• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      間充質(zhì)干細(xì)胞修復(fù)缺血再灌注組織損傷的免疫學(xué)機(jī)制

      2023-06-28 23:56:45王赫邊曉倩江海濤
      青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版) 2023年2期
      關(guān)鍵詞:再灌注損傷免疫體液

      王赫 邊曉倩 江海濤

      [摘要] 應(yīng)用間充質(zhì)干細(xì)胞(MSCs)治療是一種新興的手段,由于多種原因,對(duì)MSCs的研究停留在了臨床試驗(yàn)階段。但是,目前現(xiàn)有的研究大部分都證明MSCs對(duì)于組織的損傷修復(fù)以及多種疾病的治療具有促進(jìn)作用。組織的缺血再灌注(I/R)是常見(jiàn)的臨床事件,目前尚缺乏有效的快速治療手段。MSCs在I/R方面已經(jīng)有了許多臨床和臨床前研究,本文基于MSCs對(duì)I/R損傷修復(fù)的免疫機(jī)制進(jìn)行綜述。

      [關(guān)鍵詞] 間質(zhì)干細(xì)胞;再灌注損傷;免疫,細(xì)胞;免疫,體液;綜述

      [中圖分類(lèi)號(hào)] R392.4

      [文獻(xiàn)標(biāo)志碼] A

      [文章編號(hào)] 2096-5532(2023)02-0308-05

      doi:10.11712/jms.2096-5532.2023.59.070

      [開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]

      缺血再灌注(I/R)損傷是一種常見(jiàn)的與臨床事件相關(guān)的具有高發(fā)病率和死亡率的創(chuàng)傷。目前學(xué)術(shù)界普遍認(rèn)為,缺血并不是導(dǎo)致組織損傷的主要因素,當(dāng)血液供應(yīng)得到恢復(fù)(再灌注),大量的自由基對(duì)細(xì)胞造成沖擊是I/R損傷發(fā)生的主要機(jī)制。然而最近有研究表明,白細(xì)胞、淋巴細(xì)胞、漿細(xì)胞等免疫細(xì)胞與I/R的發(fā)生發(fā)展密切相關(guān),再灌注過(guò)程中血管炎癥的發(fā)生發(fā)展也與I/R的進(jìn)展相一致。I/R可以發(fā)生于心肌梗死、缺血性卒中、急性腎損傷、創(chuàng)傷、循環(huán)驟停、鐮狀細(xì)胞病和睡眠呼吸暫停中,是器官移植、心胸外科、血管外科和普通外科面臨的主要挑戰(zhàn)。對(duì)于I/R的治療,目前仍然缺乏有效的治療手段。由于間充質(zhì)干細(xì)胞(MSCs)具有缺乏共刺激分子表達(dá)導(dǎo)致的低免疫原性的特點(diǎn)和在體內(nèi)外分化為多種間充質(zhì)組織的能力,利用MSCs對(duì)I/R損傷進(jìn)行修復(fù)已經(jīng)成為一個(gè)研究熱點(diǎn),出現(xiàn)于多種器官(心、腦、腎、肝)損傷后治療修復(fù)研究中。I/R會(huì)引起無(wú)菌性炎癥(腸I/R等少數(shù)事件除外)以及細(xì)胞免疫和體液免疫的相應(yīng)反應(yīng),故靶向免疫治療作為一種新興的治療理念被提出。本文對(duì)MSCs在修復(fù)I/R損傷過(guò)程中的可能免疫機(jī)制進(jìn)行綜述。

      1 MSCs概述

      MSCs為一種具有克隆性和自我更新能力并可分化為多種細(xì)胞系的細(xì)胞,它來(lái)源于胚泡期的哺乳動(dòng)物胚胎,并有能力在體內(nèi)產(chǎn)生任何終末分化的細(xì)胞。新生兒的骨髓含有MSCs,它們能夠分化成多種間充質(zhì)組織,如骨、脂肪、軟骨和骨髓支持基質(zhì)。MSCs主要通過(guò)直接作用或外泌體介導(dǎo)的旁分泌發(fā)揮作用。MSCs取材容易、培養(yǎng)簡(jiǎn)便、應(yīng)用前景廣闊,還有快速塑性黏附、造血標(biāo)志物表達(dá)缺乏的特點(diǎn),從而成為干細(xì)胞中最受關(guān)注的種類(lèi)之一。MSCs不但具有自我更新和多向分化的雙向功能,還具有明顯的可塑性,并能分泌多種細(xì)胞因子,在醫(yī)學(xué)各個(gè)領(lǐng)域都具有極其重要的研究和應(yīng)用價(jià)值。許多研究表明,MSCs對(duì)先天性免疫和適應(yīng)性免疫都有調(diào)節(jié)作用。

      2 細(xì)胞免疫與體液免疫概述

      狹義的細(xì)胞免疫指T細(xì)胞介導(dǎo)的免疫應(yīng)答,本文中的細(xì)胞免疫還包括了巨噬細(xì)胞的免疫作用。T細(xì)胞是參與細(xì)胞免疫的主力軍,細(xì)胞毒性T細(xì)胞可以直接殺傷靶細(xì)胞,輔助性T細(xì)胞(Th)參與體液免疫的開(kāi)始,抑制性T細(xì)胞停止免疫反應(yīng),調(diào)節(jié)性T細(xì)胞(Treg)分泌抑制性細(xì)胞因子抑制效應(yīng)T細(xì)胞活化增殖效應(yīng)。T細(xì)胞與巨噬細(xì)胞的作用途徑與多種細(xì)胞因子息息相關(guān)。體液免疫的重要機(jī)制是B細(xì)胞增殖分化為漿細(xì)胞產(chǎn)生抗體,而這一步驟也需要多種細(xì)胞因子的參與激活。

      3 MSCs對(duì)I/R組織損傷修復(fù)的免疫機(jī)制

      3.1 調(diào)節(jié)淋巴細(xì)胞亞群

      缺血和再灌注引起了一種強(qiáng)大的適應(yīng)性免疫反應(yīng),其中包括T淋巴細(xì)胞反應(yīng)。雖然抗原特異性T細(xì)胞的種類(lèi)及其在無(wú)菌炎癥反應(yīng)中被激活的機(jī)制還不清楚,但是有證據(jù)表明,抗原特異性和抗原非依賴(lài)性的激活機(jī)制都有所貢獻(xiàn)。MSCs可以通過(guò)抑制共刺激分子的表面表達(dá)來(lái)降低Th1和Th2細(xì)胞的活性,直接對(duì)T、B細(xì)胞的功能作用進(jìn)行調(diào)節(jié)。有研究發(fā)現(xiàn),MSCs可在前列腺素E2(PGE2)、吲哚胺2,3-雙加氧酶(IDO)和轉(zhuǎn)化生長(zhǎng)因子β(TGF-β)的介導(dǎo)下通過(guò)直接接觸作用對(duì)CD4+T細(xì)胞進(jìn)行免疫抑制。有動(dòng)物實(shí)驗(yàn)表明,MSCs的治療作用可能與其對(duì)CD8+T細(xì)胞的抑制增殖作用以及CD103+樹(shù)突狀細(xì)胞的激活介導(dǎo)作用有關(guān)。許多研究發(fā)現(xiàn),骨髓間充質(zhì)干細(xì)胞(BMSCs)可以劑量依賴(lài)性地抑制T、B細(xì)胞的增殖。還有研究發(fā)現(xiàn),MSCs能夠抑制Th0細(xì)胞向Th17細(xì)胞分化,在基因水平上傾向于使Th0細(xì)胞分化為T(mén)h2細(xì)胞。Treg細(xì)胞在I/R中具有保護(hù)作用。MSCs可誘導(dǎo)T細(xì)胞中轉(zhuǎn)錄因子(Foxp3)上調(diào),從而促進(jìn)血清或組織中的CD4+CD25+Foxp3+Treg細(xì)胞增殖,誘導(dǎo)免疫調(diào)節(jié),其減輕I/R損傷的作用在視網(wǎng)膜、心臟、肝臟和肺臟I/R中已經(jīng)得到研究證實(shí)。進(jìn)一步的研究發(fā)現(xiàn),借助某些細(xì)胞因子預(yù)處理可以通過(guò)環(huán)氧化物酶2(COX-2)/PGE2通路增加Treg細(xì)胞百分比,更能增強(qiáng)MSCs對(duì)I/R急性腎損傷小鼠的療效。近期有研究表明,Treg細(xì)胞和MSCs之間的直接交流是基于活性線粒體和質(zhì)膜片段從MSCs轉(zhuǎn)移到Treg細(xì)胞,這個(gè)事件與Treg細(xì)胞和MSCs供體之間的人類(lèi)白細(xì)胞抗原C(HLA-C)和人類(lèi)白細(xì)胞抗原DRB1(HLA-DRB1)錯(cuò)配負(fù)載有關(guān)。另有研究發(fā)現(xiàn),人羊膜來(lái)源MSCs可通過(guò)程序性死亡受體1(PD-1)路徑阻止T細(xì)胞活化。MSCs不僅能增加Treg細(xì)胞的比例,還能維持其活性。有研究結(jié)果表明,MSCs對(duì)T、B淋巴細(xì)胞的調(diào)節(jié)可能是通過(guò)對(duì)細(xì)胞周期蛋白的調(diào)節(jié)。有動(dòng)物實(shí)驗(yàn)研究結(jié)果表明,反復(fù)應(yīng)用MSCs治療過(guò)程中無(wú)明顯不良反應(yīng),預(yù)示這種治療有良好前景。

      3.2 改變巨噬細(xì)胞的免疫表型

      巨噬細(xì)胞是免疫系統(tǒng)的重要成員。有研究表明,MSCs能夠通過(guò)誘導(dǎo)巨噬細(xì)胞從M1表型向M2表型轉(zhuǎn)化,調(diào)節(jié)巨噬細(xì)胞極化,從而促進(jìn)愈合過(guò)程。ABUMAREE等將煎蛋樣M1巨噬細(xì)胞與MSCs共培養(yǎng)3 d,M1巨噬細(xì)胞逐漸轉(zhuǎn)化為紡錘狀M2巨噬細(xì)胞。這一過(guò)程伴隨著白細(xì)胞介素(IL)-10水平升高,IL-12和IL-1β水平降低,以及巨噬細(xì)胞吞噬活性增加。MSCs還可以調(diào)節(jié)體內(nèi)巨噬細(xì)胞的免疫表型,這已在多種疾病模型中得到證實(shí)。例如,MSCs可通過(guò)改變M1/M2極化和抑制抗原遞呈細(xì)胞的浸潤(rùn)來(lái)增加角膜移植的成功率。最新研究表明,MSCs通過(guò)分泌IL-13而不是IL-4增強(qiáng)巨噬細(xì)胞的選擇性活化。

      3.3 調(diào)節(jié)細(xì)胞免疫/體液免疫相關(guān)細(xì)胞因子

      I/R后接受MSCs治療,經(jīng)過(guò)48 h,Th1細(xì)胞因子下降不明顯,IL-6表達(dá)明顯上調(diào),表明MSCs的免疫調(diào)節(jié)效應(yīng)發(fā)生在非常早的時(shí)間點(diǎn)。目前已有研究試圖探尋MSCs對(duì)B細(xì)胞增殖及產(chǎn)生抗體的影響,得出的結(jié)論并不一致,所以顯而易見(jiàn)的是MSCs與B細(xì)胞的關(guān)系涉及復(fù)雜的機(jī)制,而且與細(xì)胞因子密切相關(guān)。在肝臟I/R損傷的情況下,樹(shù)突狀細(xì)胞的保護(hù)作用取決于它們產(chǎn)生的抗炎細(xì)胞因子IL-10,MSCs使組織中IL-10水平升高可能導(dǎo)致TNF-a、IL-6和活性氧水平下降。由于細(xì)胞因子的作用是廣泛且復(fù)雜的,針對(duì)MSCs免疫作用機(jī)制的細(xì)胞因子檢測(cè)數(shù)不勝數(shù),但仍未得到系統(tǒng)確切的結(jié)論。許多研究表明,MSCs可以通過(guò)升高組織或血清中的IL-10、分泌PGE2來(lái)調(diào)節(jié)細(xì)胞免疫與體液免疫,從而減輕I/R免疫損傷,這可能與Treg細(xì)胞的增殖有關(guān)。呂翠等研究發(fā)現(xiàn),移植IL-10修飾的MSCs對(duì)大鼠腦I/R損傷有保護(hù)作用。TGF-β1也被證明是參與MSCs的免疫抑制過(guò)程中的重要成員。有研究表明,在再生障礙性貧血病人中,MSCs可以通過(guò)下調(diào)IL-2、γ-干擾素的表達(dá),上調(diào)IL-4、IL-10的表達(dá)來(lái)調(diào)節(jié)免疫紊亂。另有研究表明,在試驗(yàn)性自身免疫性腦脊髓炎模型中,MSCs借助其對(duì)IL-17的抑制作用可以治療這種疾病。

      3.4 通過(guò)外泌體發(fā)揮免疫功能

      外泌體是已知的免疫調(diào)節(jié)因子,可以參與細(xì)胞免疫與體液免疫的調(diào)節(jié)。SATO等早在2007年便證明了小鼠MSCs分泌的一氧化氮通過(guò)細(xì)胞周期阻滯或細(xì)胞凋亡直接調(diào)節(jié)T細(xì)胞的免疫抑制反應(yīng)。近年來(lái),越來(lái)越多的研究把研究重點(diǎn)放在了MSCs的外泌體上。WANG等在研究MSCs對(duì)心肌I/R損傷的治療效果時(shí)甚至發(fā)現(xiàn),來(lái)自MSCs的外泌體擁有比MSCs更好的治療效果。然而有研究表明,無(wú)論預(yù)處理如何,MSCs對(duì)于呼吸窘迫綜合征癥狀的改善能力總是強(qiáng)于相同數(shù)量MSCs產(chǎn)生的外泌體的作用能力。戴華磊通過(guò)實(shí)驗(yàn)證明,MSCs外泌體可通過(guò)調(diào)節(jié)IL-10、IL-1β這兩個(gè)免疫相關(guān)細(xì)胞因子水平來(lái)緩解大鼠肝臟I/R損傷。有研究表明,人臍帶血MSCs來(lái)源的外泌體可以通過(guò)miR-1246介導(dǎo)的IL-6-gp130-STAT3軸調(diào)節(jié)Treg和Th17細(xì)胞之間的平衡來(lái)緩解肝I/R損傷。有研究發(fā)現(xiàn),來(lái)自腎臟的尿干細(xì)胞分泌的外泌體的裂解液有調(diào)節(jié)體液免疫的作用。

      3.5 治療自身免疫性疾病

      MSCs的免疫抑制特性在自身免疫性疾病中表現(xiàn)得尤為顯著,MSCs修復(fù)腸I/R損傷過(guò)程中腸黏膜免疫屏障相關(guān)指標(biāo)的改變與MSCs治療許多自身免疫性疾病觀測(cè)到的免疫指標(biāo)的改變類(lèi)似。有MSCs對(duì)自身免疫性腦脊髓炎的治療效果的研究顯示,疾病的預(yù)后得到了極大的改善。有研究發(fā)現(xiàn),MSCs可以明顯抑制類(lèi)風(fēng)濕性關(guān)節(jié)炎病人活化的T淋巴細(xì)胞凋亡,并且能促進(jìn)B細(xì)胞功能成熟,使IgG分泌增加,或者通過(guò)誘導(dǎo)特異Treg細(xì)胞分化增殖阻止T細(xì)胞活化,從而治療類(lèi)風(fēng)濕性關(guān)節(jié)炎。有動(dòng)物實(shí)驗(yàn)研究結(jié)果表明,BMSCs能夠通過(guò)降低Th1/Th2表達(dá)比值來(lái)減少自身免疫性多腺體綜合征的發(fā)病率。FORBES的研究提示了MSCs治療克羅恩病的有效性。TAKEDA等還發(fā)現(xiàn)了MSCs在治療過(guò)敏性氣道炎中的優(yōu)越性。

      3.6 依賴(lài)于人表面抗原

      胡紅林等在腎I/R疾病中進(jìn)行了進(jìn)一步的研究,結(jié)果表明,MSCs可以通過(guò)降低CD4+CD25+Treg的比例來(lái)調(diào)節(jié)免疫從而起到治療作用。最近有研究結(jié)果表明,MSCs可以通過(guò)miRNA-125b和miRNA-155通路負(fù)向調(diào)節(jié)原發(fā)性Sjgren綜合征病人的CD4+T細(xì)胞活化。SHENG等在缺乏CD47的MSCs會(huì)加重肝組織I/R損傷的基礎(chǔ)上進(jìn)一步證明,CD47是治療I/R的潛在靶點(diǎn)。也有研究表明,MSCs的修復(fù)作用依賴(lài)于人表面抗原CD29、CD44。來(lái)源于人類(lèi)臍帶的MSCs可通過(guò)降低CD4+ T細(xì)胞上的CD154抗原的表達(dá)來(lái)緩解肝臟I/R損傷。

      4 小結(jié)

      MSCs的臨床前期研究目前已經(jīng)得到了許多肯定的結(jié)果,在臨床試驗(yàn)階段也有許多研究正在進(jìn)行。近年來(lái),對(duì)MSCs機(jī)制的研究逐漸深入,由于其機(jī)制的多樣性與廣泛性,MSCs可能對(duì)新冠肺炎亦有一定的治療潛力。已知MSCs主要通過(guò)直接作用和旁分泌作用發(fā)揮作用,近年來(lái)越來(lái)越多的研究把重點(diǎn)放在MSCs分泌的外泌體上面,帶有特定靶點(diǎn)或與其他材料結(jié)合的MSCs被證明能在特定的疾病中發(fā)揮更好的作用。I/R損傷免疫修復(fù)過(guò)程是一個(gè)復(fù)雜的涉及多因素的過(guò)程,盡管MSCs修復(fù)I/R損傷相關(guān)機(jī)制研究尤其是免疫機(jī)制研究涉及多個(gè)方面,但其具體的機(jī)制目前仍不是很清楚。因此,更多臨床試驗(yàn)或臨床前試驗(yàn)對(duì)于MSCs進(jìn)一步的臨床應(yīng)用是必須的,對(duì)MSCs治療免疫相關(guān)疾病機(jī)制仍需做深入的探討。

      [參考文獻(xiàn)]

      JIANG H T, QU L L, DOU R R, et al. Potential role of me-senchymal stem cells in alleviating intestinal ischemia/reperfusion impairment.? PLoS One, 2013,8(9):e74468.

      GAO Z B, ZHANG L N, HU J, et al. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles.? Nanomedicine: Nanotechnology, Biology, and Medicine, 2013,9(2):174-184.

      ELTZSCHIG H K, ECKLE T. Ischemia and reperfusion—from mechanism to translation.? Nature Medicine, 2011,17(11):1391-1401.

      DEVINE S M, COBBS C, JENNINGS M, et al. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates.? Blood, 2003,101(8):2999-3001.

      BIKORIMANA J P, ABUSARAH J, SALAME N, et al. Humoral immunity to allogeneic immunoproteasome-expressing mesenchymal stromal cells requires efferocytosis by endogenous phagocytes.? Cells, 2022,11(4):596.

      SATPUTE S R, PARK J M, JANG H R, et al. The role for T cell repertoire/antigen-specific interactions in experimental kidney ischemia reperfusion injury.? Journal of Immunology (Baltimore, Md:1950), 2009,183(2):984-992.

      SHEN X D, WANG Y, GAO F, et al. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury.? Hepatology (Baltimore, Md), 2009,50(5):1537-1546.

      KAPLAN J M, YOUD M E, LODIE T A. Immunomodulatory activity of mesenchymal stem cells.? Current Stem Cell Research & Therapy, 2011,6(4):297-316.

      李明芬. 骨髓間充質(zhì)干細(xì)胞對(duì)CD8+T淋巴細(xì)胞的免疫調(diào)節(jié)功能及其機(jī)制研究.? 南寧:廣西醫(yī)科大學(xué), 2014.

      DAVE M, HAYASHI Y, GAJDOS G B, et al. Stem cells for murine interstitial cells of Cajal suppress cellular immunity and colitis via prostaglandin E2 secretion.? Gastroenterology, 2015,148(5):978-990.

      ZHANG F P, WANG C S, WEN X, et al. Mesenchymal stem cells alleviate rat diabetic nephropathy by suppressing CD103+ DCs-mediated CD8+T cell responses.? Journal of Cellular and Molecular Medicine, 2020,24(10):5817-5831.

      馬麗輝. 骨髓間充質(zhì)干細(xì)胞治療類(lèi)風(fēng)濕關(guān)節(jié)炎機(jī)制和相關(guān)研究.? 太原:山西醫(yī)科大學(xué), 2008.

      WEISS A R R, DAHLKE M H. Immunomodulation by me-

      senchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs.? Frontiers in Immunology, 2019,10:1191.

      LAING A G, FANELLI G, RAMIREZ-VALDEZ A, et al. Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress.? PLoS One, 2019,14(3):e0213170.

      FRANQUESA M, MENSAH F K, HUIZINGA R, et al. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells indepen-

      dently of T helper cells.? Stem Cells (Dayton, Ohio), 2015,33(3):880-891.

      劉春燕. 骨髓間充質(zhì)干細(xì)胞抑制Th0細(xì)胞向Th17細(xì)胞分化的研究.? 蘇州:蘇州大學(xué), 2018.

      AGRAWAL M, RASIAH P K, BAJWA A, et al. Mesenchymal stem cell induced Foxp3(+) tregs suppress effector T cells and protect against retinal ischemic injury.? Cells, 2021,10(11):3006.

      PANG L X, CAI W W, LI Q, et al. Bone marrow-derived mesenchymal stem cells attenuate myocardial ischemia-reperfusion injury via upregulation of splenic regulatory T cells.? BMC Cardiovascular Disorders, 2021,21(1):215.

      LIU C, KANG L N, CHEN F, et al. Immediate intracoronary delivery of human umbilical cord mesenchymal stem cells reduces myocardial injury by regulating the inflammatory process through cell-cell contact with T lymphocytes.? StemCells and Development, 2020,29(20):1331-1345.

      HWANG B, LILES W C, WAWORUNTU R, et al. Pretreatment with bone marrow-derived mesenchymal stromal cell-conditioned media confers pulmonary ischemic tolerance.? The Journal of Thoracic and Cardiovascular Surgery, 2016,151(3):841-849.

      PIEKARSKA K, URBAN-WJCIUK Z, KURKOWIAK M, et al. Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity.? Nature Communications, 2022,13(1):856.

      TAGO Y, KOBAYASHI C, OGURA M, et al. Human am-

      nion-derived mesenchymal stem cells attenuate xenogeneic graft-versus-h(huán)ost disease by preventing T cell activation and prolife-

      ration.? Scientific Reports, 2021,11(1):2406.

      BAI M, ZHANG L, FU B, et al. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway.? Kidney International, 2018,93(4):814-825.

      LIOTTA F, ANGELI R, COSMI L, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory acti-

      vity by impairing Notch signaling.? Stem Cells (Dayton, Ohio), 2008,26(1):279-289.

      KIM J A, HONG S, LEE B, et al. The inhibition of T-cells proliferation by mouse mesenchymal stem cells through the induction of p16INK4A-cyclin D1/cdk4 and p21waf1, p27kip1-cyclin E/cdk2 pathways.? Cellular Immunology, 2007,245(1):16-23.

      HU C X, LI L J. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation.? Journal of Translational Medicine, 2019,17(1):412.

      GLENNIE S, SOEIRO I, DYSON P J, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells.? Blood, 2005,105(7):2821-2827.

      VAN HECKE L, MAGRI C, DUCHATEAU L, et al. Repeated intra-articular administration of equine allogeneic peripheral blood-derived mesenchymal stem cells does not induce a cellular and humoral immune response in horses.? Veterinary Immunology and Immunopathology, 2021,239:110306.

      CHO D I, KIM M R, JEONG H Y, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages.? Experimental & Molecular Medicine, 2014,46(1):e70.

      KHAN A, HUNTER R L, JAGANNATH C. Emerging role of mesenchymal stem cells during tuberculosis: the fifth element in cell mediated immunity.? Tuberculosis, 2016,101:S45-S52.

      ABUMAREE M H, AL JUMAH M A, KALIONIS B, et al. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differen-

      tiation from inflammatory M1 to anti-inflammatory M2 macrophages.? Stem Cell Reviews and Reports, 2013,9(5):620-641.

      MURPHY N, LYNCH K, LOHAN P, et al. Mesenchymal stem cell therapy to promote corneal allograft survival: current status and pathway to clinical translation.? Current Opinion in Organ Transplantation, 2016,21(6):559-567.

      CHOU K J, HSU C Y, HUANG C W, et al. Secretome of hypoxic endothelial cells stimulates bone marrow-derived me-

      senchymal stem cells to enhance alternative activation of macrophages.? International Journal of Molecular Sciences, 2020,21(12):4409.

      SEMEDO P, PALASIO C G, OLIVEIRA C D, et al. Early modulation of inflammation by mesenchymal stem cell after acute kidney injury.? International Immunopharmacology, 2009,9(6):677-682.

      AUGELLO A, TASSO R, NEGRINI S M, et al. Bone marrow mesenchymal progenitor cells inhibit lymphocyte prolife-

      ration by activation of the programmed death 1 pathway.? European Journal of Immunology, 2005,35(5):1482-1490.

      ASARI S, ITAKURA S, FERRERI K, et al. Mesenchymal stem cells suppress B-cell terminal differentiation.? Experimental Hematology, 2009,37(5):604-615.

      RASMUSSON I, LE BLANC K, SUNDBERG B, et al. Me-

      senchymal stem cells stimulate antibody secretion in human B cells.? Scandinavian Journal of Immunology, 2007,65(4):336-343.

      趙旭,毛鑫,李春天,等. 間充質(zhì)干細(xì)胞治療心肌缺血再灌注損傷的作用.? 中國(guó)組織工程研究, 2022,26(1):130-134.

      張威,耿曉東. 間充質(zhì)干細(xì)胞條件培養(yǎng)基治療大鼠腎臟缺血再灌注損傷研究.? 中國(guó)現(xiàn)代醫(yī)藥雜志, 2016,18(8):23-27.

      王芳. BMSCs移植對(duì)缺血性腦卒中鼠IL-10、TGF-β1表達(dá)的影響. 衡陽(yáng):南華大學(xué), 2014.

      劉楠梅,田軍,程勁,等. 骨髓間充質(zhì)干細(xì)胞干預(yù)對(duì)急性腎損傷鼠腎臟中細(xì)胞因子的影響.? 中國(guó)中西醫(yī)結(jié)合腎病雜志, 2010,11(4):310-313,382.

      王書(shū),張新晨,吳德全,等. 骨髓間充質(zhì)干細(xì)胞對(duì)肝臟缺血再灌注損傷修復(fù)作用研究進(jìn)展.? 中華實(shí)驗(yàn)外科雜志, 2013,30(10):2236-2237.

      MAO F, XU W R, QIAN H, et al. Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis.? Inflammation Research: Official Journal of the European Histamine Research Society, 2010,59(3):219-225.

      CHOI J J, YOO S A, PARK S J, et al. Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice.? Clinical and Experimental Immunology, 2008,153(2):269-276.

      ZIDAN A A, AL-HAWWAS M, PERKINS G B, et al. Cha-

      racterization of urine stem cell-derived extracellular vesicles reveals B cell stimulating cargo.? International Journal of Molecular Sciences, 2021,22(1):459.

      AGGARWAL S, PITTENGER M F. Human mesenchymal stem cells modulate allogeneic immune cell responses.? Blood, 2005,105(4):1815-1822.

      龐凌霄,李茜,朱蔚,等. 骨髓間充質(zhì)干細(xì)胞誘導(dǎo)調(diào)節(jié)性T細(xì)胞緩解心肌缺血-再灌注損傷.? 中華急診醫(yī)學(xué)雜志, 2021,30(8):973-978.

      呂翠,王翠花,曾現(xiàn)偉. IL-10基因修飾的BMSCs對(duì)大鼠腦缺血再灌注損傷的保護(hù)作用.? 實(shí)用醫(yī)學(xué)雜志, 2016,32(21):3520-3523.

      郭瑞雪. BM MSCs免疫抑制及HO-1/MSCs對(duì)大鼠受損腸道修復(fù)作用的研究.? 天津:天津醫(yī)科大學(xué), 2013.

      CAI J R, JIAO X Y, ZHAO S, et al. Transforming growth factor-β1-overexpressing mesenchymal stromal cells induced local tolerance in rat renal ischemia/reperfusion injury.? Cytotherapy, 2019,21(5):535-545.

      張樂(lè)琴,肖揚(yáng),蔣祖軍,等. 骨髓間充質(zhì)干細(xì)胞對(duì)再生障礙性貧血患者T細(xì)胞的免疫抑制.? 中國(guó)組織工程研究, 2013,17(36):6462-6467.

      KOMIYAMA Y, NAKAE S, MATSUKI T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis.? Journal of Immunology (Baltimore, Md:1950), 2006,177(1):566-573.

      QUAGLIA M, DELLEPIANE S, GUGLIELMETTI G, et al. Extracellular vesicles as mediators of cellular crosstalk between immune system and kidney graft.? Frontiers in Immunology, 2020,11:74.

      SATO K, OZAKI K, OH I, et al. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells.? Blood, 2007,109(1):228-234.

      WANG X Q, BAI L, LIU X X, et al. Cardiac microvascular functions improved by MSC-derived exosomes attenuate car-

      diac fibrosis after ischemia-reperfusion via PDGFR-β modulation.? International Journal of Cardiology, 2021,344:13-24.

      SILVA J D, DE CASTRO L L, BRAGA C L, et al. Mesenchymal stromal cells are more effective than their extracellular vesicles at reducing lung injury regardless of acute respiratory distress syndrome etiology.? Stem Cells International, 2019, 2019:8262849.

      戴華磊. 骨髓間充質(zhì)干細(xì)胞來(lái)源exosomes對(duì)大鼠肝臟缺血再灌注損傷修復(fù)作用的實(shí)驗(yàn)研究.? 瀘州:四川醫(yī)科大學(xué), 2015.

      XIE K, LIU L, CHEN J M, et al. Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance.? IUBMB Life, 2019,71(12):2020-2030.

      李子建. 骨髓間充質(zhì)干細(xì)胞來(lái)源的外泌體對(duì)實(shí)驗(yàn)性自身免疫性腦脊髓炎大鼠的免疫調(diào)節(jié)作用的實(shí)驗(yàn)研究.? 沈陽(yáng):中國(guó)醫(yī)科大學(xué), 2019.

      GONZALEZ-REY E, GONZALEZ M A, VARELA N, et al. Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis.? Annals of the Rheumatic Di-

      seases, 2010,69(1):241-248.

      丁玉達(dá). 異基因骨髓間充質(zhì)干細(xì)胞對(duì)實(shí)驗(yàn)性自身免疫性甲狀腺炎的治療效果及對(duì)Th1/Th2細(xì)胞平衡影響的研究.? 天津:天津醫(yī)科大學(xué), 2012.

      FORBES G M. Mesenchymal stromal cell therapy in Crohns disease.? Digestive Diseases (Basel, Switzerland), 2017,35(1-2):115-122.

      TAKEDA K, WEBB T L, NING F K, et al. Mesenchymal stem cells recruit CCR2+ monocytes to suppress allergic airway inflammation.? Journal of Immunology (Baltimore, Md:1950), 2018, 200(4):1261-1269.

      胡紅林,鄒叢,習(xí)小慶,等. 骨髓間充質(zhì)干細(xì)胞治療腎缺血再灌注損傷的免疫調(diào)節(jié)機(jī)制.? 中國(guó)組織工程研究, 2014,18(37):5977-5982.

      GONG B D, ZHENG L, LU Z H, et al. Mesenchymal stem cells negatively regulate CD4+ T cell activation in patients with primary Sjgren syndrome through the miRNA-125b and miRNA-155 TCR pathway.? Molecular Medicine Reports, 2021,23(1):43.

      SHENG M W, LIN Y B, XU D W, et al. CD47-mediated hedgehog/SMO/GLI1 signaling promotes mesenchymal stem cell immunomodulation in mouse liver inflammation.? Hepatology (Baltimore, Md), 2021,74(3):1560-1577.

      ALDRIDGE V, GARG A, DAVIES N, et al. Human mesenchymal stem cells are recruited to injured liver in a β1-integrin and CD44 dependent manner.? Hepatology (Baltimore, Md), 2012,56(3):1063-1073.

      ZHENG J, LU T Y, ZHOU C R, et al. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells protect liver ischemia/reperfusion injury by reducing CD154 expression on CD4+ T cells via CCT2.? Advanced Science, 2020,7(18):1903746.

      GRGOIRE C, LECHANTEUR C, BRIQUET A, et al. Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases.? Alimentary Pharmacology & Therapeutics, 2017,45(2):205-221.

      CAI B L, LIN D, LI Y, et al. N2-polarized neutrophils guide bone mesenchymal stem cell recruitment and initiate bone regeneration: a missing piece of the bone regeneration puzzle.? Advanced Science, 2021,8(19):e2100584.

      ZHOU Y, WEN L L, LI Y F, et al. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis.? Neural Regeneration Research, 2022,17(1):194-202.

      CAO J Y, WANG B, TANG T T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury.? Theranostics, 2021,11(11):5248-5266.

      (本文編輯 馬偉平)

      猜你喜歡
      再灌注損傷免疫體液
      川木香煨制前后主要藥效成分在體外生物體液中穩(wěn)定性
      中成藥(2018年12期)2018-12-29 12:25:42
      芝麻油對(duì)大鼠腦缺血再灌注損傷的保護(hù)作用及其機(jī)制
      藏藥對(duì)免疫系統(tǒng)調(diào)節(jié)作用的研究
      早期腸內(nèi)營(yíng)養(yǎng)對(duì)急性重型顱腦外傷患者免疫及炎癥指標(biāo)的影響
      運(yùn)動(dòng)與機(jī)體免疫能力關(guān)系研究綜述
      人間(2016年24期)2016-11-23 19:12:24
      愛(ài)尚生活(2016年9期)2016-10-21 10:52:39
      小兒支原體肺炎體液免疫功能與hs-CRP檢驗(yàn)的臨床意義
      維藥艾菲提蒙湯治療異常體液型高脂血癥的臨床研究
      中醫(yī)藥在防治急性心肌缺血/再灌注損傷中的研究進(jìn)展
      體液免疫9項(xiàng)指標(biāo)總誤差與不確定度比較分析
      四子王旗| 广东省| 平湖市| 临沂市| 安塞县| 蒲江县| 泰安市| 新野县| 蒲江县| 响水县| 兴隆县| 巴青县| 河源市| 兰考县| 温州市| 龙山县| 亳州市| 彰化县| 朝阳市| 济源市| 安福县| 广元市| 吕梁市| 临汾市| 崇阳县| 漠河县| 常宁市| 岢岚县| 四川省| 苍山县| 和林格尔县| 奉节县| 云龙县| 和田市| 大安市| 宜丰县| 城市| 农安县| 邵东县| 富顺县| 庆云县|