林雯儀 何 昊,3 關(guān) 青,2,3
反芻思維的腦功能網(wǎng)絡(luò)機(jī)制*
林雯儀1何 昊1,3關(guān) 青1,2,3
(1深圳大學(xué)心理學(xué)院, 深圳 518060) (2深圳市神經(jīng)科學(xué)研究院, 深圳 518107)(3深港腦科學(xué)創(chuàng)新研究院, 深圳 518055)
反芻思維是指個體在經(jīng)歷了消極生活事件后不由自主地反復(fù)思考該事件的產(chǎn)生原因、經(jīng)過和結(jié)果, 表現(xiàn)出負(fù)性自我參照加工、消極情緒性以及持續(xù)性的特點。采用腦功能網(wǎng)絡(luò)分析方法, 研究者發(fā)現(xiàn)反芻思維的上述三個特點分別與默認(rèn)網(wǎng)絡(luò)內(nèi)部的異?;顒幽J?、突顯網(wǎng)絡(luò)功能連接的改變以及注意相關(guān)網(wǎng)絡(luò)之間的異常耦合有關(guān)。未來研究應(yīng)進(jìn)一步明確反芻思維與相關(guān)腦網(wǎng)絡(luò)活動之間的因果關(guān)系, 探究反芻思維腦功能網(wǎng)絡(luò)的結(jié)構(gòu)基礎(chǔ), 同時也應(yīng)關(guān)注反芻思維及其腦網(wǎng)絡(luò)的老齡化特征, 并致力于探索有效干預(yù)反芻思維的神經(jīng)調(diào)控技術(shù)。
反芻思維, 腦網(wǎng)絡(luò), 默認(rèn)網(wǎng)絡(luò), 功能連接
反芻思維(rumination)是指個體在經(jīng)歷了消極生活事件(如考試失利、感情受挫、工作不順)之后, 重復(fù)地思考該事件的產(chǎn)生原因、經(jīng)過和結(jié)果而不能自已(Nolen-Hoeksema, 1991; Nolen-Hoeksema et al., 2008)。個體在反芻思維狀態(tài)下通常會表現(xiàn)出以下認(rèn)知和情感特點(Morrow & Nolen-Hoeksema, 1990)。首先, 反芻思維使個體傾向于將消極信息與自我概念聯(lián)系起來, 進(jìn)行負(fù)面的自我參照加工(Santa Maria et al., 2012; 楊營凱, 劉衍玲, 2016)。其次, 負(fù)性自我參照加工會使個體過度關(guān)注消極信息, 導(dǎo)致消極情緒的產(chǎn)生并造成信息加工偏差, 不利于問題解決(Constantin et al., 2018; Nolen- Hoeksema, 2000; Kertz et al., 2019)。第三, 反芻思維具有持續(xù)性。一旦陷入反芻思維的狀態(tài), 個體將長時間思考同一事件(Joorman & D’Avanzato, 2010)。簡言之, 反芻思維的負(fù)性自我參照加工、消極情緒性以及持續(xù)性損害了個體的問題解決和情緒管理能力, 是一種非適應(yīng)性的認(rèn)知風(fēng)格(Ando et al., 2020; Nolen-Hoeksema, 2000)。研究表明, 反芻思維與抑郁癥、焦慮癥、雙相情感障礙、創(chuàng)傷后應(yīng)激障礙等多種精神疾病關(guān)系密切(Constantin et al., 2018; Dodd et al., 2019; Kraus et al., 2020; Kertz et al., 2019; Mihailova & Jobson, 2020; Smith et al., 2018; Topper et al., 2017)。鑒于反芻思維對心理健康所造成的顯著影響, 本文旨在梳理以往關(guān)于非適應(yīng)性反芻思維腦神經(jīng)機(jī)制的研究成果, 以期理解反芻思維的腦功能網(wǎng)絡(luò)基礎(chǔ), 為干預(yù)反芻思維提供理論支持。
近年來, 大量研究采用功能磁共振成像(functional magnetic resonance imaging, fMRI)技術(shù)探討反芻思維的大尺度腦網(wǎng)絡(luò)(large-scale brain networks)機(jī)制。腦網(wǎng)絡(luò)分析可以揭示認(rèn)知過程所涉及的重要腦區(qū)以及這些腦區(qū)之間的相關(guān)性(徐龍洲, 2021), 近年來被廣泛運用于認(rèn)知神經(jīng)科學(xué)研究(Delaveau et al., 2017; Kühn et al., 2012; Menon, 2011; Sanchez et al., 2016; Sporns, 2014; Sin et al., 2018)。以往研究所揭示的大尺度腦網(wǎng)絡(luò)主要有默認(rèn)網(wǎng)絡(luò)、突顯網(wǎng)絡(luò)、額頂網(wǎng)絡(luò)、注意網(wǎng)絡(luò)(Menon, 2011; Petersen & Sporns, 2015; Yeo et al., 2011)。研究表明, 反芻思維狀態(tài)下的負(fù)性自我參照加工與主要參與內(nèi)部指向心理活動的默認(rèn)網(wǎng)絡(luò)有關(guān)(Bermanet al., 2011; Chen et al., 2020; Rosenbaum et al., 2017; Zhou et al., 2020); 反芻思維的消極情緒性與突顯網(wǎng)絡(luò)的改變有關(guān); 其持續(xù)性則與注意網(wǎng)絡(luò)之間的連接異常有關(guān)(Hamilton et al., 2011; Kaiser, et al., 2015; Li et al., 2018; Lydon-Staley et al., 2019; Price et al., 2017)。接下來, 本文將分別就反芻思維的負(fù)性自我參照加工、消極情緒性、持續(xù)性的腦網(wǎng)絡(luò)機(jī)制展開詳細(xì)論述, 并在此基礎(chǔ)上展望未來研究方向。
個體在反芻思維狀態(tài)下傾向于將負(fù)面信息與自我聯(lián)系起來, 并對之進(jìn)行過度解讀(Santa Maria et al., 2012; Martin & Tesser, 1989)。具體而言, 當(dāng)發(fā)生了消極的事件, 相較于客觀地分析“這件事因何而發(fā)生”, 高反芻思維者更多地表現(xiàn)出“我為什么表現(xiàn)得如此糟糕”、“為什么這種事情會發(fā)生在我身上”這種自省式的思維方式(Watkins et al., 2008)。研究表明, 反芻思維的自我參照加工與默認(rèn)網(wǎng)絡(luò)活動模式的改變有關(guān)。
默認(rèn)網(wǎng)絡(luò)(default mode network)在個體處理外部指向的信息時活躍度降低, 而在個體處于靜息狀態(tài)或進(jìn)行與自我相關(guān)的抽象思維、情景記憶、未來想象等內(nèi)部指向的心理活動時活躍度增加(李雨, 舒華, 2014; Buckner et al., 2008; Smallwood et al., 2021)。默認(rèn)網(wǎng)絡(luò)的改變在形成反芻思維的過程中具有關(guān)鍵的作用(Andrews-Hanna et al., 2014; Hamilton et al., 2015; Kaiser, et al., 2015; Zhou et al., 2020)。研究發(fā)現(xiàn)默認(rèn)網(wǎng)絡(luò)由三個分工明確的子系統(tǒng)組成, 分別是:(1)核心子系統(tǒng), 包含前部內(nèi)側(cè)前額葉(anterior medial prefrontal cortex)和后扣帶回(posterior cingulate cortex), 參與自我參照加工并促進(jìn)其他兩個子系統(tǒng)之間的相互作用; (2)背內(nèi)側(cè)前額葉子系統(tǒng)(dorsal medial prefrontal cortex), 包含背內(nèi)側(cè)前額葉、顳頂聯(lián)合、外側(cè)顳葉和顳極(temporal pole), 在心理理論和元認(rèn)知加工中起著重要作用(Andrews-Hanna, 2012; Andrews- Hanna et al., 2014); (3)內(nèi)側(cè)顳葉子系統(tǒng)(medial temporal lobe), 由腹內(nèi)側(cè)前額葉(ventral medial prefrontal cortex)、后頂下小葉、壓后皮層(retrosplenial cortex)、海馬旁皮層(parahippocampal cortex)和海馬體組成, 其參與自傳體記憶加工并基于此形成個體關(guān)于未來的情境性預(yù)期 (Andrews- Hanna et al., 2010; Spreng et al., 2009)。在反芻狀態(tài)下, 這三個子系統(tǒng)的活躍度與功能連接都發(fā)生了相應(yīng)的改變(Andrews-Hanna et al., 2010; Tozzi et al., 2021)。
首先, 反芻思維狀態(tài)下三個子系統(tǒng)的活躍程度不同。多項研究通過讓受試者判斷特質(zhì)屬性詞、回想自己的消極事件以及思考他人對自己的評價等方法誘發(fā)被試的反芻思維, 而后運用fMRI技術(shù)掃描受試者的大腦。結(jié)果表明, 相較于分心狀態(tài), 反芻狀態(tài)下負(fù)責(zé)自我參照加工的核心子系統(tǒng)和負(fù)責(zé)心理理論加工的背內(nèi)側(cè)前額葉子系統(tǒng)活動度增加; 然而, 促成目標(biāo)導(dǎo)向行為的內(nèi)側(cè)顳葉子系統(tǒng)的大部分區(qū)域在反芻狀態(tài)下并不活躍(Apazoglou et al., 2019; Burkhouse et al., 2017; Cooney et al., 2010; Steinfurth et al., 2017; Vecchio et al., 2017; Zhou et al., 2020)。反芻狀態(tài)下默認(rèn)網(wǎng)絡(luò)核心子系統(tǒng)的過度活躍提示, 當(dāng)外界刺激誘發(fā)個體產(chǎn)生反芻思維時, 個體過多地對自我相關(guān)的信息進(jìn)行加工。背內(nèi)側(cè)前額葉子系統(tǒng)則反映了個體由外界刺激而誘發(fā)的心理狀態(tài)。即面對消極生活事件, 反芻思維會使個體產(chǎn)生對自我的過度反思和否定, 并將之投射為他人對自己的看法(如個體在比賽失利后陷入反芻狀態(tài), 認(rèn)為自己很糟糕, 且認(rèn)為他人也會覺得自己很糟糕); 而內(nèi)側(cè)顳葉子系統(tǒng)則基于自傳體記憶形成關(guān)于個體未來的設(shè)想, 所以反芻狀態(tài)下內(nèi)側(cè)顳葉系統(tǒng)的活躍度不足可以理解為, 個體難以提取自己經(jīng)歷過的積極事件, 并認(rèn)為自己很可能在預(yù)期目標(biāo)中失敗(如, 經(jīng)歷過一次比賽失利后便認(rèn)為自己在今后的比賽中都不會取得好成績)。
其次, 在反芻思維狀態(tài)下, 默認(rèn)網(wǎng)絡(luò)三個子系統(tǒng)之間的功能連接也發(fā)生了改變。Chen等人(2020)用持續(xù)性精神狀態(tài)范式(continuous mental state paradigm)考察受試者反芻狀態(tài)的默認(rèn)網(wǎng)絡(luò), 并使用3臺不同的磁共振掃描儀得到了高度一致的結(jié)果。與分心狀態(tài)(想象與自己無關(guān)的事情)相比, 反芻狀態(tài)(重復(fù)思考消極事件及其可能產(chǎn)生的結(jié)果)下默認(rèn)網(wǎng)絡(luò)三個子系統(tǒng)之間的功能連接出現(xiàn)異常(Chen et al., 2020)。具體而言, 在反芻狀態(tài)下, 核心子系統(tǒng)與背內(nèi)側(cè)前額葉子系統(tǒng)之間的功能連接減弱, 而核心子系統(tǒng)與內(nèi)側(cè)顳葉子系統(tǒng)之間的功能連接增強(qiáng)(Bartova et al., 2015; Christoff et al., 2016; Chen et al., 2020; Provenzano et al., 2021; Zhu et al., 2017)。核心子系統(tǒng)負(fù)責(zé)統(tǒng)合其他子系統(tǒng)而背內(nèi)側(cè)前額葉子系統(tǒng)則負(fù)責(zé)元認(rèn)知加工, 兩者之間的功能連接減弱提示核心子系統(tǒng)對背內(nèi)側(cè)前額葉的約束力下降(Christoff et al., 2016), 個體消耗更多的認(rèn)知資源進(jìn)行消極的自我審視。核心子系統(tǒng)與內(nèi)側(cè)顳葉子系統(tǒng)的連接增強(qiáng)提示前者對后者存在過度約束, 使個體難以提取積極的自傳體記憶, 因而無法基于以往記憶形成適應(yīng)性的心理活動。此外, 基于圖論分析的腦網(wǎng)絡(luò)研究表明, 無論是健康受試者還是抑郁癥患者, 反芻思維量表得分越高的人, 默認(rèn)網(wǎng)絡(luò)內(nèi)部熵水平更高(Jacob et al., 2020)。熵反映了系統(tǒng)的秩序, 熵水平增高表示系統(tǒng)趨于無序(Jacob et al., 2016)。因此, 該研究結(jié)果表明, 反芻思維水平能夠被刻畫為默認(rèn)網(wǎng)絡(luò)內(nèi)部的有序程度。
默認(rèn)網(wǎng)絡(luò)在支持個體內(nèi)部指向的心理活動中起著非常重要的適應(yīng)性作用, 而反芻思維與默認(rèn)網(wǎng)絡(luò)的異常活動有關(guān), 從中不難理解為何反芻思維會表現(xiàn)出過度的自我參照加工。但是反芻思維與默認(rèn)網(wǎng)絡(luò)異?;顒又g的因果關(guān)系尚不明確, 未來研究應(yīng)該更多地利用有向功能連接或者神經(jīng)調(diào)控方法來明確二者之間的作用方式。
Nolen-Hoeksema (1987)認(rèn)為反芻思維是個體在面對抑郁情緒時所采取的反應(yīng)方式。在遭遇了消極的生活事件之后, 反芻思維水平高的個體更加關(guān)注該事件中自身的消極情緒, 對事件中的細(xì)節(jié)和自身情緒狀態(tài)進(jìn)行過度加工。而由消極情緒引發(fā)的認(rèn)知偏差, 不利于個體客觀地解決問題(Nolen-Hoeksema et al., 2008)。研究表明, 突顯網(wǎng)絡(luò)的改變與反芻思維狀態(tài)下消極情緒的產(chǎn)生有關(guān)。
突顯網(wǎng)絡(luò)(salience network, SN)有兩個關(guān)鍵作用, 一是對外部環(huán)境進(jìn)行檢測, 二是基于此獲取相應(yīng)的認(rèn)知資源。突顯網(wǎng)絡(luò)主要包含杏仁核(amygdala)、額?島葉(fronto-insular cortex)、前扣帶回(anterior cingulate cortex) (Lydon-Staley et al., 2019; Peters et al., 2016)?;赟troop任務(wù)(Wagner et al., 2013)的研究發(fā)現(xiàn), 相較于健康控制組, 抑郁癥患者表現(xiàn)出更多的負(fù)性自我參照加工, 這提示了抑郁癥與反芻思維高度相關(guān); 并且在任務(wù)過程中, 由突顯網(wǎng)絡(luò)的關(guān)鍵節(jié)點前扣帶回與默認(rèn)網(wǎng)絡(luò)的內(nèi)側(cè)前額葉所構(gòu)成的前皮質(zhì)中線結(jié)構(gòu)(anterior cortical midline)表現(xiàn)出過度激活和功能連接增強(qiáng)。而Nejad等人(2013)在對抑郁癥患者的反芻思維腦網(wǎng)絡(luò)研究進(jìn)行系統(tǒng)梳理后發(fā)現(xiàn), 前皮質(zhì)中線結(jié)構(gòu)的過度激活使背外側(cè)前額葉與杏仁核之間的功能連接降低。由于背外側(cè)前額葉負(fù)責(zé)認(rèn)知控制(Nejati et al., 2021), 而杏仁核與情緒加工有關(guān)(Bordi & LeDoux., 1992), 反芻思維下兩者之間的功能連接降低提示個體難以合理編碼及準(zhǔn)確表征信息, 也難以形成建設(shè)性的情緒管理策略, 從而產(chǎn)生消極的情緒反應(yīng)。這一點得到了圖論分析結(jié)果的支持。節(jié)點中心度(centrality)是圖論分析中常用的一項指標(biāo), 能夠刻畫節(jié)點在網(wǎng)絡(luò)中的作用和地位, 其值越高表明該節(jié)點在網(wǎng)絡(luò)中的信息傳輸作用越大(梁夏等, 2010; 孫俊峰等, 2010; Gao et al., 2018)。研究發(fā)現(xiàn), 通過情緒指令誘發(fā)受試者的反芻狀態(tài)之后, 相較于健康控制組, 高反芻思維的抑郁癥患者在任務(wù)過程中其杏仁核的節(jié)點中心度降低(Zhang et al., 2020)。這表明當(dāng)抑郁癥患者進(jìn)入反芻思維狀態(tài)之后, 杏仁核無法充分發(fā)揮情緒管理的作用, 情緒狀態(tài)得不到合理的調(diào)整。
突顯網(wǎng)絡(luò)中的額?島葉參與感知覺和情緒加工(Li et al., 2018)。研究表明右額?島葉的靜息態(tài)功能連接增強(qiáng)與消極、持續(xù)性的內(nèi)省傾向有關(guān)(Kaiser et al., 2016), 反映了抑郁癥患者的反芻思維水平。此外, 高反芻特質(zhì)(反芻思維量表得分高)者存在對消極自我描述信息的注意偏向, 并且這種注意偏向受到了額?島葉動態(tài)功能連接的調(diào)節(jié), 具體表現(xiàn)為額?島葉動態(tài)功能連接變化越大, 高反芻特質(zhì)者越傾向于注意消極的自我信息(Kaiser et al., 2018; Kaiser et al., 2019)。額?島葉的神經(jīng)活動體現(xiàn)了個體主觀預(yù)期與現(xiàn)實情境產(chǎn)生沖突時本體狀態(tài)(somatic states)的差異(Craig, 2009; Sridharan et al., 2008), 因此, 額?島葉的過度活躍表明, 當(dāng)現(xiàn)實情景達(dá)不到個體的主觀預(yù)期時, 高反芻特質(zhì)者更容易產(chǎn)生強(qiáng)烈的消極情緒體驗。而對于目標(biāo)的追求是十分主觀的, 失敗的目標(biāo)與預(yù)期目標(biāo)落差越大, 產(chǎn)生消極反芻思維的可能性就越大。
總之, 負(fù)責(zé)對內(nèi)外環(huán)境進(jìn)行監(jiān)測的突顯網(wǎng)絡(luò)在反芻思維狀態(tài)下發(fā)生了改變, 個體將注意力聚焦于消極的情緒體驗, 既無益于身心健康也無益于問題解決。消極情緒性也是反芻思維與抑郁癥、焦慮癥等精神疾病有關(guān)的原因之一。上述分析提示, 對反芻思維的干預(yù)可以采用培養(yǎng)高反芻特質(zhì)者對自身相關(guān)消極情緒的鈍感以減少其過度精神內(nèi)耗的思路。
反芻思維是一種非適應(yīng)性的認(rèn)知風(fēng)格, 表現(xiàn)為個體對消極事件進(jìn)行重復(fù)持續(xù)的思考(Grafton et al., 2016; Nolen-Hoeksema et al., 2008)。何以反芻思維一旦開始便難以停止?注意脫離損傷假說(impaired attention disengagement theory)提出, 個體難以從消極刺激中轉(zhuǎn)移注意力而產(chǎn)生了反芻思維, 由此促使個體對自我相關(guān)的消極信息進(jìn)行重復(fù)持續(xù)的加工(Grafton et al., 2016; Hur et al., 2019; Koster, 2011; Nejad et al., 2019; V?lena? et al., 2017)。研究表明, 反芻思維的持續(xù)性與注意相關(guān)網(wǎng)絡(luò)之間的功能連接異常有關(guān)。
由背外側(cè)前額葉和后頂葉皮層構(gòu)成的額頂網(wǎng)絡(luò)(frontoparietal network, FPN)主要參與注意控制、反應(yīng)選擇和反應(yīng)抑制(Chang, et al., 2013; Lydon-Staley et al., 2019)。由額眼區(qū)和頂內(nèi)溝構(gòu)成的背側(cè)注意網(wǎng)絡(luò)(dorsal attention network, DAN)則有助于集中和維持對外部刺激的注意, 其激活度與反芻思維呈負(fù)相關(guān)(Buckner & Krienen, 2013; Rosenbaum, Thomas, et al., 2018; Rosenbaum, Maier, et al., 2018)。研究表明, 相較于健康控制組, 抑郁癥患者的高反芻思維水平體現(xiàn)于額頂網(wǎng)絡(luò)與背側(cè)注意網(wǎng)絡(luò)之間的功能連接減弱、以及額頂網(wǎng)絡(luò)與默認(rèn)網(wǎng)絡(luò)之間的功能連接增強(qiáng)(Kaiser, et al., 2015; Kaiser, 2017)。具體而言, 額頂網(wǎng)絡(luò)不僅參與自上而下的注意和情緒調(diào)節(jié), 也負(fù)責(zé)對背側(cè)注意網(wǎng)絡(luò)、默認(rèn)網(wǎng)絡(luò)進(jìn)行認(rèn)知資源分配與管理。當(dāng)額頂網(wǎng)絡(luò)與外部指向的背側(cè)注意網(wǎng)絡(luò)之間的功能連接減弱、與內(nèi)部指向的默認(rèn)網(wǎng)絡(luò)之間的功能連接增強(qiáng)時, 本應(yīng)用于關(guān)注外部世界及獲取外部信息所需的認(rèn)知資源被內(nèi)部指向的心理活動所占用。過多的認(rèn)知資源進(jìn)入到自我參照和自傳體記憶的加工系統(tǒng), 個體的注意力過多投入于對自我的關(guān)注。
動態(tài)腦網(wǎng)絡(luò)研究也為反芻思維的注意脫離損傷假說提供了證據(jù)。動態(tài)腦網(wǎng)絡(luò)分析能夠描述功能連接隨時間變化的穩(wěn)定性(stability), 也能反映腦網(wǎng)絡(luò)的靈活程度(即, 功能連接越穩(wěn)定, 腦網(wǎng)絡(luò)的靈活性越差) (Gonzalez-Castillo & Bandettini, 2018; Li, et al., 2020)。研究發(fā)現(xiàn), 相較于分心控制組(想象非情緒性的場景), 反芻思維組在進(jìn)行自我反思時其額頂網(wǎng)絡(luò)的功能連接穩(wěn)定性增高, 而默認(rèn)網(wǎng)絡(luò)的穩(wěn)定性降低(Chen & Yan, 2021)。這提示, 在反芻狀態(tài)下, 個體的思維模式僵化, 自我參照加工異常突出(Christoff et al., 2016; Kaiser et al., 2016)。Chen和Yan (2021)認(rèn)為, 默認(rèn)網(wǎng)絡(luò)穩(wěn)定性的降低與其內(nèi)部腦區(qū)之間過于密集的互動有關(guān)。但這一點需要在未來研究中加以驗證??傮w而言, 額頂網(wǎng)絡(luò)與默認(rèn)網(wǎng)絡(luò)動態(tài)活動模式的異常可能反映了反芻狀態(tài)下個體難以將注意力從與自我相關(guān)的信息中脫離出來。
然而關(guān)于反芻思維持續(xù)性的成因, 有學(xué)者認(rèn)為是由于個體難以從消極刺激中轉(zhuǎn)移注意。Yang等人(2017)通過元分析發(fā)現(xiàn), 高反芻思維者的認(rèn)知控制能力下降, 以致于在抑制消極信息上出現(xiàn)困難。但是關(guān)于抑制能力與反芻思維持續(xù)性之間關(guān)系的腦網(wǎng)絡(luò)分析較少, 尚無法明確其腦網(wǎng)絡(luò)機(jī)制。反芻思維的持續(xù)性是由于個體難以從消極的自我信息中轉(zhuǎn)移注意, 還是由于個體難以抑制消極刺激, 需要未來研究做出回答。
總體而言, 反芻思維是個體在經(jīng)歷過消極事件后所采用的非適應(yīng)性反應(yīng)方式, 具有負(fù)性自我參照加工、消極情緒性以及持續(xù)性的特點。反芻思維的負(fù)性自我參照加工可以從默認(rèn)網(wǎng)絡(luò)的核心子系統(tǒng)、背內(nèi)側(cè)前額葉子系統(tǒng)、內(nèi)側(cè)顳葉子系統(tǒng)的異?;顒幽J街械玫浇忉尅6渌a(chǎn)生的消極情緒, 則與突顯網(wǎng)絡(luò)中前扣帶回、杏仁核的異常功能連接有關(guān); 額?島葉頻繁的動態(tài)功能連接變化體現(xiàn)了現(xiàn)實情境與預(yù)期目標(biāo)之間的沖突容易使高反芻思維者產(chǎn)生強(qiáng)烈的消極情緒體驗。最后, 之所以個體難以主動停止持續(xù)不斷的反芻思維, 與額頂網(wǎng)絡(luò)、背側(cè)注意網(wǎng)絡(luò)、默認(rèn)網(wǎng)絡(luò)之間異常的耦合模式有關(guān)。雖然目前關(guān)于反芻思維腦網(wǎng)絡(luò)機(jī)制的研究已經(jīng)取得了一定的進(jìn)展, 但未來仍需要從以下幾方面加深對其的認(rèn)識。
首先, 以往絕大多數(shù)研究所呈現(xiàn)的是反芻思維與腦網(wǎng)絡(luò)活動之間的相關(guān)性, 但相關(guān)關(guān)系不足以明確二者之間孰因孰果。對此, 未來可以運用神經(jīng)調(diào)控技術(shù)考察反芻思維與腦功能連接改變之間的因果關(guān)系, 以加深對反芻思維腦網(wǎng)絡(luò)機(jī)制的認(rèn)識。
第二, 反芻思維的腦功能網(wǎng)絡(luò)的改變是否存在結(jié)構(gòu)基礎(chǔ)?,F(xiàn)有研究已經(jīng)證實反芻思維存在著顯著的腦功能網(wǎng)絡(luò)改變基礎(chǔ), 但僅憑功能連接的變化不足以推測是否存在結(jié)構(gòu)連接的改變(Koch et al., 2002)。目前, 少有研究就反芻思維的腦功能與結(jié)構(gòu)網(wǎng)絡(luò)之間的關(guān)系進(jìn)行針對性的探索, 未來應(yīng)從這一方向加深對反芻思維腦機(jī)制的理解。
第三, 反芻思維的老齡化特征。以往參與反芻思維研究的受試者以青中年群體為主, 然而, 大腦隨著年齡增長而不斷改變(Gu et al., 2015), 因此簡單地將這些研究結(jié)果推廣到老年人群并不合適。研究表明, 相較于年輕人, 老年人在面對消極情緒的時候會更傾向于使用分心策略而較少陷入反芻狀態(tài)(Ricarte Trives et al., 2016)。這或許是因為老年人群體中存在著積極效應(yīng), 即老年人相對于年輕人會更加關(guān)注積極刺激而非消極刺激(Reed et al., 2014)。反芻思維所體現(xiàn)出來的腦網(wǎng)絡(luò)異常連接是否會因為情緒上的積極改變而得到改善, 需要在未來的研究中加以驗證。
最后, 大尺度腦網(wǎng)絡(luò)的臨床價值。反芻思維對抑郁癥、焦慮癥等多種精神疾病所產(chǎn)生的影響日益受到重視。目前少有研究將現(xiàn)有腦網(wǎng)絡(luò)機(jī)制的成果應(yīng)用于反芻思維的臨床干預(yù)與治療。未來研究應(yīng)致力于發(fā)展基于腦網(wǎng)絡(luò)的神經(jīng)調(diào)控技術(shù), 以對反芻思維施以有效的干預(yù)。
李雨, 舒華. (2014). 默認(rèn)網(wǎng)絡(luò)的神經(jīng)機(jī)制、功能假設(shè)及臨床應(yīng)用.(2), 234?249.
梁夏, 王金輝, 賀永. (2010). 人腦連接組研究: 腦結(jié)構(gòu)網(wǎng)絡(luò)和腦功能網(wǎng)絡(luò).(16), 1565–1583.
孫俊峰, 洪祥飛, 童善保. (2010). 復(fù)雜腦網(wǎng)絡(luò)研究進(jìn)展——結(jié)構(gòu)、功能、計算與應(yīng)用.(4), 74–90.
徐龍洲. (2021).(碩士學(xué)位論文). 蘭州大學(xué).
楊營凱, 劉衍玲. (2016). 抑郁反芻的認(rèn)知神經(jīng)機(jī)制.(7), 1042?1049.
Ando', A., Giromini, L., Ales, F., & Zennaro, A. (2020). A multimethod assessment to study the relationship between rumination and gender differences.(6), 740–745.
Andrews-Hanna, J. R. (2012). The brain's default network and its adaptive role in internal mentation.(3), 251?270.
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network.(4), 550–562.
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance.(1), 29–52.
Apazoglou, K., Küng, A. L., Cordera, P., Aubry, J. M., Dayer, A., Vuilleumier, P., & Piguet, C. (2019). Rumination related activity in brain networks mediating attentional switching in euthymic bipolar patients.(1), 3.
Bartova, L., Meyer, B. M., Diers, K., Rabl, U., Scharinger, C., Popovic, A., … Pezawas, L. (2015). Reduced default mode network suppression during a working memory task in remitted major depression., 9–18.
Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J., & Jonides, J. (2011). Depression, rumination and the defaultnetwork.(5), 548–555.
Bordi, F, & LeDoux, J. (1992). Sensory Tuning beyond the Sensory System: An initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the Striatum.(7), 2493–2503
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease., 1–38.
Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain.(12), 648–665.
Burkhouse, K. L., Jacobs, R. H., Peters, A. T., Ajilore, O., Watkins, E. R., & Langenecker, S. A. (2017). Neural correlatesof rumination in adolescents with remitted major depressive disorder and healthy controls.(2), 394-405.
Chang, C., Liu, Z., Chen, M. C., Liu, X., & Duyn, J. H. (2013). EEG correlates of time-varying BOLD functional connectivity., 227–236.
Chen, X., Chen, N. X., Shen, Y. Q., Li, H. X., Li, L., Lu, B., ... Yan, C. G. (2020). The subsystem mechanism of default mode network underlying rumination: A reproducible neuroimaging study., 117185.
Chen, X., & Yan, C. G. (2021). Hypostability in the default mode network and hyperstability in the frontoparietal control network of dynamic functional architecture during rumination.118427.
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework.(11), 718–731.
Constantin, K., English, M. M., & Mazmanian, D. (2018). Anxiety, depression, and procrastination among students: Rumination plays a larger mediating role than worry.(1), 15–27.
Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness.(1), 59–70.
Delaveau, P., Arruda Sanchez, T., Steffen, R., Deschet, K., Jabourian, M., Perlbarg, V., ... Fossati, P. (2017). Default mode and task-positive networks connectivity during the N-Back task in remitted depressed patients with or without emotional residual symptoms.(7), 3491–3501.
Dodd, A., Lockwood, E., Mansell, W., & Palmier-Claus, J. (2019). Emotion regulation strategies in bipolar disorder: A systematic and critical review.,, 262–284.
Gao, W., Wu, H., Siddiqui, M. K., & Baig, A. Q. (2018). Study of biological networks using graph theory.(6), 1212–1219
Gonzalez-Castillo, J., & Bandettini, P. A. (2018). Task-based dynamic functional connectivity: Recent findings and open questions.(Pt B), 526–533.
Grafton, B., Southworth, F., Watkins, E., & MacLeod, C. (2016). Stuck in a sad place: Biased attentional disengagement in rumination.(1), 63–72.
Gu, S., Satterthwaite, T. D., Medaglia, J. D., Yang, M., Gur, R. E., Gur, R. C., & Bassett, D. S. (2015). Emergence of system roles in normative neurodevelopment.(44), 13681–13686.
Hamilton, J. P., Farmer, M., Fogelman, P., & Gotlib, I. H. (2015). Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience.(4), 224–230.
Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. (2011). Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination.(4), 327–333.
在精米白面等精細(xì)谷物的基礎(chǔ)上,適當(dāng)搭配糙米、全麥等全谷物。這種搭配不但可以增加主食的營養(yǎng)物質(zhì),還可以豐富主食的風(fēng)味,如全麥產(chǎn)生的麥香味。在日常主食中也可交替或搭配食用雜豆、薯類等營養(yǎng)豐富的健康食材。由于雜豆富含賴氨酸,與谷物搭配食用可實現(xiàn)植物蛋白的互補(bǔ)。薯類則富含果膠等物質(zhì),與谷物搭配食用可促進(jìn)腸道蠕動,預(yù)防便秘。
Hur, J., Gaul, K., & Berenbaum, H. (2019). Different patterns of attention bias in worry and rumination.(4), 713–725.
Jacob, Y., Morris, L. S., Huang, K. H., Schneider, M., Rutter, S., Verma, G., Murrough, J. W., & Balchandani, P. (2020). Neural correlates of rumination in major depressive disorder: A brain network analysis., 102142.
Jacob, Y., Winetraub, Y., Raz, G., Ben-Simon, E., Okon-Singer, H., Rosenberg-Katz, K., Hendler, T., & Ben-Jacob, E. (2016). Dependency network analysis (DEPNA) reveals context related influence of brain network nodes.27444.
Joorman, J., & D’Avanzato, C. (2010). Emotion regulation in depression: Examining the role of cognitive processes.(6)913– 939.
Kaiser, R. H. (2017). Neurocognitive markers of depression.(4), e29–e31.
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-Scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity.(6), 603–611.
Kaiser, R. H., Kang, M. S., Lew, Y., van der Feen, J., Aguirre, B., Clegg, R., ... Pizzagalli, D. A. (2019). Abnormal frontoinsular-default network dynamics in adolescent depression and rumination: A preliminary resting-state co-activation pattern analysis.(9), 1604–1612.
Kaiser, R. H., Snyder, H. R., Goer, F., Clegg, R, Ironside, M., & Pizzagalli, D. A. (2018). Attention bias in rumination and depression: Cognitive mechanisms and brain networks.(6), 765–782.
Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., ... Pizzagalli, D. A. (2016). Dynamic resting-state functional connectivity in major depression.(7), 1822–1830.
Kertz, S. J., Petersen, D. R., & Stevens, K. T. (2019). Cognitive and attentional vulnerability to depression in youth: A review., 63–77.
Koster, E. H., de Lissnyder, E., Derakshan, N., & de Raedt, R. (2011). Understanding depressive rumination from a cognitive science perspective: the impaired disengagement hypothesis.(1), 138–145.
Koch, M. A., Norris, D. G., & Hund-Georgiadis, M. (2002). An investigation of functional and anatomical connectivity using magnetic resonance imaging.(1), 241?250.
Kraus, C., Mkrtchian, A., Kadriu, B., Nugent, A. C., Zarate, C. A., Jr., & Evans, J. W. (2020). Evaluating global brain connectivity as an imaging marker for depression: Influence of preprocessing strategies and placebo-controlledketamine treatment.(6), 982–989.
Kühn, S., Vanderhasselt, M. A., de Raedt, R., & Gallinat, J. (2012). Why ruminators won't stop: The structural and resting state correlates of rumination and its relation to depression.(2-3), 352–360.
Li, L., Lu, B., & Yan, C. G. (2020). Stability of dynamic functional architecture differs between brain networks and states., 116–230.
Li, R., Zhang, S., Yin, S., Ren, W., He, R., & Li, J. (2018). The fronto-insular cortex causally mediates the default- mode and central-executive networks to contribute to individual cognitive performance in healthy elderly.(11), 4302–4311.
Lydon-Staley, D. M., Kuehner, C., Zamoscik, V., Huffziger, S., Kirsch, P., & Bassett, D. S. (2019). Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks.(1), 234.
Martin, L. L., & Tesser, A. (1989).. America: The Guilford Press.
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model.(10), 483–506.
Mihailova, S., & Jobson, L. (2020). The impact of depression and culture on responses to intrusive autobiographical memories: Cognitive appraisals, cognitive avoidance, and brooding rumination.(1), 66–79.
Morrow, J., & Nolen-Hoeksema, S. (1990). Effects of responsesto depression on the remediation of depressive affect.(3), 519–527.
Nejad, A. B., Fossati, P., & Lemogne, C. (2013). Self-referential processing, rumination, and cortical midline structures in major depression., 666.
Nejad, A. B., Rotgé, J. Y., Valabregue, R., Guérin-Langlois, C., Hoertel, N., Gorwood, P., … Lemogne, C. (2019). Medial prefrontal disengagement during self-focus in formerly depressed patients prone to rumination., 36–44.
Nejati, V., Majdi, R., Salehinejad, M. A., & Nitsche, M. A. (2021). The role of dorsolateral and ventromedial prefrontalcortex in the processing of emotional dimensions.(1), 1971.
Nolen-Hoeksema, S. (1987). Sex differences in unipolar depression: Evidence and theory.(2), 259–282.
Nolen-Hoeksema, S. (1991). Responses to depression and their effects on the duration of depressive episodes.(4), 569–582.
Nolen-Hoeksema, S. (2000). The role of rumination in depressive disorders and mixed anxiety/depressive symptoms.(3), 504–511.
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination.(5), 400–424.
Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico- Striatal-Thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment., 104.
Petersen, S. E., & Sporns, O. (2015). Brain networks and cognitive architectures.(1), 207–219.
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., & Siegle, G. J. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood.(4), 347–357.
Provenzano, J., Fossati, P., Dejonckheere, E., Verduyn, P., & Kuppens, P. (2021). Inflexibly sustained negative affect and rumination independently link default mode network efficiency to subclinical depressive symptoms., 347–354.
Reed, A. E., Chan, L., & Mikels, J. A. (2014). Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information.(1), 1–15.
Ricarte Trives, J. J., Navarro Bravo, B., Latorre Postigo, J. M., Ros Segura, L., & Watkins, E. (2016). Age and gender differences in emotion regulation strategies: Autobiographical memory, rumination, problem solving and distraction., E43.
Rosenbaum, D., Haipt, A., Fuhr, K., Haeussinger, F. B., Metzger, F. G., Nuerk, H. C., ... Ehlis, A. C. (2017). Aberrant functional connectivity in depression as an index of state and trait rumination.(1), 2174.
Rosenbaum, D., Maier, M. J., Hudak, J., Metzger, F. G., Wells,A., Fallgatter, A. J., & Ehlis, A. C. (2018). Neurophysiological correlates of the attention training technique: A component study., 1018–1024.
Rosenbaum, D., Thomas, M., Hilsendegen, P., Metzger, F. G., Haeussinger, F. B., Nuerk, H.-C., … Ehlis, A.-C. (2018). Stress-related dysfunction of the right inferior frontal cortex in high ruminators: An fNIRS study., 510–517.
Sanchez, A., Vanderhasselt, M. A., Baeken, C., & de Raedt, R. (2016). Effects of tDCS over the right DLPFC on attentional disengagement from positive and negative faces: An eye-tracking study.(6), 1027–1038.
Santa Maria, A., Reichert, F., Hummel, S. B., & Ehring, T. (2012). Effects of rumination on intrusive memories: Does processing mode matter?(3), 901–909.
Sin, E. L. L., Shao, R., Geng, X., Cho, V., & Lee, T. M. C. (2018). The neuroanatomical basis of two subcomponents of rumination: A VBM study., 324.
Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: a topographical perspective.(8), 503–513.
Smith, K. E., Mason, T. B., & Lavender, J. M. (2018). Rumination and eating disorder psychopathology: A meta-analysis., 9–23.
Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience.(5), 652?660.
Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis.(3), 489–510.
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks.(34), 12569–12574.
Steinfurth, E. C., Alius, M. G., Wendt, J., & Hamm, A. O. (2017). Physiological and neural correlates of worry and rumination: Support for the contrast avoidance model of worry.(2), 161–171.
Topper, M., Emmelkamp, P. M., Watkins, E., & Ehring, T. (2017). Prevention of anxiety disorders and depression by targeting excessive worry and rumination in adolescents and young adults: A randomized controlled trial., 123–136.
Tozzi, L., Zhang, X., Chesnut, M., Holt-Gosselin, B., Ramirez, C. A., & Williams, L. M. (2021). Reduced functional connectivity of default mode network subsystems in depression: Meta-analytic evidence and relationship with trait rumination., 102570.
V?lena?, S. P., Szentágotai-T?tar, A., Grafton, B., Notebaert, L., Miu, A. C., & MacLeod, C. (2017). Prediction of pre-exam state anxiety from ruminative disposition: The mediating role of impaired attentional disengagement from negative information., 102–110.
Vecchio, F., Miraglia, F., & Maria Rossini, P. (2017). Connectome: Graph theory application in functional brain network architecture., 206–213.
Wagner, G., Koch, K., Schachtzabel, C., Peikert, G., Schultz, C. C., Reichenbach, J. R., Sauer, H., & Schl?sser, R. G. (2013). Self-referential processing influences functional activation during cognitive control: an fMRI study.(7), 828–837.
Watkins, E., Moberly, N. J., & Moulds, M. L. (2008). Processing mode causally influences emotional reactivity: Distinct effects of abstract versus concrete construal on emotional response.(3), 364–378.
Yang, Y., Cao, S., Shields, G. S., Teng, Z., & Liu, Y. (2017). The relationships between rumination and core executive functions: A meta-analysis.(1)37–50.
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity.(3), 1125–1165.
Zhang, R., Kranz, G. S., Zou, W., Deng, Y., Huang, X., Lin, K., & Lee, T. M. C. (2020). Rumination network dysfunction in major depression: A brain connectome study., 109819.
Zhou, H. X., Chen, X., Shen, Y. Q., Li, L., Chen, N. X., Zhu, Z. C., ... Yan, C. G. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression., 116287.
Zhu, X., Zhu, Q., Shen, H., Liao, W., & Yuan, F. (2017). Rumination and default mode network subsystems connectivity in first-episode, drug-naive young patients with major depressive disorder., 43105.
Functional brain networks underlying rumination
LIN Wenyi1, HE Hao1,3, GUAN Qing1,2,3
(1School of Psychology Shenzhen University, Shenzhen 518060, China)(2Shenzhen Institute of Neuroscience, Shenzhen 518107, China)(3Shenzhen & Hongkong Institute of Brain Science, Shenzhen 518055, China)
Rumination refers to the repeated reflection of cause, course, and consequence of a negative event. Brain network studies based on functional magnetic resonance imaging indicate that the self-referential processing involved in rumination is associated with alterations in the default mode network, while negative emotion produced by rumination is related to changes in the salience network. The “persistence” property of rumination is associated with altered connections between attention-related networks. Future studies should further examine the causal relationship between rumination and its related brain networks and explore the structural basis of functional networks of rumination to deepen our knowledge about the brain basis of rumination. It is not only in great need to investigate the aging effect on rumination and its underlying brain networks, but also to develop neuromodulation techniques for intervention.
rumination, brain network, default mode network, functional connectivity
R395
2021-05-13
*國家自然科學(xué)基金面上項目(32071100), 深圳市基礎(chǔ)研究專項(自然科學(xué)基金)面上項目(JCYJ20190808121415365),廣東省自然科學(xué)基金項目(2020A1515011394), 深港腦科學(xué)創(chuàng)新研究項目(2021SHIBS0003)。
關(guān)青, E-mail: guanqing@szu.edu.cn