• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      Boros-Moll多項(xiàng)式序列遞推關(guān)系的代數(shù)證明

      2023-09-14 13:13:34竇裕杰王佳合鄧曉明呂侖
      關(guān)鍵詞:構(gòu)造法

      竇裕杰 王佳合 鄧曉明 呂侖

      摘 要:為了拓展Boros Moll多項(xiàng)式序列遞推關(guān)系的基本理論,研究了Boros Moll多項(xiàng)式序列遞推關(guān)系新的證明方法。首先,對Boros Moll多項(xiàng)式序列滿足的遞推關(guān)系進(jìn)行適當(dāng)變形、分拆;其次,將滿足的遞推關(guān)系式構(gòu)造為3個部分和的差式;最后,運(yùn)用代數(shù)方法、構(gòu)造法等數(shù)學(xué)方法得出3個部分的和均為零,進(jìn)一步得到Boros Moll多項(xiàng)式序列遞推關(guān)系的一個新的證明方法。結(jié)果表明,在Boros Moll多項(xiàng)式序列遞推關(guān)系中,對其結(jié)構(gòu)進(jìn)行巧妙變形、分拆,再證明相應(yīng)的引理成立,可得出一個新的證明方法。研究結(jié)果豐富了Boros Moll多項(xiàng)式序列遞推關(guān)系的相關(guān)理論,為Boros Moll多項(xiàng)式序列在組合數(shù)學(xué)、社會科學(xué)、信息論等領(lǐng)域的應(yīng)用提供了理論參考。

      關(guān)鍵詞:組合數(shù)學(xué);Boros Moll多項(xiàng)式序列;遞推關(guān)系;代數(shù)證明;構(gòu)造法

      中圖分類號:O157?? 文獻(xiàn)標(biāo)識碼:A??DOI:10.7535/hbkd.2023yx04005

      Algebraic proof of recursive relation for Boros Moll polynomial sequence

      DOU Yujie, WANG Jiahe, DENG Xiaoming, LYU Lun

      (School of Sciences, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)

      Abstract: In order to expand the basic theory of the recurrence relationship of Boros Moll polynomial sequence, a new proof method for the recurrence relationship of Boros Moll polynomial sequence was studied. Firstly, the recurrence relationship satisfied by the Boros Moll polynomial sequence was appropriately deformed and partitioned. Secondly, the recursive relationship that satisfies as the difference of the sum of three parts was constructed. Finally, mathematical methods such as algebraic method and structured approach were used to find that the sum of the three parts is all zero. Furthermore, a new proof method for the recurrence relationship of Boros Moll polynomial sequence was obtained. The results indicate that in the Boros Moll polynomial sequence recurrence relationship, the recurrence relationship is cleverly deformed and partitioned, and the corresponding lemma is proved to be corrected, thus obtaining a new proof method. The research results enrich the relevant theory of recurrence relationship of the Boros Moll polynomial sequence, and provide a certain theoretical reference value for the application of the Boros Moll polynomial sequence in combinatorics, social science, information theory and other fields.

      Keywords: combinatorics; Boros Moll polynomial sequence; recursive relation; algebraic proof; structured approach

      Boros Moll多項(xiàng)式序列是在研究一個四次積分求值時(shí)[1 2]產(chǎn)生的:

      稱為Boros Moll多項(xiàng)式。令di(m)是Pm(a)中ai項(xiàng)的系數(shù),當(dāng)0≤i≤m時(shí),有

      Pm(a)=∑mi=0di(m)ai,

      其中,

      di(m)=2-2m∑mk=i2k[JB((]2m-2km-k[JB))]

      [JB((]m+kk[JB))][JB((]ki,

      稱為Boros Moll序列。

      BOROS等[3]證明了當(dāng)m≥0時(shí),序列{di(m)}0≤i≤m具有單峰性;MOLL

      [4]猜想當(dāng)m≥2時(shí),這個序列具有對數(shù)凹性,即di(m)2≥di-1(m)di+1(m)(1≤i≤m-1);之后,國內(nèi)外對Boros Moll序列性質(zhì)的研究取得了大量成果,參見文獻(xiàn)[5]—文獻(xiàn)[14]。LIU[15]給出了Boros Moll序列的斜對數(shù)凹性;CHEN等[16]證明了Boros Moll序列的逆超對數(shù)凹性,證明了{(lán)di(m)}0≤i≤m的2 對數(shù)凹性[17],給出了Boros Moll多項(xiàng)式序列正性的組合證明[18];HAN等[19]研究了Boros Moll多項(xiàng)式的對稱分解,證明了Boros Moll多項(xiàng)式的交替雙γ 正性。國外關(guān)于Boros Moll多項(xiàng)式序列問題的相關(guān)研究參見文獻(xiàn)[20]—文獻(xiàn)[21]。

      2007年,KAUERS等[22]用機(jī)器證明的方法給出了Boros Moll序列滿足遞推關(guān)系,進(jìn)而證實(shí)了MOLL[4]猜想。機(jī)器證明可以快速地用計(jì)算機(jī)自動推理生成定理的證明方法,但缺少嚴(yán)格的數(shù)學(xué)證明,本文給出定理的嚴(yán)格數(shù)學(xué)證明。

      定理1[22] 當(dāng)m≥2,0≤i≤m+1時(shí),有

      -(-2+i-m)(-1+i+m)di-2(m)-(i-1)(2m+1)di-1(m)+i(i-1)di(m)=0 。(1)

      基于代數(shù)方法,本文給出定理1的代數(shù)證明。

      1 對遞推關(guān)系的變形、分拆

      為了證明式(1)的遞推關(guān)系,對該式作適當(dāng)變形、分拆,構(gòu)造出3個部分和為零的差式,進(jìn)而證明定理。PANG等[23]在證明Boros Moll系數(shù)序列最大下界的過程中,得到如下結(jié)論:

      證畢。

      引理2

      證明:根據(jù)式(3),能夠得到:

      證畢。

      引理3

      證明:顯然,將式(5)中的i-1替換為i,即可得到式(7),證畢。

      2 對定理1的證明

      為了證明遞推關(guān)系式(1),建立用Di(m)表示的等價(jià)形式。利用式(2)遞推式,式(1)可以表示為

      (m+i)Di(m)+(m-i+2)Di-2(m)-(2m+1)Di-1(m)=0 ,(8)

      因此,定理1證明如下。

      證明:根據(jù)式(4),有:

      由式(5)—式(7),可得:

      證畢。

      3 結(jié) 語

      1)本文基于KAUERS等研究Boros Moll多項(xiàng)式序列對數(shù)凹性時(shí)提出的一個遞推關(guān)系,研究了Boros Moll多項(xiàng)式序列遞推關(guān)系的代數(shù)證明方法。通過對其遞推關(guān)系進(jìn)行巧妙變形、分拆,證明了相應(yīng)的引理,進(jìn)而給出了代數(shù)證明方法。

      2)所得結(jié)果在一定程度上豐富了Boros Moll多項(xiàng)式序列遞推關(guān)系的相關(guān)理論,為Boros Moll多項(xiàng)式序列在組合數(shù)學(xué)、社會科學(xué)、信息論等領(lǐng)域的應(yīng)用提供了一定的理論參考價(jià)值。

      鑒于證明方法的多樣性,本研究方法主要考慮了Boros Moll多項(xiàng)式遞推關(guān)系的代數(shù)證明,將遞推關(guān)系式寫成了3個式子的和。未來可以考慮更加簡便、直觀的研究方法,如組合分析法、賦權(quán)組合結(jié)構(gòu)法,賦予3個式子組合解釋,間接給出遞推關(guān)系的組合證明,增加遞推關(guān)系運(yùn)用的靈活性。

      參考文獻(xiàn)/References:

      [1]

      BOROS G,MOLL V H.An integral hidden in Gradshteyn and Ryzhik[J].Journal of Computational and Applied Mathematics,1999,106(2):361 368.

      [2] BOROS G,MOLL V H.The double square root,Jacobi polynomials and Ramanujan's master theorem[J].Journal of Computational and Applied Mathematics,2001,130(1/2):337 344.

      [3] BOROS G,MOLL V H.A criterion for unimodality[J].The Electronic Journal of Combinatorics,1999,6:10 11.

      [4] MOLL V H.The evaluation of integrals:A personal story[J].Notices of the American Mathematical Society,2002,49(3):311 317.

      [5] AMDEBERHAN T,MANNA D V,MOLL V H.The 2 adic valuation of a sequence arising from a rational integral[J].Journal of Combinatorial Theory,Series A,2008,115(8):1474 1486.

      [6] AMDEBERHAN T,MOLL V H.A formula for a quartic integral:A survey of old proofs and some new ones[J].The Ramanujan Journal,2009,18(1):91 102.

      [7] CHEN W Y C,DOU D Q J,YANG A L B.Brndén's conjectures on the Boros Moll polynomials[J].International Mathematics Research Notices,2013(20):4819 4828.

      [8] CHEN W Y C,WANG L X W,XIA E X W.Interlacing log concavity of the Boros Moll polynomials[J].Pacific Journal of Mathematics,2011,254(1):89 99.

      [9] LYU L.A short proof of Moll's minimal conjecture[J].The Electronic Journal of Combinatorics,2017,24(4): 4 7.

      [10]MOLL V H.Combinatorial sequences arising from a rational integral[J].Online Journal of Analytic Combinatorics,2007,2(2):456 473.

      [11]MOLL V H,MANNA D V.A remarkable sequence of integers[J].Expositiones Mathematicae,2009,27(4):289 312.

      [12]SUN Xinyu,MOLL V H.A binary tree representation for the 2 adic valuation of a sequence arising from a rational integral[J].Integers,2010,10(2):211 222.

      [13]XIA E X W.The concavity and convexity of the Boros Moll sequences[J].The Electronic Journal of Combinatorics,2015,22(1):1 8.

      [14]CHEN W Y C,XIA E X W.The ratio monotonicity of the Boros Moll polynomials[J].Mathematics of Computation,2009,78(268):2269 2282.

      [15]LIU E H.Skew log concavity of the Boros Moll sequences[J].Journal of Inequalities and Applications,2017(1):117 121.

      [16]CHEN W Y C,GU C Y.The reverse ultra log concavity of the Boros Moll polynomials[J].Proceedings of the American Mathematical Society,2009,137(12):3991 3998.

      [17]CHEN W Y C,XIA E X W.2 log concavity of the Boros Moll polynomials[J].Proceedings of the Edinburgh Mathematical Society,2013,56(3):701 722.

      [18]CHEN W Y C,PANG S X M,QU E X Y.On the combinatorics of the Boros Moll polynomials[J].The Ramanujan Journal,2010,21(1):41 51.

      [19]HAN Guoniu,MA Shimei,YEH Y N.A Symmetric Decomposition of the Boros Moll Polynomials[DB/OL].https://arxiv.org/abs/2212.14501,2022 12 30.

      [20]SAGAN B E.Log concave sequences of symmetric functions and analogs of the Jacobi Trudi determinants[J].Transactions of the American Mathematical Society,1992,329(2):795 811.

      [21]MCNAMARA P R W,SAGAN B E.Infinitelog concavity:Developments and conjectures[J].Advances in Applied Mathematics,2010,44(1):1 15.

      [22]KAUERS M,PAULE P.A computer proof of Moll's log concavity conjecture[J].Proceedings of the American Mathematical Society,2007,135(12):3847 3856.

      [23]PANG S X M,LYU L,WANG J X.The greatest lower bound of a Boros Moll sequence[J].Mathematical Notes,2022,111(1):115 123.

      猜你喜歡
      構(gòu)造法
      高中數(shù)學(xué)一道數(shù)列典型題解法的探究
      淺談如何在高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的構(gòu)造能力
      由遞推公式求通項(xiàng)公式的解題策略
      淺析“構(gòu)造法”在高中數(shù)學(xué)解題中的實(shí)踐應(yīng)用
      巧構(gòu)輔助圓,解法天然成
      構(gòu)造法,數(shù)學(xué)解題的一把利刃
      淺論高中數(shù)學(xué)解題過程中構(gòu)造法的運(yùn)用
      考試周刊(2016年10期)2017-01-12 06:42:39
      基于“構(gòu)造法”的高中數(shù)學(xué)解題思路探索
      淺談構(gòu)造法在不等式證明中的應(yīng)用
      函數(shù)凹凸性在不等式中的應(yīng)用
      荥经县| 昌平区| 广汉市| 江津市| 汕头市| 武定县| 枞阳县| 景东| 卓尼县| 普洱| 耒阳市| 文登市| 诸暨市| 通江县| 紫阳县| 普洱| 广饶县| 昭平县| 仪陇县| 孝昌县| 长治县| 水城县| 大埔县| 吉安县| 都安| 和政县| 翁牛特旗| 娱乐| 马公市| 桃园县| 克东县| 庆元县| 四子王旗| 从江县| 许昌市| 阿克| 肥城市| 开远市| 酉阳| 黎城县| 石棉县|