℃時(shí)具有較低的磨損率[30]。Joseph等[48]在對(duì)比了CoCrFeMnNi與AlCoCrFeNi多種合金成分在不同溫度下的摩擦行為后,發(fā)現(xiàn)在高溫下AlCoCrFeNi具有比其他合金更好的耐磨性,這主要是由于σ相沉淀與氧化鋁層的共同作用,使分層磨損降至最低。Verma等[60]發(fā)現(xiàn)由于釉質(zhì)氧化銅層的形成,CoCrFeNiCu在高溫下的性能要優(yōu)于室溫。Yu等[67]對(duì)共晶高熵合金CoCrFeNiNb的高溫耐磨性能進(jìn)行研究后發(fā)現(xiàn),在400 ℃時(shí),隨著Nb元素含量的增加,粘附磨損加劇。CoCrFeNiNb0.65和CoCrFeNiNb0.8合金在600 ℃時(shí)出現(xiàn)分層磨損,耐磨性較差,但在800 ℃時(shí)形成致密的氧化摩擦層,具有優(yōu)異的耐磨性能。(CoCrFeMnNi)85Ti15高熵合金涂層在400 ℃以下耐磨性能隨隨溫度的升高而提高,在400 ℃時(shí)具有最佳的耐磨性能[56]。

      2.3.2 摩擦介質(zhì)影響

      目前,大部分針對(duì)高熵合金摩擦性能的研究為干摩擦(空氣介質(zhì)),而對(duì)其他介質(zhì)中高熵合金的摩擦行為研究較少。高熵合金在液體介質(zhì)中的摩擦行為往往與空氣介質(zhì)存在較大差異,在腐蝕性介質(zhì)中往往還伴隨著腐蝕磨損。以室溫下高熵合金Al0.4FeCrNiCo(分別為0、0.25、0.5、1.0)的摩擦為例,在干摩擦條件下,氧化磨損影響較小,磨損機(jī)制主要為分層的黏著磨損與塑性流變[55];在去離子水條件下,磨損機(jī)制主要為分層磨損、黏著磨損、磨粒磨損、塑性流變與氧化磨損[88];在質(zhì)量分?jǐn)?shù)3.5%的氯化鈉溶液條件下,除分層磨損、黏著磨損、磨粒磨損、塑性流變與氧化磨損外,還存在著腐蝕磨損[88];在油潤滑條件下,磨損機(jī)制則變?yōu)轲ぶp、磨粒磨損與塑性流變[89]。在其他高熵合金的多介質(zhì)摩擦行為中也觀察到類似的現(xiàn)象,如AlCoCrFeNi[71]、AlCrCuFeNi2[90]、Al0.6CoCrFeNi[91]等高熵合金,在不同的摩擦介質(zhì)中均具有不同的摩擦機(jī)制。

      在不同的潤滑條件下,高熵合金的摩擦行為也有所不同。Wang等[92]研究了FeCoNiCrMn高熵合金在二硫化鉬–油潤滑條件下的摩擦行為,發(fā)現(xiàn)磨損機(jī)制以磨粒磨損為主,伴隨輕微的氧化磨損,且磨粒磨損會(huì)隨著溫度的升高加劇。Zhang等[93]研究了高溫自潤滑CoCrFeNiS0.5高熵合金的耐磨性能發(fā)現(xiàn),CrS相與磨擦面上高溫金屬氧化物相結(jié)合,使合金在較寬的溫度范圍內(nèi)具有良好的耐磨性能。另外,在相同摩擦介質(zhì)中不同摩擦對(duì)偶也會(huì)對(duì)高熵合金耐磨性能產(chǎn)生不同程度的影響。由于高熵合金所含主元較多,某些成分可能與摩擦對(duì)偶發(fā)生化學(xué)反應(yīng)。例如,在室溫下AlCoCrFeNiTi0.5高熵合金在質(zhì)量分?jǐn)?shù)90%的過氧化氫溶液中的摩擦,當(dāng)?shù)枳鳛槟Σ翆?duì)偶時(shí)[94],Si3N4與高熵合金之間的摩擦化學(xué)反應(yīng)阻礙了機(jī)械磨損,摩擦性能隨著氮化硅含量的提升而改善,而在高含量過氧化氫中的摩擦行為,主要取決于通過摩擦化學(xué)反應(yīng)形成的潤滑膠體膜、由于摩擦行為導(dǎo)致的膠體膜磨損及摩擦對(duì)偶上凹坑的數(shù)量和深度。當(dāng)氧化鋯作為摩擦對(duì)偶時(shí)[95],AlCoCrFeNiTi0.5的磨損機(jī)制主要為黏著磨損,且退火能夠提升其耐磨性能。

      圖7 不同溫度下摩擦的(CrMnFeHf)7.14(TiTaV)23.81高熵合金的表面形貌圖[31]

      3 小結(jié)與展望

      介紹了包括固態(tài)燒結(jié)、液相熔煉、表面熔覆和氣態(tài)濺射等方法在內(nèi)的多種耐磨高熵合金成型技術(shù),總結(jié)了近年來耐磨高熵合金的研究進(jìn)展。耐磨高熵合金具有多樣化的制備工藝,需要根據(jù)主元性質(zhì)、種類及合金形態(tài)來選取合適的制備方法。高熵合金耐磨性的主要強(qiáng)化機(jī)理是誘導(dǎo)合金中硬質(zhì)相析出,利用第二相強(qiáng)化作用提高其耐磨性,反映在成分上主要為添加金屬元素或非金屬元素。此外,為拓寬高熵合金的應(yīng)用場(chǎng)景,針對(duì)高熵合金在不同環(huán)境下的摩擦行為及高熵合金涂層的耐磨性能也展開了研究。相信在廣大研究人員的不懈努力下,會(huì)有越來越多的具有特殊優(yōu)勢(shì)的新型耐磨高熵合金被發(fā)現(xiàn),這些研究成果將為高熵合金在耐磨材料領(lǐng)域的應(yīng)用開辟出廣闊天地。

      [1] ZHANG W, LIAW P K, ZHANG Y. Science and Technology in High-entropy Alloys[J]. Science China Materials, 2018, 61(1): 2-22.

      [2] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and Properties of High-entropy Alloys[J]. Progress in Materials Science, 2014, 61: 1-93.

      [3] XING Q, ZHANG Y. Amorphous Phase Formation Rules in High-entropy Alloys[J]. Chinese Physics B, 2017, 26(1): 108104.

      [4] XING Q, FELTRIN A C, AKHTAR F. High-temperature Wear Properties of CrFeHfMnTiTaV Septenary Complex Concentrated Alloy Film Produced by Magnetron Sputtering[J]. Wear, 2022, 510/511: 204497.

      [5] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

      [6] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural Development in Equiatomic Multicomponent Alloys[J]. Materials Science and Engineering A, 2004, 375/376/377(1/2): 213-218.

      [7] RANGANATHAN S. Alloyed Pleasures: Multimetallic Cocktails[J]. Current Science, 2003, 85(10): 1404–1406.

      [8] XING Q W, XIA S Q, YAN X H, et al. Mechanical Properties and Thermal Stability of (NbTiAlSiZr)NHigh-entropy Ceramic Films at High Temperatures[J]. Journal of Materials Research, 2018, 33(19): 3347-3354.

      [9] XING Q W, MA J, ZHANG Y. Phase Thermal Stability and Mechanical Properties Analyses of (Cr,Fe,V)-(Ta,W) Multiple-based Elemental System Using a Compositional Gradient Film[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(10): 1379-1387.

      [10] LI D, LI C, FENG T, et al. High-entropy Al0.3CoCrFeNi Alloy Fibers with High Tensile Strength and Ductility at Ambient and Cryogenic Temperatures[J]. Acta Materialia, 2017, 123: 285-294.

      [11] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A Fracture-resistant High-entropy Alloy for Cryogenic Applications[J]. Science, 2014, 345(6201): 1153-1158.

      [12] CUI G, HAN B, YANG Y, et al. Microstructure and Tribological Property of CoCrFeMoNi High Entropy Alloy Treated by Ion Sulfurization[J]. Journal of Materials Research and Technology, 2020, 9(11): 7-11.

      [13] HSU C, YEH J, CHEN S, et al. Wear Resistance and High-Temperature Compression Strength of Fcc CuCoNiCrAl0.5Fe Alloy with Boron Addition[J]. Metallurgical and Material Transcations A, 2004, 35A: 1465-1469.

      [14] TONG C J, CHEN M R, CHEN S K, et al. Mechanical Performance of the AlxCoCrCuFeNi High-entropy Alloy System with Multiprincipal Elements[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36(5): 1263-1271.

      [15] XIA S, LOUSADA C M, MAO H, et al. Nonlinear Oxidation Behavior in Pure Ni and Ni-containing Entropic Alloys[J]. Frontiers in Materials, 2018, 5: 1-11.

      [16] HSU W L, YANG Y C, CHEN C Y, et al. Thermal Sprayed High-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 Coating with Improved Mechanical Properties and Oxidation Resistance[J]. Intermetallics, 2017, 89: 105-110.

      [17] SHANG C, AXINTE E, SUN J, et al. CoCrFeNi(W1? xMox) High-entropy Alloy Coatings with Excellent Mechanical Properties and Corrosion Resistance Prepared by Mechanical Alloying and Hot Pressing Sintering[J]. Materials and Design, 2017, 117: 193-202.

      [18] JAYARAJ J, THINAHARAN C, NINGSHEN S, et al. Corrosion Behavior and Surface Film Characterization of TaNbHfZrTi High Entropy Alloy in Aggressive Nitric Acid Medium[J]. Intermetallics, 2017, 89: 123-132.

      [19] XING Q, WANG H, CHEN M, et al. Mechanical Properties and Corrosion Resistance of NbTiAlSiZrNx High-entropy Films Prepared by RF Magnetron Sputtering[J]. Entropy, 2019, 21(4):396.

      [20] JIN K, LU C, WANG L M, et al. Effects of Compositional Complexity on the Ion-irradiation Induced Swelling and Hardening in Ni-containing Equiatomic Alloys[J]. Scripta Materialia, 2016, 119: 65-70.

      [21] LU C, YANG T, JIN K, et al. Radiation-induced Segregation on Defect Clusters in Single-phase Concentrated Solid-solution Alloys[J]. Acta Materialia, 2017, 127: 98-107.

      [22] CHEN D, ZHAO S, SUN J, et al. Diffusion Controlled Helium Bubble Formation Resistance of FeCoNiCr High-entropy Alloy in the Half-melting Temperature Regime[J]. Journal of Nuclear Materials, 2019, 526: 151747.

      [23] LI Y, LI R, PENG Q. Enhanced Surface Bombardment Resistance of the CoNiCrFeMn High Entropy Alloy under Extreme Irradiation Flux[J]. Nanotechnology, 2020, 31(2): 025703.

      [24] LI Y, ZHANG W, QI T. New Soft Magnetic Fe25Co25Ni25(P, C, B)25 High Entropy Bulk Metallic Glasses with Large Supercooled Liquid Region[J]. Journal of Alloys and Compounds, 2017, 693: 25-31.

      [25] ZHANG Y, ZUO T, CHENG Y, et al. High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability[J]. Scientific Reports, 2013, 3: 1-7.

      [26] ZUO T, YANG X, LIAW P K, et al. Influence of Bridgman Solidification on Microstructures and Magnetic Behaviors of a Non-equiatomic FeCoNiAlSi High-entropy Alloy[J]. Intermetallics, 2015, 67: 171-176.

      [27] ZUO T, GAO M C, OUYANG L, et al. Tailoring Magnetic Behavior of CoFeMnNi(= Al, Cr, Ga, and Sn) High Entropy Alloys by Metal Doping[J]. Acta Materialia, 2017, 130: 10–18.

      [28] 李亞聳. 氣/液/固成型對(duì)高熵合金中有序相形成及性能的影響[D]. 北京科技大學(xué), 2022:119-120.

      LI Ya-song. Effect of Gas/Liquid/Solid processing on the Ordered Phase Formation and Properties in High- entropy Alloy[D]. University of Science and Technology Beijing, 2022: 119-120.

      [29] L?BEL M, LINDNER T, PIPPIG R, et al. High-tem-perature Wear Behaviour of Spark Plasma Sintered AlCoCrFeNiTi0.5 High-entropy Alloy[J]. Entropy, 2019, 21(6): 582.

      [30] ALVI S, AKHTAR F. High Temperature Tribology of CuMoTaWV High Entropy Alloy[J]. Wear, 2019, 426/427(2018): 412-419.

      [31] XING Q, ANA C. FELTRIN, FARID A. Processing, Microstructure and High Temperature Dry Sliding Wear of a Cr-Fe-Hf-Mn-Ti-Ta-V High-entropy Alloy Based Composite[J]. Materials Today Communications, 2021, 28: 102657.

      [32] KANYANE L R, POPOOLA A P, MALATJI N. Influence of Sintering Temperature on Microhardness and Tribological Properties of Equi-Atomic Ti-Al-Mo-Si-W Multicomponent Alloy[J]. IOP Conference Series: Materials Science and Engineering, 2019, 538(1): 012009.

      [33] KANYANE L R, MALATJI N, POPOOLA A P I, et al. Synthesis of Equi-atomic Ti-Al-Mo-Si-Ni High Entropy Alloy via Spark Plasma Sintering Technique: Evolution of Microstructure, Wear, Corrosion and Oxidation Behaviour[J]. Results in Physics, 2019, 14: 102465.

      [34] VARALAKSHMI S, APPA RAO G, KAMARAJ M, et al. Hot Consolidation and Mechanical Properties of Nanocrystalline Equiatomic AlFeTiCrZnCu High Entropy Alloy after Mechanical Alloying[J]. Journal of Materials Science, 2010, 45(19): 5158-5163.

      [35] WEN X, CAI Z, YIN B, et al. Tribological and Corrosion Properties of Ni-Cr-Co-Ti-V Multi-Principal Element Alloy Prepared by Vacuum Hot-Pressing Sintering [J]. Advanced Engineering Materials, 2019, 21(7): 1-7.

      [36] SHANG C Y, WANG Y. AlCrFeNi High-Entropy Coating Fabricated by Mechanical Alloying and Hot Pressing Sintering[J]. Materials Science Forum, 2017, 898 MSF: 628-637.

      [37] CHEN L, BOBZIN K, ZHOU Z, et al. Wear Behavior of HVOF-sprayed Al0.6TiCrFeCoNi High Entropy Alloy Coatings at Different Temperatures[J]. Surface and Coatings Technology, 2019, 358: 215-222.

      [38] LU J, WANG B, QIU X, et al. Microstructure Evolution and Properties of CrCuFexNiTi High-entropy Alloy Coating by Plasma Cladding on Q235[J]. Surface and Coatings Technology, 2017, 328: 313-318.

      [39] KUMAR A, SWARNAKAR A K, BASU A, et al. Effects of Processing Route on Phase Evolution and Mechanical Properties of CoCrCuFeNiSix High Entropy Alloys[J]. Journal of Alloys and Compounds, 2018, 748: 889-897.

      [40] HUANG C, ZHANG Y, VILAR R, et al. Dry Sliding Wear Behavior of Laser Clad TiVCrAlSi High Entropy Alloy Coatings on Ti-6Al-4V Substrate[J]. Materials and Design, 2012, 41: 338–343.

      [41] GUO Y, LIU Q. MoFeCrTiWAlNb Refractory High- entropy Alloy Coating Fabricated by Rectangular-spot Laser Cladding[J]. Intermetallics, 2018, 102: 78-87.

      [42] JIN G, CAI Z, GUAN Y, et al. High Temperature Wear Performance of Laser-cladded FeNiCoAlCu High-entropy Alloy Coating[J]. Applied Surface Science, 2018, 445: 113-122.

      [43] SHU F Y, WU L, ZHAO H Y, et al. Microstructure and High-temperature Wear Mechanism of Laser Cladded CoCrBFeNiSi High-entropy Alloy Amorphous Coating[J]. Materials Letters, 2018, 211: 235-238.

      [44] SHU F, ZHANG B, LIU T, et al. Effects of Laser Power on Microstructure and Properties of Laser Cladded CoCrBFeNiSi High-entropy Alloy Amorphous Coatings [J]. Surface and Coatings Technology, 2019, 358: 667-675.

      [45] ALVI S, JARZABEK D M, KOHAN M G, et al. Synthesis and Mechanical Characterization of a CuMoTaWV High-Entropy Film by Magnetron Sputtering[J]. ACS Applied Materials and Interfaces, 2020, 12(18): 21070-21079.

      [46] TüTEN N, CANADINC D, MOTALLEBZADEH A, et al. Microstructure and Tribological Properties of TiTaHfNbZr High Entropy Alloy Coatings Deposited on Ti6Al4V Substrates[J]. Intermetallics, 2019, 105: 99-106.

      [47] REN B, SHEN Z, LIU Z. Structure and Mechanical Properties of Multi-element (AlCrMnMoNiZr)Nx Coatings by Reactive Magnetron Sputtering[J]. Journal of Alloys and Compounds, 2013, 560: 171-176.

      [48] JOSEPH J, HAGHDADI N, SHAMLAYE K, et al. The Sliding Wear Behaviour of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures[J]. Wear, 2019, 428/429: 32-44.

      [49] HAGHDADI N, GUO T, GHADERI A, et al. The Scratch Behaviour of AlCoCrFeNi (=0.3 and 1.0) High Entropy Alloys[J]. Wear, 2019, 428/429(2018): 293-301.

      [50] WU J M, LIN S J, YEH J W, et al. Adhesive Wear Behavior of AlxCoCrCuFeNi High-entropy Alloys as a Function of Aluminum Content[J]. Wear, 2006, 261(5/6): 513–519.

      [51] GASAN H, L?K?ü E, OZCAN A, et al. Effects of Al on the Phase Volume Fractions and Wear Properties in the AlxCoCrFeMoNi High Entropy Alloy System[J]. Metals and Materials International, 2020, 26: 310-320.

      [52] CHENG H, FANG Y, XU J, et al. Tribological Properties of Nano/Ultrafine-grained FeCoCrNiMnAlx High- entropy Alloys over a Wide Range of Temperatures[J]. Journal of Alloys and Compounds, 2020, 817: 153305.

      [53] ZHAO Y, CUI H, WANG M, et al. The Microstructures and Properties Changes Induced by Al:Co Ratios of the AlXCrCo2-XFeNi High Entropy Alloys[J]. Materials Science and Engineering A, 2018, 733: 153-163.

      [54] SHU F, YANG B, DONG S, et al. Effects of Fe-to-Co Ratio on Microstructure and Mechanical Properties of Laser Cladded FeCoCrBNiSi High-entropy Alloy Coatings[J]. Applied Surface Science, 2018, 450: 538-544.

      [55] KUMAR S, PATNAIK A, PRADHAN A K, et al. Dry Sliding Wear Behavior of Al0.4FeCrNiCo(=0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys[J]. Metallography, Microstructure, and Analysis, 2019, 8(4): 545–557.

      [56] WANG J, ZHANG B, YU Y, et al. Study of High Temperature Friction and Wear Performance of (CoCrFeMnNi) 85Ti15 High-entropy Alloy Coating Prepared by Plasma Cladding[J]. Surface and Coatings Technology, 2020, 384: 125337.

      [57] NONG Z S, LEI Y N, ZHU J C. Wear and Oxidation Resistances of AlCrFeNiTi-based High Entropy Alloys[J]. Intermetallics, 2018, 101: 144-151.

      [58] XIN W, YUNPENG Z, JING X. Effect of Ti Addition on the Microstructure and Properties of AlCrCuFeNi Alloy[J]. Materials Research Express, 2019, 6(2): 026541.

      [59] L?BEL M, LINDNER T, MEHNER T, et al. Influence of Titanium on Microstructure, Phase Formation and Wear Behaviour of AlCoCrFeNiTix High-entropy Alloy[J]. Entropy, 2018, 20(7): 1-11.

      [60] VERMA A, TARATE P, ABHYANKAR A C, et al. High Temperature Wear in CoCrFeNiCux High Entropy Alloys: The Role of Cu[J]. Scripta Materialia, 2019, 161: 28-31.

      [61] YADAV S, KUMAR A, BISWAS K. Wear Behavior of High Entropy Alloys Containing Soft Dispersoids (Pb, Bi)[J]. Materials Chemistry and Physics, 2018, 210: 222-232.

      [62] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory High-entropy Alloys[J]. Intermetallics, 2010, 18(9): 1758-1765.

      [63] ZHANG W, LIAW P K, ZHANG Y. A Novel Low-activation VCrFeTaxW(= 0.1, 0.2, 0.3, 0.4, and 1) High-entropy Alloys with Excellent Heat-softening Resistance[J]. Entropy, 2018, 20(12): 951.

      [64] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical Properties of Nb25Mo25Ta25W 25 and V20Nb20Mo20Ta20W20 Refractory High Entropy Alloys[J]. Intermetallics, 2011, 19(5): 698–706.

      [65] CHEN M R, LIN S J, YEH J W, et al. Effect of Vanadium Addition on the Microstructure, Hardness, and Wear Resistance of Al0.5CoCrCuFeNi High-entropy Alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37(5): 1363-1369.

      [66] JIANG H, JIANG L, QIAO D, et al. Effect of Niobium on Microstructure and Properties of the CoCrFeNbxNi High Entropy Alloys[J]. Journal of Materials Science and Technology, 2017, 33(7): 712-717.

      [67] YU Y, HE F, QIAO Z, et al. Effects of Temperature and Microstructure on the Triblogical Properties of CoCrFeNiNbx Eutectic High Entropy Alloys[J]. Journal of Alloys and Compounds, 2019, 775: 1376-1385.

      [68] YANG Q, TANG Y, WEN Y, et al. Microstructures and Properties of CoCrCuFeNiMox High-entropy Alloys Fabricated by Mechanical Alloying and Spark Plasma Sintering[J]. Powder Metallurgy, 2018, 61(2): 115-122.

      [69] JIN B, ZHANG N, WANG F, et al. Phase Evolution and Wear Mechanism of AlCoCrFeNiSix High-entropy Alloys Produced by Arc Melting[J]. Materials Research Express, 2018, 5(9):096505.

      [70] POLETTI M G, FIORE G, GILI F, et al. Development of a New High Entropy Alloy for Wear Resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C[J]. Materials and Design, 2017, 115: 247–254.

      [71] WANG Y, YANG Y, YANG H, et al. Microstructure and Wear Properties of Nitrided AlCoCrFeNi high-entropy Alloy[J]. Materials Chemistry and Physics, 2018, 210: 233–239.

      [72] TANG W Y, CHUANG M H, LIN S J, et al. Microstructures and Mechanical Performance of Plasma-nitrided Al0.3CrFe1.5MnNi0.5 High-entropy Alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43(7): 2390– 2400.

      [73] NISHIMOTO A, FUKUBE T, MARUYAMA T. Microstructural, Mechanical, and Corrosion Properties of Plasma-nitrided CoCrFeMnNi High-entropy Alloys[J]. Surface and Coatings Technology, 2019, 376: 52–58.

      [74] LINDNER T, L?BEL M, SATTLER B, et al. Surface Hardening of FCC Phase High-entropy Alloy System by Powder-pack Boriding[J]. Surface and Coatings Technology, 2019, 371: 389-394.

      [75] HOU J, ZHANG M, YANG H, et al. Surface Strengthening in Al0.25CoCrFeNi High-entropy Alloy by Boronizing[J]. Materials Letters, 2019, 238: 258-260.

      [76] TüTEN N, CANADINC D, MOTALLEBZADEH A, et al. Microstructure and Tribological Properties of TiTaHfNbZr High Entropy Alloy Coatings Deposited on Ti-6Al-4V Substrates[J]. Intermetallics, 2019, 105: 99-106.

      [77] BRAIC V, VLADESCU A, BALACEANU M, et al. Nanostructured Multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C Hard Coatings[J]. Surface and Coatings Technology, 2012, 211: 117-121.

      [78] SHA C, ZHOU Z, XIE Z, et al. FeMnNiCoCr-based High Entropy Alloy Coatings: Effect of Nitrogen Additions on Microstructural Development, Mechanical Properties and Tribological Performance[J]. Applied Surface Science, 2020, 507: 145101.

      [79] CHENG K H, LAI C H, LIN S J, et al. Structural and Mechanical Properties of Multi-element (AlCrMoTa-TiZr)Nx Coatings by Reactive Magnetron Sputtering[J]. Thin Solid Films, 2011, 519(10): 3185-3190.

      [80] LO W L, HSU S Y, LIN Y C, et al. Improvement of High Entropy Alloy Nitride Coatings (AlCrNbSiTiMo)N on Mechanical and High Temperature Tribological Properties by Tuning Substrate Bias[J]. Surface and Coatings Technology, 2020, 401(101): 126247.

      [81] BRAIC M, BRAIC V, BALACEANU M, et al. Characteristics of (TiAlCrNbY)C Films Deposited by Reactive Magnetron Sputtering[J]. Surface and Coatings Technology, 2010, 204(12/13): 2010–2014.

      [82] BRAIC V, BALACEANU M, BRAIC M, et al. Characterization of Multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C Coatings for Biomedical Applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 10: 197-205.

      [83] BRAIC M, BALACEANU M, VLADESCU A, et al. Deposition and Characterization of Multi-principal- element (CuSiTiYZr)C Coatings[J]. Applied Surface Science, 2013, 284: 671–678.

      [84] BRAIC V, PARAU A C, PANA I, et al. Effects of Substrate Temperature and Carbon Content on the Structure and Properties of (CrCuNbTiY)C Multicomponent Coatings[J]. Surface and Coatings Technology, 2014, 258: 996-1005.

      [85] GOPINATH V M, ARULVEL S. A Review on the Steels, Alloys/High Entropy Alloys, Composites and Coatings Used in High Temperature Wear Applications[J]. Materials Today: Proceedings, 2021, 43: 817-823.

      [86] KONG D, GUO J, LIU R, et al. Effect of Remelting and Annealing on the Wear Resistance of AlCoCrFeNiTi0.5 High Entropy Alloys[J]. Intermetallics, 2019, 114: 106560.

      [87] DU L M, LAN L W, ZHU S, et al. Effects of Temperature on the Tribological Behavior of Al 0.25CoCrFeNi High-entropy Alloy[J]. Journal of Materials Science and Technology, 2019, 35(5): 917-925.

      [88] KUMAR S, RANI P, PATNAIK A, et al. Effect of Cobalt Content on Wear Behaviour of Al0.4FeCrNiCo(= 0, 0.25, 0.5, 1.0 mol) High Entropy Alloys Tested under Demineralised Water with and without 3.5% NaCl Solution[J]. Materials Research Express, 2019, 6(8): 1-13.

      [89] KUMAR S, PATNAIK A, PRADHAN A K, et al. Room Temperature Wear Study of Al0.4 FeCrNiCo(= 0, 0.25, 0.5, 1.0 mol) High-entropy Alloys under Oil Lubricating Conditions[J]. Journal of Materials Research, 2019, 34(5): 841-853.

      [90] LIU Y, MA S, GAO M C, et al. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47(7): 3312-3321.

      [91] CHEN M, SHI X H, YANG H, et al. Wear Behavior of Al0.6CoCrFeNi High-entropy Alloys: Effect of Environments[J]. Journal of Materials Research, 2018, 33(19): 3310-3320.

      [92] WANG H, REN K, XIE J, et al. Friction and Wear Behavior of Single-phase High-entropy Alloy FeCoNiCrMn under MoS2-oil Lubrication[J]. Industrial Lubrication and Tribology, 2019, 2019: 2-9.

      [93] ZHANG A, HAN J, SU B, et al. A Promising New High Temperature Self-lubricating Material: CoCrFeNiS0.5 High Entropy Alloy[J]. Materials Science and Engineering A, 2018, 731(6): 36-43.

      [94] YU Y, WANG J, YANG J, et al. Corrosive and Tribological Behaviors of AlCoCrFeNi-M High Entropy Alloys under 90?wt.% H2O2 Solution[J]. Tribology International, 2019, 131: 24-32.

      [95] YU Y, LIU W M, ZHANG T B, et al. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-en-tropy Alloy in Hydrogen Peroxide Solution[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45(1): 201-207.

      The Manufacture processing and Recent Progress of Wear Resistant High-entropy Alloys

      XING Qiu-weia, Wang Wan-niana, LI Guo-jub, ZHANG Xin-zheb, ZHANG Xin-fanga, CHEN Zhan-xinga

      (a. School of Materials Science and Engineering, b. School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China)

      The wear-resistant high entropy alloys (HEAs) are novel wear-resistant materials developed in recent decades, which have many characteristics such as more principal components, high strength, high hardness, low wear rate and high temperature resistance. In this paper, the recent progress of wear-resistant HEAs is reviewed from two aspects: the preparation process of wear-resistant HEAs and the influencing factors of wear-resistant properties of HEAs, focusing on the preparation technology of wear-resistant HEAs formed from solid, liquid and gas states, as well as the factors affecting the wear-resistance of HEAs. Firstly, the influences of various elements, including metal and non-metal elements, on the wear-resistance of high entropy alloys are summarized. Secondly, the research progresses of wear resistance of high entropy alloy and its carbonitride coating are reviewed. Recent studies show that many processes are capable of the preparation for wear-resistant HEAs, and appropriate preparation methods should be selected according to the different morphology and composition of the HEAs. The precipitation of hard phase induced by the addition of metallic or nonmetallic elements is still the main means to improve the wear resistance of the HEAs. Some HEAs or HEA coatings can also show excellent wear resistance under high temperature, lubrication and other conditions.

      high-entropy alloy; wear resistance; solution strengthening; second phase strengthening; high-entropy alloy coatings

      10.3969/j.issn.1674-6457.2022.12.010

      TB31;TG14

      A

      1674-6457(2022)12-0085-11

      2022–10–30

      國家自然科學(xué)基金青年基金(52001283);河南省科技攻關(guān)(212102210109,212102210447,222102230041)

      邢秋瑋(1987—),男,博士,講師,主要研究方向?yàn)槟湍ジ哽睾辖鸺案哽睾辖鹜繉印?/p>

      陳占興(1985—),男,博士,內(nèi)聘副教授,主要研究方向?yàn)榻饘僖簯B(tài)制備成形與新工藝;張新房(1978—),男,博士,副教授,主要研究方向?yàn)樾滦透咝阅芙饘俨牧霞靶阅軠y(cè)試。

      猜你喜歡
      磨損率耐磨性金屬元素
      Si3N4/PTFE復(fù)合材料轉(zhuǎn)移膜形貌與磨損率定量分析
      結(jié)構(gòu)參數(shù)對(duì)水力旋流器壁面磨損的影響研究
      煤炭工程(2024年1期)2024-02-22 11:17:46
      空間組合彎頭氣固兩相流動(dòng)磨損特性的數(shù)值模擬
      固體廢物中金屬元素檢測(cè)方法研究進(jìn)展
      云南化工(2021年8期)2021-12-21 06:37:08
      La2O3含量對(duì)氣壓燒結(jié)Si3N4陶瓷耐磨性的影響
      P2離合器摩擦片磨損率臺(tái)架測(cè)試方法
      微波消解-ICP-MS法同時(shí)測(cè)定牛蒡子中8種重金屬元素
      中成藥(2018年11期)2018-11-24 02:57:28
      SDC90鋼CrTiAlN和AlTiN涂層承載能力和耐磨性的研究
      上海金屬(2016年1期)2016-11-23 05:17:29
      一種耐磨性膨脹石墨增強(qiáng)橡膠復(fù)合材料的制備方法
      增強(qiáng)密煉機(jī)加料倉、上頂栓重錘耐磨性方案
      扎赉特旗| 贺州市| 玉门市| 治多县| 兰溪市| 上饶市| 罗城| 灌南县| 石棉县| 平武县| 涟水县| 同仁县| 榆社县| 焦作市| 开平市| 伊吾县| 建昌县| 洛阳市| 天峨县| 安吉县| 沅陵县| 上林县| 永仁县| 扶风县| 西吉县| 涿州市| 灵石县| 大兴区| 栾城县| 宣武区| 铜陵市| 金湖县| 罗定市| 随州市| 江陵县| 政和县| 富裕县| 斗六市| 阳山县| 海安县| 南汇区|