羅曉芳,張穎穎,陳笑緣
Hopf群余代數(shù)上對角交叉積的Maschke型定理
羅曉芳1,張穎穎2,陳笑緣2
(1.義烏工商職業(yè)技術(shù)學(xué)院,浙江 金華 322000; 2.浙江商業(yè)職業(yè)技術(shù)學(xué)院,浙江 杭州 310053)
構(gòu)造了Hopf群余代數(shù)上對角交叉積代數(shù)結(jié)構(gòu),給出了其為Hopf群余代數(shù)的充要條件,證明了其表示范疇同構(gòu)于Yetter-Drinfeld群模范疇,并將Hopf代數(shù)理論中經(jīng)典的Maschke型定理推廣至Hopf群余代數(shù)的對角交叉積。
Hopf群余代數(shù);對角交叉積; Maschke型定理
Quasi-Hopf代數(shù)上的對角交叉積結(jié)構(gòu)由MAJID[3]引入。在交換Hopf代數(shù)上,將L-R Smash積和Kadison積作為對角交叉積的典型例子。文獻(xiàn)[4-5]不僅討論了相關(guān)結(jié)構(gòu),而且證明了對角交叉積的表示范疇同構(gòu)于Yetter-Drinfeld模范疇。
首先構(gòu)造了Hopf群余代數(shù)上對角交叉積代數(shù)結(jié)構(gòu),其次給出了Hopf群余代數(shù)的充要條件,再次證明了其表示范疇同構(gòu)于Yetter-Drinfeld群模范疇,最后將Hopf代數(shù)理論中的Maschke型定理[6]推廣至Hopf群余代數(shù)的對角交叉積。
顯然有,
引理1得證。
對極定義為
等式左邊為
等式右邊為
定理1獲證。
引理4獲證。
經(jīng)以上準(zhǔn)備,下面給出Maschke型定理。
[1] VIRELIZIER A. Hopf group-coalgebras[J]. Journal of Pure & Applied Algebra, 2002,171(1):75-122. DOI:10.1016/S0022-4049(01)00125-6
[2] ZUNINO M .Yetter-Drinfeld modules for Turaev crossed structures[J].Journal of Pure & Applied Algebra,2004,193(1-3):313-343. DOI:10.1016/j.jpaa.2004.02.014
[3] MAJID S. Quantum double for quasi-Hopf algebras[J]. Letters in Mathematical Physics,1998,45:1-9. DOI:10.48550/arXiv.q-alg/9701002
[4] CAENEPEEL S , MILITARU G, ZHU S. Frobenius and separable functors for generalized module categories and nonlinear equations[M]// Lecture Notes in Mathmatics 1787. Berlin:Springer Verlag, 2002.
[5] HAUSSER F, NILL F. Diagonal crossed products by duals of quasi-quantum group[J]. Reviews in Mathematical Physics, 1999, 11(5):563-629. DOI:10.1142/S0129055X99000210
[6] MONTGONERY S. Hopf algebras and their actions on rings[M]// CBMS Regional Conference Series in Mathematics(Vol 82). Los Angeles: AMS, 1993. DOI:10.1090/cbms/082
[7] ZUNINO M.Double construction for crossed Hopf coalgebras[J]. Journal of Algebra, 2004,278(1):43-75. DOI:10.1016/j.jalgebra.2004.03.019
The Maschke-type theorems of diagonal crossed products over Hopf group coalgebras
LOU Xiaofang1, ZHANG Yinyin2, CHEN Xiaoyuan2
1,322000,,;2,310053,)
In this paper, a diagonal crossed product over a Hopf group coalgebra is constructed, and the sufficient and necessary conditions for it being a Hopf group coalgebra are given. Then we prove that the representation category of a diagonal crossed product over a Hopf group coalgebra is isomorphic to the category of Yetter-Drinfeld π-modules and extend the classic Maschke-type theorem of Hopf algebra to diagonal crossed products over Hopf group coalgebras.
Hopf group coalgebra; diagonal crossed product; Maschke-type theorem
O 153.3
A
1008?9497(2023)01?016?04
2021?09?24.
羅曉芳(1964—),ORCID:https://orcid.org/0000-0002-5855-2890,女,碩士,主要從事數(shù)學(xué)與教學(xué)研究.