• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      預(yù)留土支護(hù)基坑旋轉(zhuǎn)破壞模式下的極限抗力上限解

      2023-11-15 09:30:38張輝吳曙光楊凱丞
      土木建筑與環(huán)境工程 2023年5期
      關(guān)鍵詞:基坑工程

      張輝 吳曙光 楊凱丞

      收稿日期:2021?06?13

      基金項(xiàng)目:國家重點(diǎn)研發(fā)計(jì)劃(2018YFC1505501)

      作者簡介:張輝(1997- ),男,主要從事巖土工程研究,E-mail:13883690532@163.com。

      通信作者:吳曙光(通信作者),男,副教授,E-mail:wushuguang@cqu.edu.cn。

      Received: 2021?06?13

      Foundation item: The National Key Technologies R&D Program of China (No. 2018YFC1505501)

      Author brief: ZHANG Hui (1997- ), main research interest: geotechnical engineering, E-mail: 13883690532@163.com.

      corresponding author:WU Shuguang (corresponding author), associate professor, E-mail: wushuguang@cqu.edu.cn.

      摘要:對(duì)于支撐式或錨拉式支擋結(jié)構(gòu),進(jìn)行預(yù)留土輔助支護(hù)時(shí)需驗(yàn)算繞支點(diǎn)的抗傾覆穩(wěn)定性,然而目前還未找到合理的計(jì)算方法?;跇O限分析上限定理,提出預(yù)留土支護(hù)基坑的3種可能破壞模式,運(yùn)用斜條分法對(duì)被動(dòng)區(qū)土體進(jìn)行離散,并構(gòu)建相容速度場,分別推導(dǎo)3種破壞模式下基坑抗傾覆力矩的計(jì)算表達(dá)式,采用遺傳算法編程,分析支擋結(jié)構(gòu)與土體間摩擦系數(shù)、土體黏聚力及預(yù)留土幾何參數(shù)等對(duì)破裂角及抗傾覆力矩的影響規(guī)律。結(jié)果表明:當(dāng)墻背光滑且土體黏聚力為零時(shí),利用朗肯被動(dòng)土壓力理論計(jì)算得到的抗傾覆力矩為一上限解;存在黏聚力時(shí),朗肯被動(dòng)土壓力理論計(jì)算值偏于保守,存在摩擦系數(shù)時(shí),庫倫土壓力理論計(jì)算的抗傾覆力矩偏大;與預(yù)留土寬度和坡度相比,預(yù)留土高度對(duì)抗傾覆力矩的影響更加顯著。

      關(guān)鍵詞:預(yù)留土;上限法;極限分析;旋轉(zhuǎn)破壞;基坑工程

      中圖分類號(hào):TU432 ? ? 文獻(xiàn)標(biāo)志碼:A ? ? 文章編號(hào):2096-6717(2023)05-0116-09

      Upper bound solution of ultimate resistance of berm-retained excavations under rotating failure mode

      ZHANG Hui, WU Shuguang, YANG Kaicheng

      (School of Civil Engineering, Chongqing University, Chongqing 400045, P. R. China)

      Abstract: For strutted or anchored retaining structures, the anti-overturning stability around the fulcrum needs to be checked for the berm-retained excavations. However, a reasonable calculation method has not yet been found. Based on the upper limit theorem of limit analysis, three possible failure modes of the berm-retained excavations were proposed, the slice method with inclined interfaces was used to separate the passive soil area, and a compatible velocity field was constructed. The expressions for calculating the anti-overturning moment of foundation pit under three failure modes were derived respectively. Through the calculation example, the effects of friction coefficient between retaining structure and soil, soil cohesive force and the berm-retained geometric parameters on the rupture angle and anti-overturning moment were analyzed by using genetic algorithm. The results show that when the wall is smooth and the soil cohesion is zero, the anti-overturning moment calculated by Rankine's passive earth pressure theory is an upper bound solution. When cohesive force exists, the theoretical value of Rankine's passive earth pressure theory is conservative, when friction coefficient exists, the anti-overturning moment calculated by coulomb earth pressure theory is too large. In addition, the berm-retained height has a more significant influence on the anti-overturning moment than the berm-retained width and slope.

      Keywords: retained berm; upper bound method; limit analysis; rotational failure; excavation engineering

      在基坑施工中,常利用預(yù)留土作為支擋結(jié)構(gòu)的臨時(shí)支撐,不僅可以有效減小支擋結(jié)構(gòu)的嵌固深度,還能提高支護(hù)體系的整體穩(wěn)定性,在大型基坑中,采用預(yù)留土輔助支護(hù)可取得較好的經(jīng)濟(jì)效益[1-2]。此外,基坑中經(jīng)常會(huì)因需要容納電梯井、集水井等局部結(jié)構(gòu)而進(jìn)行二次開挖,形成坑中坑,此時(shí)支擋結(jié)構(gòu)與坑中坑之間也可看作是具有一定寬度和高度的預(yù)留土臺(tái)。

      對(duì)于錨拉式或支撐式支擋結(jié)構(gòu),若嵌固深度過小,則會(huì)發(fā)生繞支點(diǎn)的整體失穩(wěn),即旋轉(zhuǎn)破壞?!督ㄖ又ёo(hù)技術(shù)規(guī)程》(JGJ120—2012)[3]中對(duì)錨拉式或支撐式支擋結(jié)構(gòu)的穩(wěn)定驗(yàn)算采用基坑外側(cè)主動(dòng)土壓力相對(duì)支點(diǎn)產(chǎn)生的傾覆力矩等于基坑內(nèi)側(cè)被動(dòng)土壓力產(chǎn)生的抗傾覆力矩的理論,其中土壓力計(jì)算一般采用經(jīng)典朗肯或者庫侖土壓力理論。由于經(jīng)典朗肯土壓力理論采用半無限土體的假設(shè)條件,且兩者均基于平移破壞模式。由于預(yù)留土的存在,而基坑被動(dòng)區(qū)土體明顯屬于有限土體范疇,且平移破壞模式的假定也與實(shí)際有較大差別。因此,對(duì)于預(yù)留土支護(hù)基坑的穩(wěn)定性驗(yàn)算,仍然采用經(jīng)典朗肯或庫侖土壓力理論并不合適。

      近幾十年,許多學(xué)者運(yùn)用不同的方法,包括靜力平衡法[4-5]、多重庫侖楔體分析法[6-7]、彈性抗力法[1-2]、模型試驗(yàn)法[8]、數(shù)值分析法[9-13]、極限分析法[14]等,對(duì)預(yù)留土的作用機(jī)理進(jìn)行了研究。其中,數(shù)值分析法因能模擬較復(fù)雜的條件,如多級(jí)臺(tái)階預(yù)留土[15]、不連續(xù)預(yù)留土的空間效應(yīng)[16-18]等,故其應(yīng)用較為廣泛,但計(jì)算精度受材料參數(shù)和網(wǎng)格尺寸的影響較大;而理論與試驗(yàn)研究則主要集中在基坑平移破壞模式下預(yù)留土對(duì)支擋結(jié)構(gòu)內(nèi)側(cè)土壓力大小及分布的影響,這些理論對(duì)平移破壞模式下懸臂式支擋結(jié)構(gòu)的設(shè)計(jì)具有較好的適用性。但在旋轉(zhuǎn)破壞模式下,錨拉式或支撐式支擋結(jié)構(gòu)的土壓力大小及作用點(diǎn)位置與平移破壞模式下有較大差別[19],若仍采用平移破壞模式下土壓力大小及作用點(diǎn)位置進(jìn)行計(jì)算,計(jì)算結(jié)果可靠性得不到保證。

      極限分析上限法通過構(gòu)建機(jī)動(dòng)許可的速度場并運(yùn)用能量原理求解極限狀態(tài)下真解的上限,由于將實(shí)際土簡化為理想完全塑性材料,故計(jì)算方法簡單、高效。目前,極限分析方法已在邊坡穩(wěn)定[20-21]、基坑穩(wěn)定性[22-23]、地基承載力[24]、擋墻地震永久位移及屈服加速度[25-26]等方面得到成功應(yīng)用,但是將極限分析法應(yīng)用于基坑旋轉(zhuǎn)破壞模式下抗傾覆穩(wěn)定性計(jì)算成果相對(duì)較少?;诖耍瑢O限分析上限定理和數(shù)學(xué)規(guī)劃法相結(jié)合,建立預(yù)留土支護(hù)基坑3種可能的破壞模式,運(yùn)用斜條分法對(duì)每種破壞模式下預(yù)留土支護(hù)基坑被動(dòng)區(qū)進(jìn)行離散,構(gòu)建相容速度場,得到預(yù)留土支護(hù)基坑抗傾覆力矩的目標(biāo)函數(shù)。根據(jù)算例,采用遺傳算法編程,分析土體參數(shù)及預(yù)留土幾何參數(shù)對(duì)破裂角及基坑抗傾覆力矩的影響規(guī)律。

      1 旋轉(zhuǎn)破壞模式建立

      基本假定:1)墻背豎直,滑裂面為平面;2)墻后土體為可變形體,且與墻體不發(fā)生分離;3)土體服從相關(guān)聯(lián)的流動(dòng)法則;4)基坑無限長,按平面應(yīng)變問題分析。

      建立3種破壞模式,如圖1所示。當(dāng)預(yù)留土頂部寬度較大時(shí),極限狀態(tài)下被動(dòng)區(qū)土體將從預(yù)留土頂部剪出;隨著預(yù)留土頂部寬度的減小,逐漸轉(zhuǎn)變成從預(yù)留土邊坡和預(yù)留土底部剪出。

      忽略支擋結(jié)構(gòu)的平動(dòng)位移,即只考慮繞支點(diǎn)O的轉(zhuǎn)動(dòng),建立如圖2所示的相容速度場,V_oi為墻背點(diǎn)P的速度,V_i為點(diǎn)P處土體以角度β+φ斜向上做直線運(yùn)動(dòng)的速度,V_wi為V_oi和V_i的相對(duì)速度。φ為土體內(nèi)摩擦角,ω為支擋結(jié)構(gòu)繞支點(diǎn)O旋轉(zhuǎn)的角速度,l為支點(diǎn)至點(diǎn)P的距離。

      3 參數(shù)分析

      對(duì)于3種破壞模式,均應(yīng)考慮土體速度方向與水平線夾角在0~π?2,即0<(β+φ)<π?2;考慮垂直擋墻方向外力做功功率與墻背摩擦功率之和大于零,即tan(β+φ)<1?tanδ。另外,如圖6所示,對(duì)破壞模式1,還應(yīng)考慮π?2>β≥β_2;對(duì)破壞模式2,應(yīng)考慮β_2≥β≥β_1;對(duì)破壞模式3,應(yīng)考慮0<β≤β_1。當(dāng)預(yù)留土高度為零時(shí),可視b_f=H?tanβ,此時(shí),破裂角將不受β_1和β_2約束。

      對(duì)于工程實(shí)例,應(yīng)根據(jù)上述約束條件分別計(jì)算3種破壞模式的抗傾覆力矩最小值,并以三者中的最小值作為實(shí)際的抗傾覆力矩。遺傳算法屬于進(jìn)化算法的一種,具有良好的全局尋優(yōu)能力。利用Matlab軟件中遺傳算法工具ga函數(shù)來分析土體參數(shù)與預(yù)留土幾何參數(shù)對(duì)破裂角及抗傾覆力矩的影響,具體實(shí)現(xiàn)步驟為:1)分別將式(19)、式(27)、式(33)創(chuàng)建成函數(shù)形式的M文件;2)根據(jù)給定參數(shù)計(jì)算相應(yīng)的約束條件;3)將3個(gè)M文件與對(duì)應(yīng)的約束條件分別帶入Matlab中g(shù)a函數(shù),求解出3種破壞模式的抗傾覆力矩M_P,然后取三者中的最小值作為實(shí)際的抗傾覆力矩。各參數(shù)取值見表1。

      3.1 土體參數(shù)對(duì)β及M_P的影響

      對(duì)于無預(yù)留土的一般基坑,由式(19)可知,抗傾覆力矩M_P是土體力學(xué)性質(zhì)、墻背摩擦系數(shù)、支擋結(jié)構(gòu)嵌固深度、基坑底部至支點(diǎn)的長度及破裂角的函數(shù),其一般表達(dá)式為M_P=f(γ,c,φ,δ,H,l_0,β)。

      3.1.1 c的取值對(duì)β及M_P的影響

      由圖7可以看出,墻背摩擦系數(shù)和土體黏聚力均為0時(shí),利用朗肯被動(dòng)土壓力理論計(jì)算得到的抗傾覆力矩與計(jì)算結(jié)果相同,說明在此類情況下,利用朗肯被動(dòng)土壓力理論得到的計(jì)算值為一上限解。當(dāng)黏聚力增大時(shí),計(jì)算的抗傾覆力矩增加較朗肯被動(dòng)土壓力理論計(jì)算值更快,原因是該方法在考慮旋轉(zhuǎn)破壞時(shí)假定墻后土體為可變性楔體,土體內(nèi)部耗能隨黏聚力增大而增大,而朗肯土壓力理論考慮平移破壞模式下墻后土體為剛體,內(nèi)部沒有能量耗散,故利用平移破壞模式下的朗肯被動(dòng)土壓力理論計(jì)算抗傾覆力矩值偏于保守。另外,該方法計(jì)算的破裂角與黏聚力無關(guān),與大主應(yīng)力面夾角均為π?4-φ?2,與朗肯被動(dòng)土壓力理論計(jì)算的破裂角完全相同。

      3.1.2 δ的取值對(duì)β及M_P的影響

      如圖8所示,墻背摩擦角δ對(duì)破裂角的影響較大,破裂角β與墻背摩擦角δ近似呈線性關(guān)系,隨著δ從0逐漸增加到30°,β逐漸減小。對(duì)于同一摩擦系數(shù),c越大,則β也越大。c=0時(shí),計(jì)算得到的破裂角與庫侖被動(dòng)土壓力理論得到的完全一致。

      由圖9可以看出,M_P與δ呈明顯的非線性關(guān)系,在c一定時(shí),隨著δ從0逐漸增加到30°,M_P逐漸增大,且變化幅度也增大。當(dāng)δ與c均為0時(shí),庫倫土壓力理論計(jì)算的M_P與本文方法一致,說明庫倫土壓力理論計(jì)算的旋轉(zhuǎn)破壞模式下抗傾覆力矩為一上限解。當(dāng)墻背存在摩擦角δ時(shí),由庫侖土壓力理論計(jì)算得到的M_P大于本文方法計(jì)算值,且δ越大,偏差越大。

      3.2 預(yù)留土幾何參數(shù)影響分析

      3.2.1 b_f、h_f的取值對(duì)β及M_P的影響

      由圖10、圖11可以看出,預(yù)留土高度h_f為某一定值時(shí),預(yù)留土寬度b_f與β和M_P近似呈線性關(guān)系,隨著b_f的增加,β遞減,M_P遞增;b_f存在一臨界值,當(dāng)達(dá)到臨界值后,會(huì)突變?yōu)槠茐哪J?,此時(shí)β及M_P均由破壞模式1確定;預(yù)留土高度h_f越大,臨界寬度越大,且M_P的增加幅度也越大;由曲線可以看出,相比增加單位預(yù)留土頂部寬度,增加單位預(yù)留土高度對(duì)M_P的提高更為有效,且預(yù)留土頂部寬度越大,提高效果越顯著。

      3.2.2 m、h_f的取值對(duì)β及M_P的影響

      如圖12、圖13所示,對(duì)于一定的預(yù)留土頂部寬度b_f和高度h_f,在預(yù)留土邊坡坡度m較小時(shí),以破壞模式3發(fā)生破壞,此時(shí)破裂角β隨著m的增加近似呈線性減小,M_p近似呈線性增加,隨著m繼續(xù)增大,逐漸轉(zhuǎn)變成破壞模式2,此時(shí)β和M_P均呈非線性增加,且增加幅度逐漸減小,當(dāng)坡度趨近于無窮時(shí),可看作按破壞模式1破壞;對(duì)于不同的預(yù)留土高度,當(dāng)坡度超過一定值后,破裂角幾乎不受坡度影響,且最終均趨近于破壞模式1所確定的破裂角(0.42 rad);預(yù)留土高度越高,坡度對(duì)M_P的影響越顯著。

      4 案例計(jì)算

      某基坑工程支擋結(jié)構(gòu)形式如圖14所示,樁長17 m,基坑深8 m,支撐距地表1.5 m,基坑內(nèi)預(yù)留土臺(tái)進(jìn)行臨時(shí)加強(qiáng),預(yù)留土頂部寬度2.5 m,高3 m,按照1:1.5進(jìn)行放坡。均質(zhì)土重度γ為18 kN/m3,黏聚力c為10 kPa,內(nèi)摩擦角φ為(π?18)rad。

      分別采用金亞兵等[27]提出的附加荷載法和本文方法進(jìn)行計(jì)算,結(jié)果見表2,其中,M_P表示總的抗傾覆力矩,M_P1為不考慮預(yù)留土?xí)r基坑提供的抗傾覆力矩,M_P2為預(yù)留土提供的抗傾覆力矩。

      本文方法計(jì)算得到的總抗傾覆力矩大于金亞兵法計(jì)算值,但預(yù)留土對(duì)抗傾覆力矩的貢獻(xiàn)則略小。金亞兵等[27]將預(yù)留土與基坑土體分開進(jìn)行計(jì)算,通過附加荷載的方式考慮預(yù)留土的作用,本文方法則將預(yù)留土與基坑土體作為整體進(jìn)行分析,更接近于土體實(shí)際性狀。

      5 結(jié)論

      1)基于極限分析上限定理直接推導(dǎo)了預(yù)留土支護(hù)基坑旋轉(zhuǎn)破壞模式下抗傾覆力矩M_P的表達(dá)式,而無需確定被動(dòng)土壓力的大小和分布,計(jì)算上具有一定的簡潔性。

      2)對(duì)于無預(yù)留土的一般基坑,當(dāng)墻背光滑且土體黏聚力為零時(shí),利用朗肯和庫侖被動(dòng)土壓力理論計(jì)算得到的抗傾覆力矩值均為一上限解。當(dāng)存在黏聚力時(shí),朗肯土壓力理論計(jì)算值偏于保守;當(dāng)存在墻背摩擦系數(shù)時(shí),庫倫土壓力理論計(jì)算的抗傾覆力矩偏大。

      3)預(yù)留土寬度b_f存在一臨界值,當(dāng)達(dá)到臨界值后,會(huì)突變?yōu)槠茐哪J?,此時(shí)β及M_P均由破壞模式1確定,且預(yù)留土高度h_f越大,臨界寬度越大,另外,相比預(yù)留土寬度和坡度,預(yù)留土高度對(duì)抗傾覆力矩的影響更加顯著。

      參考文獻(xiàn)

      [1] ?李順群, 鄭剛, 王英紅. 反壓土對(duì)懸臂式支護(hù)結(jié)構(gòu)嵌固深度的影響研究[J]. 巖土力學(xué), 2011, 32(11): 3427-3431, 3436.

      LI S Q, ZHENG G, WANG Y H. Influence of earth berm on embedment depth of cantilever retaining structure for pit excavation [J]. Rock and Soil Mechanics, 2011, 32(11): 3427-3431, 3436. (in Chinese)

      [2] ?鄭剛, 陳紅慶, 雷揚(yáng), 等. 基坑開挖反壓土作用機(jī)制及其簡化分析方法研究[J]. 巖土力學(xué), 2007, 28(6): 1161-1166.

      ZHENG G, CHEN H Q, LEI Y, et al. A study of mechanism of earth berm and simplified analysis method for excavation [J]. Rock and Soil Mechanics, 2007, 28(6): 1161-1166. (in Chinese)

      [3] ?建筑基坑支護(hù)技術(shù)規(guī)程: JGJ 120—2012 [S]. 北京: 中國建筑工業(yè)出版社, 2012.

      Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012 [S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

      [4] ?韓同春, 謝靈翔, 劉振. 坑中坑條件下基坑有限土體的被動(dòng)土壓力計(jì)算[J]. 巖土力學(xué), 2018, 39(12): 4404-4412.

      HAN T C, XIE L X, LIU Z. Calculation of passive earth pressure for finite soil in foundation pit under pit-in-pit condition [J]. Rock and Soil Mechanics, 2018, 39(12): 4404-4412. (in Chinese)

      [5] ?陳富強(qiáng), 楊光華, 孫樹楷, 等. 考慮基坑坑內(nèi)反壓土作用的實(shí)用方法及應(yīng)用[J]. 地下空間與工程學(xué)報(bào), 2019, 15(Sup1): 299-304.

      CHEN F Q, YANG G H, SUN S K, et al. A practical method and engineering application considering the effect of earth berm in foundation pits [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(Sup1): 299-304. (in Chinese)

      [6] ?SMETHURST J A, POWRIE W. Effective-stress analysis of berm-supported retaining walls [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2008, 161(1): 39-48.

      [7] ?DALY M P, POWRIE W. Undrained analysis of earth berms as temporary supports for embedded retaining walls [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2001, 149(4): 237-248.

      [8] ?POWRIE W, DALY M P. Centrifuge model tests on embedded retaining walls supported by earth berms [J]. Géotechnique, 2002, 52(2): 89-106.

      [9] ?陳福全, 吳國榮, 劉毓氚. 基坑內(nèi)預(yù)留土堤對(duì)基坑性狀的影響分析[J]. 巖土工程學(xué)報(bào), 2006, 28(Sup1): 1470-1474.

      CHEN F Q, WU G R, LIU Y C. Effect of berms on behaviors of excavation supported by sheet-pile walls [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(Sup1): 1470-1474. (in Chinese)

      [10] ?尹盛斌. 基坑預(yù)留土臺(tái)的簡化分析方法研究[J]. 巖土力學(xué), 2016, 37(2): 524-536.

      YIN S B. A simplified analysis method for earth berm in foundation pit [J]. Rock and Soil Mechanics, 2016, 37(2): 524-536. (in Chinese)

      [11] ?劉暢, 孫盼盼, 趙露偉, 等. 基坑開挖反壓土截面特性對(duì)基坑性狀影響的有限元分析[J]. 地下空間與工程學(xué)報(bào), 2017, 13(3): 788-795.

      LIU C, SUN P P, ZHAO L W, et al. Finite element analysis of earth berm wxcavation pit traits affect section properties [J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 788-795. (in Chinese)

      [12] ?FAN J L, REN Y H, WU Y H, et al. Application of earth berm in foundation pit engineering [J]. Applied Mechanics and Materials, 2014, 638/639/640: 389-392.

      [13] ?LEE M H, KIM T H. Parametric study on displacement of earth retaining wall by the bermed excavation using back analysis [J]. Journal of the Korean Geosynthetic Society, 2015, 14(4): 23-33.

      [14] ?秦會(huì)來, 周予啟, 黃茂松, 等. 基于上限理論的預(yù)留土支護(hù)基坑極限抗力分析[J]. 巖土工程學(xué)報(bào), 2020, 42(6): 1101-1107.

      QIN H L, ZHOU Y Q, HUANG M S, et al. Passive earth pressure analysis of berm-retained excavation by upper bound method [J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1101-1107. (in Chinese)

      [15] ?ZHANG G, NIE D Q, DIAO Yet al. Numerical and experimental study of multi-bench retained excavations[J]. Geomechanics and Engineering, 2017, 13(5): 715-742.

      [16] ?GOURVENEC S M, POWRIE W. Three-dimensional finite element analyses of embedded retaining walls supported by discontinuous earth berms [J]. Canadian Geotechnical Journal, 2000, 37(5): 1062-1077.

      [17] ?EL-SHERBINY M M, EL-SHERBINY R M, EL-MAMLOUK H. Three dimensional effect of grouted discontinuous berms for passive support of diaphragm walls [C]//Grouting 2017. Honolulu, Hawaii. Reston, VA: American Society of Civil Engineers, 2017: 571-583.

      [18] ?EL-SHERBINY M M, EL-SHERBINY R M, EL-MAMLOUK H H. Three dimensional analysis of diaphragm walls supported by passive berms [C]//Engineering Challenges for Sustainable Underground Use, 2018: 115-127.

      [19] ?FANG Y S, CHEN T J, WU B F. Passive earth pressures with various wall movements [J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323.

      [20] ?夏元友, 陳春舒. 考慮土體多參數(shù)非均質(zhì)性及各向異性錨固邊坡抗震穩(wěn)定性極限分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2018, 37(4): 829-837.

      XIA Y Y, CHEN C S. Seismic stability limit analysis of reinforced soil slopes with prestressed cables considering inhomogeneity and anisotropy of multiple parameters [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 829-837. (in Chinese)

      [21] ?年廷凱, 劉凱, 黃潤秋, 等. 多階多層復(fù)雜邊坡穩(wěn)定性的通用上限方法[J]. 巖土力學(xué), 2016, 37(3): 842-849.

      NIAN T K, LIU K, HUANG R Q, et al. A generalized upper-bound limit analysis approach for stability analysis of complex multistep and multilayer slopes [J]. Rock and Soil Mechanics, 2016, 37(3): 842-849. (in Chinese)

      [22] ?洪利, 仉文崗. 漸近搜索算法在軟土基坑基底抗隆起上限分析中的應(yīng)用[J]. 土木與環(huán)境工程學(xué)報(bào)(中英文), 2020, 42(6): 46-53.

      HONG L, ZHANG W G. Application of progressive search algorithm in upper bound analysis of basal stability for braced excavations in soft clay [J]. Journal of Civil and Environmental Engineering, 2020, 42(6): 46-53. (in Chinese)

      [23] ?李澤, 胡政, 彭普, 等. 基坑穩(wěn)定性的塑性極限分析上限法研究[J]. 水資源與水工程學(xué)報(bào), 2019, 30(3): 230-236.

      LI Z, HU Z, PENG P, et al. Research on upper bound method of plastic limit analysis for excavation stability [J]. Journal of Water Resources and Water Engineering, 2019, 30(3): 230-236. (in Chinese)

      [24] ?瑜璐, 楊慶, 張金利. 基于上限法分析橢圓形結(jié)構(gòu)的極限承載力[J]. 巖土工程學(xué)報(bào), 2021, 43(2): 356-364.

      YU L, YANG Q, ZHANG J L. Ultimate bearing capacity of elliptical tip by upper bound analysis [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 356-364. (in Chinese)

      [25] ?王桂林, 趙飛, 張永興. 重力式擋土墻地震旋轉(zhuǎn)位移下的屈服加速度[J]. 巖土力學(xué), 2013, 34(6): 1579-1585.

      WANG G L, ZHAO F, ZHANG Y X. Earthquake yield acceleration of seismic rotational displacement of gravity retaining wall [J]. Rock and Soil Mechanics, 2013, 34(6): 1579-1585. (in Chinese)

      [26] ?李志浩, 肖世國. 不同運(yùn)動(dòng)模式的懸臂式擋墻地震永久位移算法[J]. 巖土力學(xué), 2021, 42(3): 723-734.

      LI Z H, XIAO S G. Calculation method for seismic permanent displacement of cantilever retaining walls considering different movement modes [J]. Rock and Soil Mechanics, 2021, 42(3): 723-734. (in Chinese)

      [27] ?金亞兵, 周志雄. 擋土墻(樁)前堆載反壓或預(yù)留土體分析與計(jì)算[J]. 巖土力學(xué), 1999, 20(3): 56-60, 65.

      JIN Y B, ZHOU Z X. Analysis and calculation method of surcharge reaction and remaining soils near retaining wall [J]. Rock and Soil Mechanics, 1999, 20(3): 56-60, 65. (in Chinese)

      (編輯 ?胡玲)

      猜你喜歡
      基坑工程
      項(xiàng)目驅(qū)動(dòng)教學(xué)法在基坑工程教學(xué)改革應(yīng)用中的幾點(diǎn)體會(huì)
      基坑開挖對(duì)鄰近地鐵結(jié)構(gòu)基礎(chǔ)的影響分析
      基坑開挖對(duì)臨近或下臥既有隧道的影響及研究進(jìn)展
      深基坑工程及支護(hù)技術(shù)現(xiàn)狀
      科技資訊(2017年13期)2017-06-21 08:31:39
      基于彈性地基有限元法的深基坑支護(hù)結(jié)構(gòu)變形影響因素分析
      基坑工程降水方法及其優(yōu)化分析
      淺析土建基坑工程施工技術(shù)
      魅力中國(2016年20期)2017-04-19 13:11:58
      基坑工程監(jiān)測方案研究及其工程應(yīng)用
      科技視界(2016年27期)2017-03-14 11:35:10
      基坑工程事故原因分析與控制
      土與支護(hù)結(jié)構(gòu)相互作用及邊坡穩(wěn)定性分析
      阳泉市| 柳江县| 清河县| 临武县| 潼关县| 台南市| 樟树市| 黄山市| 焉耆| 临洮县| 榆中县| 高平市| 万年县| 靖边县| 铜鼓县| 达日县| 沈阳市| 安溪县| 寿光市| 苏州市| 盐边县| 连山| 衡南县| 平定县| 分宜县| 龙州县| 清新县| 正镶白旗| 昌图县| 柘荣县| 长寿区| 汤原县| 浦城县| 澎湖县| 积石山| 读书| 永修县| 安康市| 西吉县| 来安县| 任丘市|