王長青 陳玲 徐萍 朱曉娟 劉政
摘要:目的本研究旨在明確miR-409-3p在肝癌細(xì)胞系中的表達(dá)及其意義,并探討可能的分子機制。方法利用實時熒光定量PCR的方法檢測miR-409-3p在正常肝細(xì)胞LO2,以及HepG2、BEL-7402、SMMC-7721、MHCC-97H四種肝癌細(xì)胞中的表達(dá)差異。陽離子脂質(zhì)體法將miR-409-3p mimics及microRNA mimics control瞬時轉(zhuǎn)染至肝癌細(xì)胞株HepG2中,利用CCK8法、平板克隆、流式細(xì)胞術(shù)檢測miR-409-3p對體外癌細(xì)胞增殖、細(xì)胞周期及凋亡的影響。Western Blot檢測過表達(dá)miR-409-3p的HepG2細(xì)胞中c-Met蛋白的表達(dá)變化,熒光素酶報告系統(tǒng)鑒定靶向關(guān)系。計量資料兩組間比較采用成組t檢驗,多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用SNK法。結(jié)果基于TCGA肝癌microRNA表達(dá)譜數(shù)據(jù),肝癌組織中miR-409-3p的表達(dá)水平顯著低于癌旁組織(t=7.752,P<0.05)。與在LO2中的表達(dá)水平相比,miR-409-3p在HepG2、SMMC-7721、MHCC-97H、BEL-7402中的表達(dá)水平均明顯降低(F=31.043,P<0.05)。與miR-con組相比,轉(zhuǎn)染miR-409-3p mimics后的HepG2細(xì)胞中miR-409-3p的表達(dá)水平上升(t=-8.836,P<0.05),說明干擾有效。CCK8實驗結(jié)果顯示,與miR-con組相比,轉(zhuǎn)染miR-409-3p mimics后的HepG2細(xì)胞增殖能力在48、72、96 h明顯減弱,差異均具有統(tǒng)計學(xué)意義(t值分別為2.876、3.359、3.707,P值均<0.05)。平板克隆形成實驗顯示,miR-409-3p mimics組的細(xì)胞克隆形成率明顯低于miR-con組(t=2.846,P=0.047)。流式細(xì)胞術(shù)結(jié)果顯示,與miR-con組相比,過表達(dá)miR-409-3p后導(dǎo)致HepG2細(xì)胞G2期細(xì)胞數(shù)增多,差異具有統(tǒng)計學(xué)意義(t=-3.763,P<0.05);而凋亡率無明顯統(tǒng)計學(xué)差異(t=0.714,P=0.515)。熒光素酶報告系統(tǒng)鑒定結(jié)果顯示c-Met為miR-409-3p的靶基因(t=4.970,P=0.007)。與miR-con組相比,轉(zhuǎn)染miR-409-3p mimics的HepG2細(xì)胞中,c-Met蛋白表達(dá)水平下降(t=-8.509,P=0.001)。結(jié)論miR-409-3p通過抑制c-Met蛋白表達(dá),進(jìn)而調(diào)控下游信號通路引起細(xì)胞周期G2期阻滯,從而抑制肝癌HepG2細(xì)胞的增殖。關(guān)鍵詞:癌, 肝細(xì)胞; 微RNAs; 原癌基因蛋白質(zhì)c-met; 細(xì)胞增殖
Expression of miR-409-3p in hepatoma HepG2 cells and its mechanism in cell proliferation
WANG Changqing CHEN Ling XU Ping ZHU Xiaojuan LIU Zheng(1. Department of Gastroenterology, Yancheng First Peoples Hospital, Yancheng, Jiangsu 224008, China; 2. Department of Gastroenterology, Nanjing Pukou Peoples Hospital, Nanjing 211899, China; 3. Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China)
Corresponding author:LIU Zheng, liuzheng117@126.com (ORCID:0000-0002-2195-4538)
Abstract:ObjectiveTo investigate the expression and significance of miR-409-3p in hepatoma carcinoma cell lines and possible molecular mechanism. MethodsQuantitative real-time PCR was used to measure the expression of miR-409-3p in normal LO2 hepatocytes and four hepatoma cell line (HepG2, BEL-7402, SMMC-7721, and MHCC-97H). Hepatoma HepG2 cells were transiently transfected with miR-409-3p mimics and microRNA mimics control using the cationic liposome method, and then CCK8, plate colony formation assay, and flow cytometry were used to observe the effect of miR-409-3p on the proliferation, cell cycle, and apoptosis of hepatoma cells in vitro. Western blot was used to measure the change in the expression of c-Met protein in HepG2 cells with overexpression? of miR-409-3p, and luciferase reporter gene assay was used to identify targeting relationship. The independent-samples t test was used for comparison between two groups, and a one-way analysis of variance was used for comparison between multiple groups, followed by the SNK test. ResultsBased on the TCGA microRNA expression profile data of liver cancer, the expression level of miR-409-3p in liver cancer tissue was significantly lower than that in adjacent tissue (t=7.752, P<0.05). Compared with the LO2 cells, the HepG2, SMMC-7721, MHCC-97H, and BEL-7402 cells had a significant reduction in the expression level of miR-409-3p (F=31.043, P<0.05). Compared with the miR-con group, the HepG2 cells transfected with miR-409-3p mimics had a significant increase in the expression level of miR-409-3p (t=-8.836, P<0.05), suggesting that the interference was effective. CCK8 assay showed that compared with the miR-con group, the HepG2 cells transfected with miR-409-3p mimics had a significant reduction in proliferative capacity at 48, 72, and 96 hours (t=2.876, 3.359, and 3.707, all P<0.05). Plate colony formation assay showed that the miR-409-3p mimics group had a significantly lower plating efficiency than the miR-con group (t=2.846, P=0.047). Flow cytometry showed that compared with the miR-con group, overexpression of miR-409-3p resulted in the increased number of HepG2 cells in G2 phase (t=-3.763, P<0.05), while there was no significant difference in apoptosis rate (t=0.714, P=0.515). Luciferase reporter gene assay showed that c-Met was a target gene of miR-409-3p (t=4.970, P=0.007). Compared with the miR-con group, the HepG2 cells transfected with miR-409-3p mimics had a significant reduction in the expression of c-Met protein (t=-8.509, P=0.001). ConclusionBy inhibiting the protein expression of c-Met, miR-409-3p regulates downstream signaling pathways to induce cell cycle arrest in G2 phase and thus inhibits the proliferation of hepatoma HepG2 cells.
Key words:Carcinoma, Hepatocellular; MicroRNAs; Proto-Oncogene Proteins c-met; Cell Proliferation
肝細(xì)胞癌(HCC)的發(fā)生及發(fā)展包括一系列復(fù)雜的因素及步驟,涉及多個信號通路,探索HCC發(fā)生發(fā)展的分子機制,將有助于尋找其早期診斷的生物標(biāo)志物及特異性的靶向藥物[1]。c-Met作為一種原癌基因于20世紀(jì)80年代被發(fā)現(xiàn),其所編碼的c-Met蛋白是受體酪氨酸激酶家族成員[2]。研究[3]表明,在多種腫瘤中c-Met呈過表達(dá),如肝癌、胃癌、結(jié)直腸癌、胰腺癌、肺癌、前列腺癌及乳腺癌等。本課題組前期以c-Met為研究對象,通過相關(guān)靶向治療方式抑制肝癌細(xì)胞的生長[4-5]。近年來相關(guān)研究[6-7]陸續(xù)揭示,miR-409-3p可通過下調(diào)c-Met信號通路發(fā)揮其抑癌基因作用。迄今為止,HCC中有關(guān)miR-409-3p對c-Met調(diào)控的相關(guān)研究未見報道。因此本實驗旨在研究miR-409-3p在HCC發(fā)生發(fā)展中的作用及其與c-Met相關(guān)的分子機制,期待從分子水平進(jìn)一步探討HCC發(fā)生發(fā)展的機制,并以此為HCC的臨床診斷及靶向治療提供理論基礎(chǔ)。
1材料與方法1.1材料與試劑
1.1.1細(xì)胞株人正常肝細(xì)胞株LO2以及肝癌細(xì)胞株HepG2、BEL-7402、SMMC-7721、MHCC-97H均來自本實驗室保存。
1.1.2主要試劑和儀器RPMI 1640培養(yǎng)基、DMEM培養(yǎng)基、Opti-MEM培養(yǎng)基購自美國Gibco公司;胎牛血清(FBS)、胰酶購自美國Hyclone公司;總RNA提取試劑Trizol、Lipofectamine 2000購自美國Invitrogen公司;PrimeScript RT reagent Kit、SYBR Premix Ex Taq購自日本TaKaRa公司;hsa-miR-409-3p和U6引物由上海Invitrogen公司合成;CCK-8試劑盒購自日本同仁公司;吉姆薩工作液、RIPA蛋白裂解液購自上海碧云天生物技術(shù)有限公司;細(xì)胞周期分析試劑盒購自蘇州躍亞生物技術(shù)有限公司;Annexin V-EGFP凋亡檢測試劑盒、BCA蛋白含量檢測試劑盒購自南京凱基生物科技有限公司;蛋白Marker購自美國Thermo Scientific公司;ECL顯色劑、β-actin及c-Met抗體、羊抗兔二抗購自美國SAB公司;野生型( wild type,WT)和突變型( mutant,MUT) 熒光素酶報告載體由南京科佰生物科技有限公司構(gòu)建;StepOnePlus實時熒光定量PCR儀購自美國Life Technologies公司;Clinibio 128c型自動酶標(biāo)分析儀購自澳大利亞ASYS公司;流式細(xì)胞儀購自美國Becton Dickinson公司;聚偏二氟乙烯膜(PVDF膜)購自美國Millpore公司;電泳儀及轉(zhuǎn)膜儀購自美國Bio-Rad公司。
1.2實驗方法
1.2.1數(shù)據(jù)組基因數(shù)據(jù)來源:TCGA數(shù)據(jù)集(TCGAcohort)來源于TCGA數(shù)據(jù)庫(https://tcga-data.nci.Nih.gov/tega/),挑選出具有相應(yīng)癌旁組織microRNA測序數(shù)據(jù)的肝癌組織microRNA測序數(shù)據(jù)進(jìn)行分析,通過配對t檢驗對miR-409-3P在肝癌和癌旁中的表達(dá)進(jìn)行差異驗證。
1.2.2細(xì)胞轉(zhuǎn)染及實驗分組LO2、HepG2、SMMC-7721、MHCC-97H、BEL-7402經(jīng)培養(yǎng)后用于后續(xù)試驗。收集對數(shù)生長期肝癌HepG2細(xì)胞,胰蛋白酶消化,調(diào)整細(xì)胞濃度為1×105/mL,接種于96孔板(100 μL/孔),采用陽離子脂質(zhì)體法分別將miR-409-3p mimics(miR-409-3p mimics組)、microRNA mimics control (miR-con組)轉(zhuǎn)染至HepG2細(xì)胞,嚴(yán)格按照Lipofectamine 2000轉(zhuǎn)染試劑說明書進(jìn)行操作。
1.2.3實時熒光定量(qRT-PCR)檢測細(xì)胞中miR-409-3p表達(dá)水平采用Trizol法提取細(xì)胞總RNA并測定RNA濃度,按照逆轉(zhuǎn)錄試劑盒將RNA反轉(zhuǎn)錄為cDNA。以cDNA為模板進(jìn)行qRT-PCR反應(yīng)。以U6為內(nèi)參,檢測各模板的Ct值。以Folds=2-ΔΔCt表示目的RNA在實驗組與對照組中表達(dá)的相對倍比關(guān)系。實驗重復(fù)3次,計算平均值。
1.2.4CCK8細(xì)胞增殖實驗收集各組對數(shù)生長期HepG2細(xì)胞接種于96孔板,每孔加入2×103個細(xì)胞,調(diào)整培養(yǎng)液至每孔體積100 μL,每組3個復(fù)孔,同時設(shè)僅加培養(yǎng)基的空白對照。分別培養(yǎng)24、48、72、96 h后每孔加入CCK8試劑10 μL于培養(yǎng)箱中孵育2 h。以空白孔為對照,酶標(biāo)儀設(shè)置波長450 nm測定各孔吸光度值(OD值),各組取3個復(fù)孔平均值,以相對應(yīng)的平均OD值表示細(xì)胞增殖能力的大小,繪制細(xì)胞增殖曲線。
1.2.5平板克隆形成實驗取對數(shù)生長期的各組轉(zhuǎn)染細(xì)胞,按每孔300個細(xì)胞接種至6孔板中,每組接種3個復(fù)孔,調(diào)整培養(yǎng)基體積為2 mL/孔后培養(yǎng)2周。當(dāng)6孔板中出現(xiàn)肉眼可見的克隆時終止培養(yǎng)并洗滌干燥。每孔加入4%多聚甲醛1 mL固定細(xì)胞15~30 min,棄去固定液,加入適量吉姆薩工作液染色30 min后洗去染色液,空氣干燥。將6孔板倒置并疊加一張帶網(wǎng)格的透明薄片,顯微鏡下計數(shù)≥5個細(xì)胞的細(xì)胞團即為一個克隆數(shù)。平板克隆形成率=克隆數(shù)/接種細(xì)胞數(shù)×100%。
1.2.6流式細(xì)胞術(shù)檢測細(xì)胞周期及凋亡收集各組HepG2細(xì)胞,0.25%胰酶消化(1×106個細(xì)胞)離心,細(xì)胞沉淀轉(zhuǎn)移至流式管內(nèi),按照細(xì)胞周期檢測試劑盒方法進(jìn)行操作,用300目尼龍篩網(wǎng)過濾混合液后上機檢測。收集流式管中1~5×105個細(xì)胞再次離心,棄去上清,按照細(xì)胞凋亡檢測試劑盒方法進(jìn)行操作,輕輕混勻后上機檢測。
1.2.7蛋白免疫印跡(Western Blot)檢測c-Met蛋白表達(dá)取對數(shù)生長期HepG2細(xì)胞,加入適量含PMSF的裂解液,冰上裂解30 min,4 ℃條件下12 000 r/min離心30 min,吸取上清液并測蛋白濃度,取30 g蛋白樣品進(jìn)行SDS-PAGE電泳反應(yīng),轉(zhuǎn)膜、封閉,孵育一抗(1∶1 000),4 ℃搖床內(nèi)孵育過夜,TBST洗膜,加入二抗(1∶2 000),ECL顯影,使用軟件進(jìn)行灰度掃描,以相應(yīng)蛋白與β-actin的灰度比值作為蛋白的相對含量。
1.2.8熒光素酶報告基因檢測miR-409-3p的靶基因
構(gòu)建含有3UTR端結(jié)合位點的WT c-Met熒光素酶報告載體,同時構(gòu)建突變以后不含3UTR端結(jié)合位點的MUT c-Met熒光素酶報告載體,將WT c-Met、MUT c-Met分別同miR-409-3p mimics、microRNA mimics control轉(zhuǎn)染到肝癌細(xì)胞HepG2中,48 h后,用熒光素酶活性檢測試劑盒測定細(xì)胞熒光素酶活性變化。
1.3統(tǒng)計學(xué)方法采用SPSS 20.0統(tǒng)計軟件進(jìn)行數(shù)據(jù)分析。計量資料以x±s表示,兩組間比較采用成組t檢驗,多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用SNK法。P<0.05為差異有統(tǒng)計學(xué)意義。
2結(jié)果
2.1miR-409-3p在肝癌中表達(dá)下調(diào)基于TCGA肝癌microRNA表達(dá)譜數(shù)據(jù),分析肝癌及癌旁組織(53對)中miR-409-3p的表達(dá)水平發(fā)現(xiàn),肝癌組織中miR-409-3p的表達(dá)顯著低于其在癌旁組織中的表達(dá)(t=7.752,P<0.05)(圖1)。qRT-PCR結(jié)果發(fā)現(xiàn):以正常肝上皮細(xì)胞LO2為對照,miR-409-3p在4種肝癌細(xì)胞株中的表達(dá)水平均明顯低于LO2(P值均<0.05)(表1)。
2.2miR-409-3p mimics轉(zhuǎn)染后抑制HepG2細(xì)胞的增殖
2.2.1qRT-PCR鑒定miR-409-3p的表達(dá)采用熒光定量RT-PCR檢測轉(zhuǎn)染miR-409-3p mimics及miR-con兩組HepG2細(xì)胞中miR-409-3p的表達(dá)水平,結(jié)果顯示,miR-409-3p在mimics組中的表達(dá)水平明顯高于miR-con組(8.522±1.474 vs 1.000±0.000,t=-8.836,P<0.05)。
2.2.2CCK8細(xì)胞增殖及平板克隆形成實驗隨著培養(yǎng)時間的推移,與miR-con組相比,miR-409-3p mimics組的增殖速率逐漸下降,兩組在48、72及96 h比較差異均有統(tǒng)計學(xué)意義(P值均<0.05)(表2,圖2)。此外,對兩組轉(zhuǎn)染細(xì)胞進(jìn)行平板克隆形成實驗(圖3)。結(jié)果顯示,連續(xù)培養(yǎng)14 d后,miR-con組和miR-409-3p mimics組的克隆形成率分別為0.650±0.076和0.470±0.079,miR-409-3p mimics組的細(xì)胞克隆形成率明顯低于miR-con組(t=2.846,P=0.047)。
2.2.3miR-409-3p mimics轉(zhuǎn)染對HepG2細(xì)胞周期的影響流式細(xì)胞儀分析結(jié)果顯示,與miR-con組相比,miR-409-3p mimics組細(xì)胞G2期百分比明顯增多(P<0.05)(圖4,表3)。結(jié)果表明,過表達(dá)miR-409-3p可以誘導(dǎo)肝癌HepG2細(xì)胞G2期阻滯。
2.2.4miR-409-3p mimics轉(zhuǎn)染對HepG2細(xì)胞凋亡的影響流式細(xì)胞儀分析結(jié)果顯示,miR con組的凋亡率為9.47%±2.26%,miR-409-3p mimics組的凋亡率為8.30%±1.71%(圖5),與miR-con組相比,miR-409-3p mimics組細(xì)胞凋亡無明顯差異(t=0.714,P=0.515)。
2.3miR-409-3p 抑制肝癌HepG2細(xì)胞中c-Met蛋白的表達(dá)利用生物信息學(xué)軟件預(yù)測發(fā)現(xiàn)miR-409-3p同c-Met的3UTR端有互補結(jié)合位點,熒光素酶報告系統(tǒng)鑒定結(jié)果顯示c-met為miR-409-3p的靶基因(表4)。與miR-con組相比,HepG2細(xì)胞轉(zhuǎn)染miR-409-3p mimics后,細(xì)胞中c-Met蛋白的表達(dá)下調(diào)(t=-8.509,P=0.001)(圖6)。
3討論
HCC占原發(fā)性肝癌的75%~85%,僅美國2020年約3萬人死于HCC[8-9]。全球范圍內(nèi),HCC的臨床轉(zhuǎn)歸不盡如人意,這主要歸因于缺乏早期診斷的可靠指標(biāo)、治療抵抗、腫瘤的復(fù)發(fā)及轉(zhuǎn)移等。目前,針對HCC高危人群所采取的每6~12個月行甲胎蛋白(AFP)聯(lián)合B超檢查最為常用。但是,達(dá)到HCC診斷標(biāo)準(zhǔn)的高水平血清AFP(>400 ng/mL)僅出現(xiàn)于少部分HCC患者。除此之外,即使是間隔3個月的B超監(jiān)測仍無助于小肝癌診斷率的提高[10-11]。一定程度上,AFP與B超的聯(lián)合應(yīng)用不僅無益于診斷率的提高,而且會引發(fā)對假陽性的懷疑[12]。因此,迫切需要研究新的分子生物標(biāo)志物來幫助臨床醫(yī)師早期診斷及判斷預(yù)后,并依此設(shè)計新的治療策略及方案來提高HCC的臨床預(yù)后。近年來miRNA的深入研究為這一良好愿景實現(xiàn)的可能提供了巨大的希望[13-14]。
miRNA為非編碼RNA家族成員,可調(diào)控編碼蛋白質(zhì)的信使RNA的穩(wěn)定性及翻譯過程,但其本身并不翻譯成為蛋白質(zhì)[15]。miRNA既可為致癌基因,亦可為抑癌基因,且與多種類型的人類癌癥相關(guān)[16]。大量的證據(jù)[17]表明,miRNA的異常表達(dá)與調(diào)控細(xì)胞凋亡、增殖、細(xì)胞周期及轉(zhuǎn)移的相關(guān)基因的表達(dá)有緊密的關(guān)系,可導(dǎo)致HCC的發(fā)生及發(fā)展。因此,有必要探索其在腫瘤發(fā)展中所扮演的重要作用。近年來,有關(guān)miR-409-3p與癌癥的關(guān)系不斷引起人們的關(guān)注,研究發(fā)現(xiàn)其在肺癌[18]、胃癌[19]、宮頸癌[20]、結(jié)腸癌[21]、乳腺癌[22]等腫瘤中發(fā)揮抑癌作用,但在HCC發(fā)生及發(fā)展中的作用需要進(jìn)一步的研究加以闡明。因此,作者通過對TCGA數(shù)據(jù)庫中肝癌組織和癌旁組織miR-409-3p表達(dá)水平的測序數(shù)據(jù)進(jìn)行分析,并且分析了miR-409-3p在不同肝癌細(xì)胞系及正常肝細(xì)胞中的表達(dá)差異,結(jié)果顯示其在肝癌中的表達(dá)水平較正常肝細(xì)胞低。功能學(xué)實驗表明,轉(zhuǎn)染miR-409-3p mimics可抑制肝癌HepG2細(xì)胞增殖。上述結(jié)果證明,miR-409-3p在肝癌HepG2細(xì)胞中發(fā)揮抑癌基因作用。
大量的證據(jù)證明,miRNA在功能上通過介導(dǎo)上述蛋白質(zhì)的表達(dá)參與控制細(xì)胞周期的調(diào)控。在鼠類肝癌細(xì)胞系中,周期蛋白D2和E2已被鑒定為miR-26a的直接靶基因;而在人肝細(xì)胞癌細(xì)胞中,miR-195可調(diào)控周期蛋白D1、CDK6和E2F3的表達(dá)。因此,miR-26a或miR-195的低表達(dá)驅(qū)使G1期向S期轉(zhuǎn)換[23-24]。同樣地,miR-503通過下調(diào)周期蛋白D3和E2F3的表達(dá)抑制G1期向S期轉(zhuǎn)換[25]。更重要的是,在HCC細(xì)胞中miR-221可負(fù)性調(diào)控周期蛋白依賴性激酶抑制因子(cyclin dependent kinase inhibitor,CDKⅠ)CDKN1B/p27和CDKN1C/p57的表達(dá)[26]。此外,miRNA可以通過抑制某些間接參與細(xì)胞周期蛋白的表達(dá)從而調(diào)控G1期向S期轉(zhuǎn)換。在HCC細(xì)胞中,某些miRNA同樣可以抑制G2期向M期轉(zhuǎn)換,從而發(fā)揮抑癌基因作用。例如,Liu等[27]研究發(fā)現(xiàn)miR-517a和miR-517c的異常表達(dá)阻滯G2期向M期轉(zhuǎn)換,發(fā)揮抑制HCC細(xì)胞增殖的作用。本研究發(fā)現(xiàn),轉(zhuǎn)染miR-409-3p mimics后肝癌細(xì)胞HepG2的G2期細(xì)胞增多,阻滯G2期向M期轉(zhuǎn)換,從而抑制細(xì)胞的增殖。上述結(jié)果進(jìn)一步說明,miR-409-3p通過調(diào)控細(xì)胞周期的轉(zhuǎn)換影響肝癌HepG2細(xì)胞的增殖。
肝細(xì)胞生長因子受體,即c-Met,是一種致癌性的受體蛋白酪氨酸激酶,在40%~70%的HCC患者中呈高表達(dá)[28-29]。據(jù)報道,HCC中c-Met的表達(dá)可被miR-206[30]、miR-101-3p[31]和miR-128-3p[32]負(fù)性調(diào)控。在不同腫瘤中,miR-409-3p亦可通過調(diào)控c-Met的表達(dá)發(fā)揮抑癌基因作用。Xu等[6]研究表明,miR-409-3p通過靶向調(diào)控c-Met抑制膀胱癌細(xì)胞的遷移和侵襲;同樣,Wan等[7]研究發(fā)現(xiàn),miR-409-3p通過靶向調(diào)控c-Met發(fā)揮抑制人肺癌的作用。Huynh等[33]研究發(fā)現(xiàn),采用c-Met抑制劑——Foretinib處理HCC細(xì)胞后,細(xì)胞周期蛋白B表達(dá)減少,導(dǎo)致G2/M期阻滯,從而抑制HCC細(xì)胞增殖及集落形成。本研究發(fā)現(xiàn),轉(zhuǎn)染miR-409-3p mimics后肝癌細(xì)胞HepG2中c-Met蛋白表達(dá)降低。上述結(jié)果進(jìn)一步說明,miR-409-3p通過調(diào)控c-Met的表達(dá),進(jìn)一步影響下游信號通路,通過對細(xì)胞周期分布的影響抑制肝癌HepG2細(xì)胞的增殖。
然而,本實驗仍有一些不足之處。首先,本實驗未研究肝癌組織與正常肝組織中miR-409-3p表達(dá)差異,僅通過數(shù)據(jù)庫加以分析,因此,后續(xù)實驗需要收集一定數(shù)量的配對組織標(biāo)本進(jìn)一步明確miR-409-3p的臨床意義。其次,本試驗所選取的4種肝癌細(xì)胞系中,miR-409-3p的表達(dá)均顯著低于正常肝細(xì)胞系,在肝癌細(xì)胞系中轉(zhuǎn)染miR-409-3p 抑制劑后未出現(xiàn)miR-409-3p的差異性低表達(dá),因此無法進(jìn)行miR-409-3p inhibitor組的體外試驗。
總之,本研究表明miR-409-3p在肝癌細(xì)胞系中呈低表達(dá),且可以通過調(diào)控c-Met蛋白的表達(dá)抑制肝癌HepG2細(xì)胞的增殖。此miR-409-3p/c-Met軸為探索HCC的發(fā)病機制提供了一個新的見解,且為HCC的干預(yù)和治療提供了一個更廣闊的視角。但其詳盡的作用機制及臨床應(yīng)用價值仍需要進(jìn)一步更為深入的研究。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:王長青負(fù)責(zé)課題設(shè)計,實驗操作,資料分析,撰寫論文;陳玲、徐萍參與實驗操作,收集分析數(shù)據(jù),修改論文;朱曉娟、劉政負(fù)責(zé)擬定研究思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1]RUIZ-MANRIQUEZ LM, CARRASCO-MORALES O, SANCHEZ Z EA, et al. MicroRNA-mediated regulation of key signaling pathways in hepatocellular carcinoma: A mechanistic insight[J]. Front Genet, 2022, 13: 910733. DOI: 10.3389/fgene.2022.910733.
[2]COOPER CS, PARK M, BLAIR DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line[J]. Nature, 1984, 311(5981): 29-33. DOI: 10.1038/311029a0.
[3]FAIELLA A, RICCARDI F, CARTEN G, et al. The emerging role of c-Met in carcinogenesis and clinical implications as a possible therapeutic target[J]. J Oncol, 2022, 2022: 5179182. DOI: 10.1155/2022/5179182.
[4]CHEN L, SHI Y, ZHU X, et al. IL-10 secreted by cancer-associated macrophages regulates proliferation and invasion in gastric cancer cells via c-Met/STAT3 signaling[J]. Oncol Rep, 2019, 42(2): 595-604. DOI: 10.3892/or.2019.7206.
[5]MA Y, ZHANG M, WANG J, et al. High-affinity human anti-c-Met IgG conjugated to oxaliplatin as targeted chemotherapy for hepatocellular carcinoma[J]. Front Oncol, 2019, 9: 717. DOI: 10.3389/fonc.2019.00717.
[6]XU X, CHEN H, LIN Y, et al. MicroRNA-409-3p inhibits migration and invasion of bladder cancer cells via targeting c-Met[J]. Mol Cells, 2013, 36(1): 62-68. DOI: 10.1007/s10059-013-0044-7.
[7]WAN L, ZHU L, XU J, et al. MicroRNA-409-3p functions as a tumor suppressor in human lung adenocarcinoma by targeting c-Met[J]. Cell Physiol Biochem, 2014, 34(4): 1273-1290. DOI: 10.1159/000366337.
[8]General Office of National Health Commission. Standard for diagnosis and treatment of primary liver cancer (2022 edition)[J]. J Clin Hepatol, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.國家衛(wèi)生健康委辦公廳. 原發(fā)性肝癌診療指南(2022年版)[J]. 臨床肝膽病雜志, 2022, 38(2): 288-303. DOI: 10.3969/j.issn.1001-5256.2022.02.009.
[9]SIEGEL RL, MILLER KD, GODING SAUER A, et al. Colorectal cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(3): 145-164. DOI: 10.3322/caac.21601.
[10]FORNER A, LLOVET JM, BRUIX J. Hepatocellular carcinoma[J]. Lancet, 2012, 379(9822): 1245-1255. DOI: 10.1016/S0140-6736(11)61347-0.
[11]RAY K. Liver cancer: The promise of new approaches in the management of hepatocellular carcinoma--adding to the toolbox?[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(4): 195. DOI: 10.1038/nrgastro.2013.52.
[12]TRINCHET JC, CHAFFAUT C, BOURCIER V, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities[J]. Hepatology, 2011, 54(6): 1987-1997. DOI: 10.1002/hep.24545.
[13]ZHOU Q, SHAO JG. Research progress of miRNA in HBV-related hepatocellular carcinoma[J]. J Nantong Univ(Med Sci) , 2022, 42(3): 257-261. DOI: 10.16424/j.cnki.cn32- 1807/r.2022.03.013.周倩, 邵建國. MiRNA在HBV相關(guān)肝癌中的研究進(jìn)展[J]. 南通大學(xué)學(xué)報(醫(yī)學(xué)版), 2022, 42(3): 257-261. DOI: 10.16424/j.cnki.cn32-1807/r.2022.03.013.
[14]XIE HJ, RASHED N, NING Y, et al. Current status of research on circulating microRNAs as diagnostic markers for hepatocellular carcinoma [J]. J Clin Hepatol, 2021, 37(2): 448-451. DOI: 10.3969/j.issn.1001-5256.2021.02.042.謝惠君, Rashed Nasot, 寧勇, 等. 循環(huán)miRNA作為肝細(xì)胞癌標(biāo)志物的研究現(xiàn)狀[J]. 臨床肝膽病雜志, 2021, 37(2): 448-451. DOI: 10.3969/j.issn.1001-5256.2021.02.042.
[15]HUSSEN BM, HIDAYAT HJ, SALIHI A, et al. MicroRNA: A signature for cancer progression[J]. Biomed Pharmacother, 2021, 138: 111528. DOI: 10.1016/j.biopha.2021.111528.
[16]PIEROULI K, PAPAKONSTANTINOU E, PAPAGEORGIOU L, et al. Long non-coding RNAs and microRNAs as regulators of stress in cancer (Review)[J]. Mol Med Rep, 2022, 26(6): 361. DOI: 10.3892/mmr.2022.12878.
[17]HUANG S, HE X. The role of microRNAs in liver cancer progression[J]. Br J Cancer, 2011, 104(2): 235-240. DOI: 10.1038/sj.bjc.6606010.
[18]LIU S, LI B, XU J, et al. SOD1 Promotes cell proliferation and metastasis in non-small cell lung cancer via an miR-409-3p/SOD1/SETDB1 epigenetic regulatory feedforward loop[J]. Front Cell Dev Biol, 2020, 8: 213. DOI: 10.3389/fcell.2020.00213.
[19]WANG Y, ZHANG J, CHEN X, et al. Circ_0001023 promotes proliferation and metastasis of gastric cancer cells thro ugh? miR-409-3p/PHF10 axis[J]. Onco Targets Ther, 2020, 13: 4533-4544. DOI: 10.2147/OTT.S244358.
[20]CUI X, CHEN J, ZHENG Y, et al. Circ_0000745 promotes the progression of cervical cancer by regulating miR-409-3p/ATF1 axis[J]. Cancer Biother Radiopharm, 2022, 37(9): 766-778. DOI: 10.1089/cbr.2019.3392.
[21]CHEN J, WANG R, LU E, et al. LINC00630 as a miR-409-3p sponge promotes apoptosis and glycolysis of colon carcinoma cells via regulating HK2[J]. Am J Transl Res, 2022, 14(2): 863-875.
[22]YANG S, ZOU C, LI Y, et al. Knockdown circTRIM28 enhances tamoxifen sensitivity via the miR-409-3p/HMGA2 axis in breast cancer[J]. Reprod Biol Endocrinol, 2022, 20(1): 146. DOI: 10.1186/s12958-022-01011-3.
[23]KOTA J, CHIVUKULA RR, ODONNELL KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J]. Cell, 2009, 137(6): 1005-1017. DOI: 10.1016/j.cell.2009.04.021.
[24]XU T, ZHU Y, XIONG Y, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells[J]. Hepatology, 2009, 50(1): 113-121. DOI: 10.1002/hep.22919.
[25]XIAO F, ZHANG W, CHEN L, et al. MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma[J]. J Transl Med, 2013, 11: 195. DOI: 10.1186/1479-5876-11-195.
[26]FORNARI F, GRAMANTIERI L, FERRACIN M, et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma[J]. Oncogene, 2008, 27(43): 5651-5661. DOI: 10.1038/onc.2008.178.
[27]LIU RF, XU X, HUANG J, et al. Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2[J]. Cancer Lett, 2013, 329(2): 164-173. DOI: 10.1016/j.canlet.2012.10.027.
[28]UEKI T, FUJIMOTO J, SUZUKI T, et al. Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma[J]. Hepatology, 1997, 25(3): 619-623. DOI: 10.1002/hep.510250321.
[29]GIORDANO S, COLUMBANO A. Met as a therapeutic target in HCC: facts and hopes[J]. J Hepatol, 2014, 60(2): 442-452. DOI: 10.1016/j.jhep.2013.09.009.
[30]WANG Y, TAI Q, ZHANG J, et al. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(3): 243-253. DOI: 10.1093/abbs/gmy119.
[31]LIU Y, TAN J, OU S, et al. MicroRNA-101-3p suppresses proliferation and migration in hepatocellular carcinoma by targeting the HGF/c-Met pathway[J]. Invest New Drugs, 2020, 38(1): 60-69. DOI: 10.1007/s10637-019-00766-8.
[32]XU X, JIANG W, HAN P, et al. MicroRNA-128-3p Mediates Lenvatinib Resistance of Hepatocellular Carcinoma Cells by Downregulating c-Met[J]. J Hepatocell Carcinoma, 2022, 9: 113-126. DOI: 10.2147/JHC.S349369.
[33]HUYNH H, ONG R, SOO KC. Foretinib demonstrates anti-tumor activity and improves overall survival in preclinical models of hepatocellular carcinoma[J]. Angiogenesis, 2012, 15(1): 59-70. DOI: 10.1007/s10456-011-9243-z.
收稿日期:2022-11-05;錄用日期:2023-02-27
本文編輯:王瑩
引證本文:WANG CQ, CHEN L, XU P,? et al. Expression of miR-409-3p in hepatoma HepG2 cells and its mechanism in cell proliferation[J]. J Clin Hepatol, 2023, 39(8): 1895-1902.