張澤源,李玥,趙文莎,顧晶晶,張傲琰,張海龍,宋鵬博,吳建輝,張傳量,宋全昊,簡(jiǎn)俊濤,孫道杰,王興榮
小麥粒重相關(guān)性狀的QTL定位及分子標(biāo)記的開(kāi)發(fā)
張澤源1,李玥2,趙文莎1,顧晶晶3,張傲琰1,張海龍1,宋鵬博1,吳建輝1,張傳量1,宋全昊4,簡(jiǎn)俊濤5,孫道杰1,王興榮2
1西北農(nóng)林科技大學(xué)農(nóng)學(xué)院,陜西楊凌 712100;2甘肅省農(nóng)業(yè)科學(xué)院作物研究所,蘭州 730000;3洛陽(yáng)市農(nóng)林科學(xué)院,河南洛陽(yáng) 471023;4駐馬店市農(nóng)業(yè)科學(xué)院,河南駐馬店 463000;5南陽(yáng)市農(nóng)業(yè)科學(xué)院,河南南陽(yáng) 473000
【目的】小麥?zhǔn)鞘澜缈偖a(chǎn)量第二的糧食作物,而粒重是影響小麥產(chǎn)量的重要因素。以和尚頭(HST)和隴春23(LC23)衍生的216個(gè)家系重組自交系(recombinant inbred lines,RIL)群體為材料,基于55K SNP基因型數(shù)據(jù),針對(duì)小麥粒重相關(guān)性狀進(jìn)行QTL定位,開(kāi)發(fā)和驗(yàn)證粒長(zhǎng)主效QTL的共分離標(biāo)記,為分子標(biāo)記輔助選擇育種提供參考。【方法】利用小麥55K SNP芯片對(duì)親本和RIL群體進(jìn)行基因分型,構(gòu)建高密度遺傳連鎖圖譜,并與中國(guó)春參考基因組IWGSC RefSeq v1.0進(jìn)行相關(guān)性分析。基于完備區(qū)間作圖法對(duì)多環(huán)境粒重相關(guān)性狀進(jìn)行QTL定位;通過(guò)對(duì)主效QTL進(jìn)行方差分析,判斷不同QTL間的加性互作效應(yīng),并分析其對(duì)粒重相關(guān)性狀的影響。同時(shí),根據(jù)粒長(zhǎng)主效QTL的共分離SNP位點(diǎn)開(kāi)發(fā)相應(yīng)的競(jìng)爭(zhēng)性等位基因特異性PCR標(biāo)記(kompetitive allele specific PCR,KASP),并在242份國(guó)內(nèi)外小麥種質(zhì)構(gòu)成的自然群體中進(jìn)行驗(yàn)證?!窘Y(jié)果】構(gòu)建了和尚頭/隴春23 RIL群體的高密度遺傳圖譜,全長(zhǎng)4 543 cM,共包含22個(gè)連鎖群,覆蓋小麥21條染色體,平均遺傳距離為1.7 cM。遺傳圖譜與物理圖譜具有顯著相關(guān)性,Pearson相關(guān)系數(shù)為0.77—0.99(<0.001)。共檢測(cè)到51個(gè)粒重相關(guān)QTL,其中,有4個(gè)為3個(gè)及以上環(huán)境穩(wěn)定表達(dá)的主效QTL,分布在2D、5A、6B和7D染色體。根據(jù)物理區(qū)間和功能標(biāo)記分析主效QTL和分別為光周期基因和開(kāi)花基因,方差分析表明,二者具有顯著的互作效應(yīng);和優(yōu)異等位基因的聚合顯著提高了小麥的千粒重和粒寬。此外,根據(jù)粒長(zhǎng)主效位點(diǎn)的共分離SNP開(kāi)發(fā)了相應(yīng)的KASP分子標(biāo)記,該標(biāo)記在242份小麥組成的自然群體中與粒長(zhǎng)和粒重性狀顯著相關(guān),在不同環(huán)境下能增加粒長(zhǎng)3.33%—4.59%(<0.001)和粒重5.70%—10.35%(<0.05)?!窘Y(jié)論】和尚頭(HST)和隴春23(LC23)的粒重相關(guān)性狀由多個(gè)遺傳位點(diǎn)控制,其中,和通過(guò)加性互作效應(yīng)可顯著提高小麥的千粒重和粒寬。與粒重和粒長(zhǎng)具有顯著相關(guān)性,其共分離分子標(biāo)記可應(yīng)用于分子標(biāo)記輔助選擇育種。
小麥;千粒重;QTL;KASP標(biāo)記;分子標(biāo)記輔助選擇育種
【研究意義】小麥(L.)是世界35%以上人口的主糧,提供了蛋白質(zhì)、礦物質(zhì)和維生素等主要營(yíng)養(yǎng)元素[1-2]。隨著人口的增加、耕地面積的減少和氣候的變暖,當(dāng)前的小麥產(chǎn)量已難以滿足人類的需求[3]。因此,發(fā)掘小麥產(chǎn)量潛力仍然是育種工作的首要任務(wù)。小麥產(chǎn)量的構(gòu)成要素包括千粒重、每穗粒數(shù)和單位面積穗數(shù)[4]。其中,千粒重具有較高的遺傳力,可在育種早期世代進(jìn)行有效的選育[5]。研究表明,千粒重、粒長(zhǎng)和粒寬等籽粒性狀與小麥產(chǎn)量呈正相關(guān)性[6-7]。因此,明確小麥選育過(guò)程中的籽粒相關(guān)性狀和基因,對(duì)實(shí)現(xiàn)高產(chǎn)具有重要的價(jià)值和意義?!厩叭搜芯窟M(jìn)展】盡管栽培小麥的多倍體特性使得數(shù)量性狀基因座(QTL)變得復(fù)雜,但目前已在小麥21條染色體上發(fā)現(xiàn)了大量(400多個(gè))控制粒重和粒型的QTL[8-10]。Ma等[11]以RIL群體基于55K SNP芯片和SSR標(biāo)記構(gòu)建了遺傳圖譜,在2D染色體(32.97—33.74 Mb)定位了1個(gè)控制粒長(zhǎng)、粒寬和千粒重的主效QTL(與連鎖);Qu等[12]利用BSA和小麥660K SNP芯片結(jié)合的方法,在2DS染色體上檢測(cè)到1個(gè)有關(guān)粒長(zhǎng)和千粒重的共定位區(qū)間,物理間距僅為3.97 Mb,并驗(yàn)證了候選基因在雙親中的差異;Liu等[8]在7D染色體上檢測(cè)到與粒重相關(guān)的QTL,并定位于3.82 Mb物理區(qū)間,其候選基因在第三個(gè)外顯子有一個(gè)1 bp的插入/缺失(InDel);Yang等[13]通過(guò)對(duì)2 230個(gè)產(chǎn)量相關(guān)的QTL進(jìn)行元分析,發(fā)現(xiàn)與粒重相關(guān)的QTL分布在小麥的21條染色體上。迄今,已有45個(gè)小麥粒重相關(guān)基因被報(bào)道[14-15],分布在除1D、3B和4B染色體之外的所有染色體上。小麥光周期基因和春化基因也會(huì)影響粒重的相關(guān)性狀[16]。光周期基因是控制光周期特性的主要基因,可編碼與擬南芥PRR7具有序列相似性的蛋白質(zhì),有3個(gè)同源基因,分別是、和,主要通過(guò)啟動(dòng)子區(qū)域的缺失或插入導(dǎo)致光周期特性的改變[17-18];不同光周期特性與不同緯度氣候條件相適應(yīng),可使小麥避開(kāi)惡劣環(huán)境的危害而充分利用光照資源,提高小麥豐產(chǎn)性和穩(wěn)產(chǎn)性。根據(jù)拷貝數(shù)不同,將春化基因分為、、和[19]。小麥為成花促進(jìn)因子,與擬南芥和大麥同源,被命名為[20]。低溫和長(zhǎng)日照條件能促進(jìn)的表達(dá),并通過(guò)影響調(diào)節(jié)開(kāi)花期,進(jìn)而顯著影響小麥的產(chǎn)量[20-21]。此外,1B/1R易位系中來(lái)自黑麥的1RS染色體不僅含有許多抗病基因,還對(duì)小麥的粒重存在顯著影響[22]。【本研究切入點(diǎn)】和尚頭是甘肅干旱地區(qū)地方品種,隴春23是甘肅省農(nóng)業(yè)科學(xué)院作物研究所和國(guó)際玉米小麥改良中心(CIMMYT)創(chuàng)制的小麥品種,二者在粒重和粒型上具有顯著差異(和尚頭的各性狀值均高于隴春23),但其籽粒的遺傳基礎(chǔ)尚不清楚?!緮M解決的關(guān)鍵問(wèn)題】本研究以和尚頭/隴春23衍生的重組自交系群體為試驗(yàn)材料,構(gòu)建高密度遺傳圖譜,解析和尚頭和隴春23粒重相關(guān)性狀的遺傳基礎(chǔ),發(fā)掘粒重和粒型相關(guān)QTL位點(diǎn),并開(kāi)發(fā)相應(yīng)的高通量KASP檢測(cè)標(biāo)記,為小麥分子輔助選擇育種提供參考。
以和尚頭(HST)和隴春23(LC23)衍生的216個(gè)家系F2:8RIL群體和242份國(guó)內(nèi)外小麥品種(系)為試驗(yàn)材料。HST是甘肅干旱地區(qū)的地方品種[23],LC23是由甘肅省農(nóng)業(yè)科學(xué)院作物研究所和國(guó)際玉米小麥改良中心(CIMMYT)創(chuàng)制的小麥品種[24]。將RIL群體分別種植于陜西楊陵(E1)、甘肅張掖(E2)、河南南陽(yáng)(E3)和河南洛陽(yáng)(E4)。隨機(jī)區(qū)組設(shè)計(jì)3行區(qū),行長(zhǎng)2 m,行距25 cm,株距10 cm,按照常規(guī)標(biāo)準(zhǔn)進(jìn)行田間管理。
小麥成熟后對(duì)中間行進(jìn)行隨機(jī)取樣,選擇自然風(fēng)干的種子,利用萬(wàn)深SC-G型自動(dòng)種子考種儀進(jìn)行粒長(zhǎng)、粒寬、籽粒長(zhǎng)寬比和千粒重的測(cè)量,取單環(huán)境平均值和多環(huán)境最佳線性無(wú)偏預(yù)測(cè)值(BLUP),用于表型及遺傳分析。
利用Affymetrix? Axiom平臺(tái)的小麥55K SNP芯片對(duì)216個(gè)家系進(jìn)行全基因組掃描,利用Affymetrix的Axiom Analysis Suite軟件對(duì)原始數(shù)據(jù)進(jìn)行深入分型。根據(jù)Liu等[8]使用的標(biāo)記合成引物。通過(guò)55K SNP芯片獲取的側(cè)翼序列,使用PolyMarker在線平臺(tái)(https://polymarker.tgac.ac.uk/)設(shè)計(jì)KASP引物,并在其5′端連接FAM或HEX熒光接頭序列(FAM接頭序列:5′-GAAGGTGACCAAGT TCATGCT-3′;HEX接頭序列:5′-GAAGGTCGGAGTC AACGGATT-3′)。KASP反應(yīng)體系為2 μL DNA、0.0448 μL引物混合物、2 μL HiGeno 2x Probe Mix B和1.9552 μL ddH2O。反應(yīng)程序?yàn)?5 ℃ 10 min;95 ℃ 30 s,65—55 ℃ 25 s,10個(gè)循環(huán)(每循環(huán)降低1.0 ℃);95 ℃ 30 s,55 ℃ 30 s,35個(gè)循環(huán);4 ℃避光保存。反應(yīng)結(jié)束后,用酶標(biāo)儀FLUOstar Omega進(jìn)行熒光掃描,并用KlusterCaller軟件進(jìn)行基因分型。SSR標(biāo)記()的PCR反應(yīng)體系為DNA 1 μL、2×Rapid Taq Master Mix 10 μL、上下游引物各1 μL和ddH2O 7 μL。PCR反應(yīng)程序?yàn)?5 ℃ 5 min;95 ℃ 30 s,53 ℃(1B/1R為56 ℃) 30 s,72 ℃ 30 s,30個(gè)循環(huán);72 ℃ 5 min,4 ℃保存。
利用R中的lem4包進(jìn)行遺傳力計(jì)算,公式[25]為。利用Microsoft Excel統(tǒng)計(jì)表型數(shù)據(jù),利用SPSS 22[26]進(jìn)行方差分析、檢驗(yàn)、檢驗(yàn)和相關(guān)性分析。依據(jù)株系雜合率(>20%)、株系缺失率(>20%)、基因型缺失率(>20%)和偏分離率(<0.001)等參數(shù)篩選55K SNP基因分型數(shù)據(jù),利用QTL IciMapping 4.2[27]軟件的BIN功能對(duì)剩余SNP標(biāo)記進(jìn)行去冗余,獲得Bin標(biāo)記;利用JoinMap 4.0[28]LOD≥5的Kosambi函數(shù)對(duì)Bin標(biāo)記構(gòu)建連鎖群;根據(jù)LOD值結(jié)果,使用QTL IciMapping 4.2軟件的MAP功能對(duì)SNP標(biāo)記排序,選用Kosambi函數(shù)轉(zhuǎn)化遺傳距離;最后使用Mapchart 2.3[29]軟件繪制QTL遺傳圖譜。基于完備區(qū)間作圖法(ICIM-ADD)的BIP和環(huán)境互作QTL(MET)功能進(jìn)行多環(huán)境QTL定位,步長(zhǎng)為1.0 cM,臨界值為0.001,使用LOD=3.0作為檢測(cè)閾值。
通過(guò)對(duì)親本和尚頭和隴春23進(jìn)行表型鑒定,發(fā)現(xiàn)和尚頭的千粒重、粒長(zhǎng)、粒寬和籽粒長(zhǎng)寬比均高于隴春23(表1),且在RIL群體中出現(xiàn)連續(xù)變異和超親分離現(xiàn)象,表明籽粒相關(guān)性狀存在多基因遺傳,以及在雙親中均存在優(yōu)異的QTL等位基因。其中,千粒重和籽粒長(zhǎng)寬比的遺傳力較高,分別為0.81和0.84。
通過(guò)對(duì)粒重相關(guān)性狀進(jìn)行分析(圖1),粒寬與千粒重、粒長(zhǎng)呈極顯著相關(guān)性(=0.65和0.67,<0.001);粒長(zhǎng)與千粒重、籽粒長(zhǎng)寬比呈顯著相關(guān)性(= 0.48和0.32,<0.001);而籽粒長(zhǎng)寬比與千粒重、粒寬呈負(fù)相關(guān)性(=-0.29和-0.49,<0.001)。在不同環(huán)境間,千粒重和籽粒長(zhǎng)寬比呈極顯著相關(guān)性(= 0.45—0.66,<0.001);在南陽(yáng)和洛陽(yáng)試驗(yàn)點(diǎn),粒長(zhǎng)和粒寬相關(guān)性不顯著,但在其他環(huán)境中均呈極顯著相關(guān)性(=0.26—0.45,<0.001)(附圖1)。表明在群體中可能存在粒重和粒型性狀的主效遺傳位點(diǎn)。
***:P<0.001。下同 The same as below
E1:陜西楊凌;E2:甘肅張掖;E3:河南南陽(yáng);E4:河南洛陽(yáng);TKW:千粒重;GL:粒長(zhǎng);GW:粒寬;LWR:籽粒長(zhǎng)寬比;BLUP表示最佳線性無(wú)偏預(yù)測(cè)值;*和**分別表示在<0.05和<0.01水平差異顯著。下同
E1: Yangling, Shaanxi; E2: Zhangye, Gansu; E3: Nanyang, Henan; E4: Luoyang, Henan;TKW: 1000-grain weight; GL: grain length; GW: grain width; LWR: grain length-width ratio; BLUP represents best linear unbiased prediction; * and ** indicated significant difference at<0.05 and<0.01. The same as below
通過(guò)對(duì)原始數(shù)據(jù)過(guò)濾,共獲得16 529個(gè)SNP標(biāo)記,利用BIN功能去冗余后,獲得2 672個(gè)Bin標(biāo)記,構(gòu)建遺傳圖譜,其全長(zhǎng)4 543 cM,包含22個(gè)連鎖群,Bin標(biāo)記之間的平均遺傳距離為1.70 cM,最大遺傳距離為31.82 cM(6D染色體),覆蓋小麥21條染色體(表2),每條染色體上的Bin標(biāo)記數(shù)目不等。7A染色體由2個(gè)連鎖群組成,其余染色體均為一個(gè)連鎖群。此外,5D染色體的遺傳長(zhǎng)度最長(zhǎng),為305.92 cM;4B染色體最短,為122.92 cM。位于A、B和D基因組上的Bin標(biāo)記數(shù)分別為1 025、1 023和624個(gè);SNP標(biāo)記數(shù)分別為6 374、6 884和3 271個(gè);遺傳長(zhǎng)度分別為1 509.26、1 423.17和1 610.57 cM。
根據(jù)參考基因組對(duì)遺傳圖譜和物理圖譜進(jìn)行共線性分析,結(jié)果表明,該遺傳圖譜與中國(guó)春參考基因組物理圖譜之間具有良好的共線性,標(biāo)記順序與小麥基因組組裝的標(biāo)記順序相對(duì)一致,相關(guān)系數(shù)為0.77—0.99(<0.001,圖2)。每條染色體的遺傳重組表現(xiàn)不平衡現(xiàn)象,染色體端粒區(qū)域重組率較高,而中部區(qū)域重組率較低,整體呈U型分布;染色體的遺傳位置隨著物理位置的增加而增加,兩端斜率較大,使得共線圖整體呈現(xiàn)出S型;每條染色體的Bin標(biāo)記數(shù)目基本都符合兩端較多,而中間較少的特點(diǎn)。整體來(lái)看,染色體兩端為重組熱點(diǎn)區(qū),而中間部分為重組冷點(diǎn)區(qū)。其中,在4B和5A的中間部分沒(méi)有SNP標(biāo)記的存在(>200 Mb),但依然為同一條連鎖群,說(shuō)明該區(qū)域?yàn)橹亟M冷點(diǎn)區(qū)。
紅色散點(diǎn)表示共線性,黑色直方圖表示Bin標(biāo)記在參考基因組上的重組率。**:P<0.01,***:P<0.001
利用和尚頭/隴春23的RIL群體共檢測(cè)到51個(gè)粒重相關(guān)的QTL,單位點(diǎn)可解釋0.44%—20.13%表型變異,LOD值為3.00—59.43。3個(gè)及以上環(huán)境穩(wěn)定表達(dá)的主效QTL有4個(gè),分布在2D、5A、6B和7D染色體上(表3、圖3和附表1)。
共檢測(cè)到9個(gè)千粒重QTL,單位點(diǎn)可解釋3.84%— 13.26%表型變異,LOD值為3.16—11.89;其中,(加性效應(yīng)來(lái)自隴春23)和(加性效應(yīng)來(lái)自和尚頭)可在3個(gè)以上環(huán)境中被檢測(cè)到,表型變異解釋率分別為7.19%— 12.92%和7.53%—13.26%,LOD值分別為4.33—11.89和4.63—10.71。
共檢測(cè)到13個(gè)粒長(zhǎng)QTL,單位點(diǎn)可解釋0.44%— 17.86%表型變異,LOD值為3.03—59.43;其中,(加性效應(yīng)來(lái)自和尚頭)可在3個(gè)環(huán)境中被檢測(cè)到,表型變異解釋率為4.56%—17.86%,LOD值為3.93—59.43。
共檢測(cè)到15個(gè)粒寬QTL,單位點(diǎn)可解釋3.41%— 12.36%的表型變異,LOD值為3.00—16.00;其中(加性效應(yīng)來(lái)自隴春23)和(加性效應(yīng)來(lái)自和尚頭)可在2個(gè)環(huán)境中被檢測(cè)到,表型變異解釋率分別為7.28%— 12.36%和7.85%—20.13%,LOD值分別為4.41—10.14和4.76—16.00。
共檢測(cè)到14個(gè)籽粒長(zhǎng)寬比QTL,單位點(diǎn)可解釋2.37%—14.51%的表型變異,LOD值為3.08—12.93;其中,(加性效應(yīng)來(lái)自隴春23)可在3個(gè)環(huán)境中被檢測(cè)到,表型變異解釋率為4.87%— 11.83%,LOD值為4.87—9.13。
表3 粒重相關(guān)性狀的部分QTL
1)加性效應(yīng)為正說(shuō)明增效效應(yīng)來(lái)源于和尚頭,加性效應(yīng)為負(fù)說(shuō)明增效效應(yīng)來(lái)源于隴春23
1)Positive additive effect indicated that the positive allele derived from HST, and negative additive effect indicated that the positive allele derived from LC23
圖3 粒重相關(guān)性狀QTL的染色體分布
共發(fā)現(xiàn)4個(gè)QTL簇,分別位于2D(、和)、4B(和)、5A(和)和7D(、和)染色體上,表明可能存在一因多效QTL。
QTL×環(huán)境(QE)互作分析顯示,所有多環(huán)境穩(wěn)定的QTL均能被檢測(cè)到,進(jìn)一步表明QTL的穩(wěn)定性(附表2)。在QE互作分析中,的總表型變異解釋率為5.76%,其中,加性效應(yīng)的表型變異解釋率為4.91%,LOD值為19.93;的總表型變異解釋率為6.56%,其中,加性效應(yīng)的表型變異解釋率為5.14%,LOD值為20.01;的總表型變異解釋率為11.82%,其中,加性效應(yīng)的表型變異解釋率為6.14%,LOD值為8.88。
在不同環(huán)境條件下,攜帶優(yōu)異等位基因的株系可以提高千粒重6.10%—10.77%(<0.01),增加粒寬3.23%—6.01%(<0.001);攜帶優(yōu)異等位基因的株系可以提高千粒重4.31%—8.25%(<0.05),增加粒寬4.41%—4.84%(<0.05);然而,同時(shí)攜帶和優(yōu)異等位基因的株系卻對(duì)粒長(zhǎng)未產(chǎn)生顯著影響。通過(guò)進(jìn)一步探究和對(duì)株高和抽穗期的影響,結(jié)果表明,在不同環(huán)境條件下,攜帶優(yōu)異等位基因的株系可以降低株高6.32%—6.33%(<0.05),縮短抽穗期3.61%—5.10%(<0.001);攜帶優(yōu)異等位基因的株系可以降低株高5.39%—6.30%(<0.001),縮短抽穗期1.56%—1.64%(<0.05)(附表3)。
方差分析表明(表4),和存在極顯著的互作效應(yīng)(<0.01);受環(huán)境影響較大,其環(huán)境互作對(duì)粒寬和粒長(zhǎng)有顯著影響(<0.01);和對(duì)千粒重、粒寬和籽粒長(zhǎng)寬比有顯著影響,對(duì)粒長(zhǎng)無(wú)顯著影響(<0.001)。聚合效應(yīng)表明(圖4),同時(shí)攜帶和優(yōu)異等位基因株系的千粒重和粒寬可顯著增加13.07%(<0.05)和4.46%(<0.05)。
表4 不同環(huán)境下Qtkw.nwafu-2D.1和Qtkw.nwafu-7D的方差分析
+:相應(yīng)側(cè)翼標(biāo)記的等位基因來(lái)自和尚頭的株系;-:表明相應(yīng)側(cè)翼標(biāo)記的等位基因來(lái)自隴春23的株系。不同小寫字母表示差異顯著
根據(jù)目標(biāo)區(qū)間兩側(cè)的序列開(kāi)發(fā)KASP標(biāo)記,其中,在RIL群體親本之間和子代之間均具有多態(tài)性,利用242份國(guó)內(nèi)外小麥品種(系)驗(yàn)證位點(diǎn)(附圖2),結(jié)果表明,該位點(diǎn)分型明顯,在不同環(huán)境條件下可以增加粒長(zhǎng)3.33%—4.59%(<0.001)(圖5),增加千粒重5.70%—10.35%(<0.05)(附表3),可用于分子標(biāo)記輔助選擇育種。
六倍體小麥?zhǔn)怯梢吧P←満凸?jié)節(jié)麥自然雜交形成的,雖然D亞基因組的遺傳變異相對(duì)較少,但對(duì)六倍體小麥的籽粒大小和形狀具有明顯的影響,尤其是2D和7D染色體對(duì)小麥改良起到了積極的正向調(diào)節(jié)作用[30]。本研究在2D和7D染色體上各檢測(cè)到一個(gè)QTL簇,包含千粒重、粒寬和籽粒長(zhǎng)寬比QTL,說(shuō)明2D和7D染色體對(duì)小麥粒重和粒型具有重要影響。位于SNP標(biāo)記和之間,根據(jù)其物理位置推測(cè),與Ma等[11]、Yu等[31]和Kumar等[6]定位結(jié)果一致;位于SNP標(biāo)記和之間,其物理區(qū)間與前人定位結(jié)果重合[6, 8, 32-35],且為相同位點(diǎn)。由于和的物理區(qū)間分別與已克隆的光周期基因和開(kāi)花基因重合,故使用和的標(biāo)記對(duì)RIL群體進(jìn)行檢測(cè),根據(jù)分型結(jié)果(附圖3和附表4),將標(biāo)記定位到和之間,因此,推測(cè)這兩個(gè)位點(diǎn)效應(yīng)可能與和相關(guān)。光周期不敏感型等位基因影響下游基因和的表達(dá),進(jìn)而促進(jìn)小麥提前開(kāi)花和加快抽穗[17];對(duì)調(diào)節(jié)小麥開(kāi)花起主要作用[20],影響抽穗和籽粒發(fā)育[36];與小麥春化基因緊密連鎖[37],且受光周期途徑調(diào)控[38],進(jìn)而相互協(xié)調(diào)共同參與小麥生長(zhǎng)發(fā)育。綜上,本研究在和尚頭/隴春23群體中發(fā)現(xiàn)的和位點(diǎn)分別與和相關(guān)。
a:楊陵;b:南陽(yáng);c:洛陽(yáng)a: Yangling; b: Nanyang; c: Luoyang
粒長(zhǎng)相關(guān)位點(diǎn)被定位在分子標(biāo)記和之間,物理位置為0.65—0.75 Mb,可在3個(gè)環(huán)境中被檢測(cè)到,平均表型變異解釋率為9.76%,是主效QTL。根據(jù)前人研究結(jié)果,與Wei等[39]在單環(huán)境中檢測(cè)到的位點(diǎn)部分重合,可能是同一位點(diǎn)。Yu等[31]在2A染色體檢測(cè)到的千粒重QTL與區(qū)間重疊,該位點(diǎn)可在2個(gè)環(huán)境中被檢測(cè)到,表型變異解釋率為4.3%—13.6%,LOD值為3.5—14.0。其余QTL未被報(bào)道,單位點(diǎn)可解釋5.69%—11.90%的表型變異,LOD值為3.30—9.57,均為新QTL??紤]到1B/1R易位系對(duì)小麥籽粒性狀的影響,本研究使用1B/1R的SSR功能標(biāo)記對(duì)RIL群體進(jìn)行檢測(cè),發(fā)現(xiàn)雙親及衍生群體中均存在基因型差異,但檢驗(yàn)結(jié)果顯示,1B/1R易位系未對(duì)千粒重產(chǎn)生顯著影響。
和存在極顯著的QTL互作,可能與共同調(diào)控光周期途徑和春化途徑的基因有關(guān)[40]。和對(duì)千粒重、粒寬、株高和抽穗期均有顯著影響;優(yōu)良等位基因的聚合是育種家創(chuàng)新種質(zhì)資源和提高小麥產(chǎn)量的有效途徑[41],在RIL群體中,聚合和位點(diǎn)對(duì)千粒重和粒寬均有顯著的加性效應(yīng),說(shuō)明它們可能共同參與小麥生長(zhǎng)發(fā)育的調(diào)節(jié),并對(duì)小麥籽粒的發(fā)育影響很大,因此,在小麥育種選擇和品種改良中具有重要的應(yīng)用價(jià)值。此外,本研究還發(fā)現(xiàn),與相比,受環(huán)境影響更小,這與攜帶品種的千粒重穩(wěn)定性更好[16]相一致。本研究還開(kāi)發(fā)了的共分離KASP分子檢測(cè)標(biāo)記,并在242份小麥種質(zhì)中進(jìn)行了驗(yàn)證,即該標(biāo)記與粒重和粒長(zhǎng)性狀顯著相關(guān),為的分子輔助選擇育種奠定了基礎(chǔ)。
利用和尚頭/隴春23衍生的RIL群體共檢測(cè)到51個(gè)粒重相關(guān)性狀的QTL,其中,2D和7D染色體上存在效應(yīng)明顯的QTL簇,與千粒重、粒寬、株高和抽穗期等多個(gè)性狀顯著關(guān)聯(lián)。()和()之間存在顯著的加性互作效應(yīng),2個(gè)位點(diǎn)的聚合能夠促進(jìn)千粒重和粒寬的提高。針對(duì)主效粒長(zhǎng)位點(diǎn)開(kāi)發(fā)了共分離的KASP標(biāo)記,可用于分子標(biāo)記輔助選擇育種。
致謝:文章得到劉勝杰同學(xué)和黃碩同學(xué)的幫助,在此表示感謝。
[1] SHEWRY P R, HEY S J. The contribution of wheat to human diet and health. Food and energy security, 2015, 4(3): 178-202.
[2] LI S D, WANG L, MENG Y N, HAO Y F, XU H X, HAO M, LAN S Q, ZHANG Y J, LV L J, ZHANG K, PENG X H, LAN C X, LI X P, ZHANG Y L. Dissection of genetic basis underpinning kernel weight-related traits in common wheat. Plants (Basel, Switzerland), 2021, 10(4): 713.
[3] SHIFERAW B, SMALE M, BRAUN H J, DUVEILLER E, REYNOLDS M, MURICHO G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Security, 2013, 5(3): 291-317.
[4] HU J M, WANG X Q, ZHANG G X, JIANG P, CHEN W Y, HAO Y C, MA X, XU S S, JIA J Z, KONG L R, WANG H W. QTL mapping for yield-related traits in wheat based on four RIL populations. Theoretical and Applied Genetics, 2020, 133(3): 917-933.
[5] ZHANG J J, SHE M Y, YANG R C, JIANG Y J, QIN Y B, ZHAI S N, BALOTF S, ZHAO Y, ANWAR M, ALHABBAR Z, JUHáSZ A, CHEN J S, LIU H, LIU Q E, ZHENG T, YANG F, RONG J K, CHEN K F, LU M Q, ISLAM S, MA W Y. Yield-related QTL clusters and the potential candidate genes in two wheat DH populations. International Journal of Molecular Sciences, 2021, 22(21): 11934.
[6] KUMAR A, MANTOVANI E E, SEETAN R, SOLTANI A, ECHEVERRY-SOLARTE M, JAIN S, SIMSEK S, DOEHLERT D, ALAMRI M S, ELIAS E M, KIANIAN S F, MERGOUM M. Dissection of genetic factors underlying wheat kernel shape and size in an Elite×Nonadapted cross using a high density SNP linkage map. Plant Genome, 2016, 9(1): 55.
[7] CAO J J, SHANG Y Y, XU D M, XU K L, CHENG X R, PAN X, LIU X, LIU M L, GAO C, YAN S N, YAO H, GAO W, LU J, ZHANG H P, CHANG C, XIA X C, XIAO S H, MA C X. Identification and validation of new stable QTLs for grain weight and size by multiple mapping models in common wheat. Frontiers in Genetics, 2020, 11: 584859.
[8] LIU H, ZHANG X T, XU Y F, MA F F, ZHANG J P, CAO Y W, LI L H, AN D G. Identification and validation of quantitative trait loci for kernel traits in common wheat (L.). BMC Plant Biology, 2020, 20(1): 529.
[9] PANG Y L, LIU C X, WANG D F, ST AMAND P, BERNARDO A, LI W H, HE F, LI L Z, WANG L M, YUAN X F, DONG L, SU Y, ZHANG H R, ZHAO M, LIANG Y L, JIA H Z, SHEN X T, LU Y, JIANG H M, WU Y Y, LIU S B. High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Molecular Plant, 2020, 13(9): 1311-1327.
[10] XIN F, ZHU T, WEI S, HAN Y, ZHAO Y, ZHANG D, MA L, DING Q. QTL mapping of kernel traits and validation of a major QTL for kernel length-width ratio using SNP and bulked segregant analysis in wheat. Scientific Reports, 2020, 10(1): 25.
[11] MA J, ZHANG H, LI S Q, ZOU Y Y, LI T, LIU J J, DING P Y, MU Y, TANG H P, DENG M, LIU Y X, JIANG Q T, CHEN G Y, KANG H Y, LI W, PU Z E, WEI Y M, ZHENG Y L, LAN X J. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genetics, 2019, 20(1): 77.
[12] QU X R, LI C, LIU H, LIU J J, LUO W, XU Q, TANG H P, MU Y, DENG M, PU Z E, MA J, JIANG Q T, CHEN G Y, QI P F, JIANG Y F, WEI Y M, ZHENG Y L, LAN X J, MA J. Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related QTL in wheat. Theoretical and Applied Genetics, 2022, 135(8): 2849-2860.
[13] YANG Y, AMO A, WEI D, CHAI Y M, ZHENG J, QIAO P F, CUI C G, LU S, CHEN L, HU Y G. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theoretical and Applied Genetics, 2021, 134(9): 3083-3109.
[14] 張香宇. 小麥RHL32籽粒發(fā)育相關(guān)基因克隆及其與TaRPP13L1多效性功能初析[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2022.
ZHANG X Y.Cloning of gene related to grain development in wheat RHL32 and pleiotropic function dissection of the candiated genes and TaRPP13L1[D]. Yangling: Northwestern Agriculture and Foresty University, 2022. (in Chinese)
[15] YANG F P, LIU G Y, WU Z Y, ZHANG D X, ZHANG Y F, YOU M S, LI B Y, ZHANG X H, LIANG R Q. Cloning and functional analysis of TaWRI1Ls, the key genes for grain fatty acid synthesis in bread wheat. International Journal of Molecular Sciences, 2022, 23(10): 5293.
[16] 朱雪成. 春化和光周期基因在江蘇小麥品種中的分布及其對(duì)農(nóng)藝性狀的效應(yīng)分析[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2019.
ZHU X C. Distribution of vernalization and photoperiod genes in Jiangsu wheat cultivars and their effects on agronomic traits [D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
[17] BEALES J, TURNER A, GRIFFITHS S, SNAPE J W, LAURIE D A. Ais misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (L.). Theoretical and Applied Genetics, 2007, 115(5): 721-733.
[18] NISHIDA H, YOSHIDA T, KAWAKAMI K, FUJITA M, LONG B, AKASHI Y, LAURIE D A, KATO K. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (L.), and their effect on heading time. Molecular Breeding, 2013, 31(1): 27-37.
[19] PUGSLEY A T. A genetic analysis of the spring-winter habit of growth in wheat. Australian Journal of Agricultural Research, 1971, 22(1): 21.
[20] YAN L, FU D, LI C, BLECHL A, TRANQUILLI G, BONAFEDE M, SANCHEZ A, VALARIK M, YASUDA S, DUBCOVSKY J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51): 19581-19586.
[21] SHIMADA S, OGAWA T, KITAGAWA S, SUZUKI T, IKARI C, SHITSUKAWA N, ABE T, KAWAHIGASHI H, KIKUCHI R, HANDA H, MURAI K. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. The Plant Journal, 2009, 58(4): 668-681.
[22] MORENO-SEVILLA B, BAENZIGER P S, PETERSON C J, GRAYBOSCH R A, MCVEY D V. The 1BL/1RS translocation: Agronomic performance of F3-derived lines from a winter wheat cross. Crop Science, 1995, 35(4): 1051-1055.
[23] 王興榮, 張彥軍, 茍作旺, 李玥, 陳偉英, 祁旭升. 甘肅“和尚頭”小麥調(diào)查報(bào)告. 甘肅農(nóng)業(yè)科技, 2015(12): 49-52.
WANG X R, ZHANG Y J, GOU Z W, LI Y, CHEN W Y, QI X S. Investigation report of wheat Gansu “Heshangtou”. Gansu Agricultural Science and Technology, 2015(12): 49-52. (in Chinese)
[24] 袁俊秀, 楊文雄. 豐產(chǎn)廣適優(yōu)質(zhì)春小麥新品種——隴春23號(hào). 麥類作物學(xué)報(bào), 2009, 29(4): 740.
YUAN J X, YANG W X. Longchun 23, a new spring wheat variety with high yield, wide adaptability and high quality. Journal of Triticeae Crops, 2009, 29(4): 740. (in Chinese)
[25] 王建康, 蓋鈞鎰. 利用雜種F2世代鑒定數(shù)量性狀主基因-多基因混合遺傳模型并估計(jì)其遺傳效應(yīng). 遺傳學(xué)報(bào), 1997, 24(5): 432-440.
WANG J K, GAI J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2progeny. Acta Genetica Sinica, 1997, 24(5): 432-440. (in Chinese)
[26] ALLEN P, BENNETT K. SPSS statistics version 22: A practical guide. 2014.
[27] MENG L, LI H H, ZHANG Y L, WANG J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal, 2015, 3(3): 269-283.
[28] OOIJEN J, van't Verlaat J W, Tol J, Dale?n J, Buren J, Meer J M, Krieken J V, Kessel J, Van O, Voorrips R, Heuvel L. JoinMap?4, Software for the calculation of genetic linkage maps in experimental populations. Biology, 2006.
[29] VOORRIPS R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 2002, 93(1): 77-78.
[30] ZHAO G Y, ZOU C, LI K, WANG K, LI T B, GAO L F, ZHANG X X, WANG H J, YANG Z J, LIU X, JIANG W K, MAO L, KONG X Y, JIAO Y N, JIA J Z. Thegenome reveals multiple impacts of transposons. Nature Plants, 2017, 3(12): 946-955.
[31] YU M, MAO S L, HOU D B, CHEN G Y, PU Z E, LI W, LAN X J, JIANG Q T, LIU Y X, DENG M, WEI Y M. Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breeding, 2018, 137(1): 35-49.
[32] R?DER M S, HUANG X Q, B?RNER A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional & Integrative Genomics, 2008, 8(1): 79-86.
[33] HUANG X Q, C?STER H, GANAL M W, R?DER M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (L.). Theoretical and Applied Genetics, 2003, 106(8): 1379-1389.
[34] MIR R R, KUMAR N, JAISWAL V, GIRDHARWAL N, PRASAD M, BALYAN H S, GUPTA P K. Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Molecular Breeding, 2012, 29(4): 963-972.
[35] CHEN Z Y, CHENG X J, CHAI L L, WANG Z H, BIAN R L, LI J, ZHAO A J, XIN M M, GUO W L, HU Z R, PENG H R, YAO Y Y, SUN Q X, NI Z F. Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (L.). Theoretical and Applied Genetics, 2020, 133(1): 149-162.
[36] LIU H Y, SONG S, XING Y Z. Beyond heading time: FT-like genes and spike development in cereals. Journal of Experimental Botany, 2019, 70(1): 1-3.
[37] 韓領(lǐng)鋒, 亢玲, 張博, 王憲國(guó), 王中華, 張曉科, 陳東升. 小麥光周期基因在我國(guó)不同麥區(qū)中的組成分布. 麥類作物學(xué)報(bào), 2016, 36(12): 1617-1622.
HAN L F, KANG L, ZHANG B, WANG X G, WANG Z H, ZHANG X K, CHEN D S. Composition and distribution of wheat photoperiod genes in different wheat regions in China. Journal of Triticeae Crops, 2016, 36(12): 1617-1622. (in Chinese)
[38] MOCKLER T, YANG H Y, YU X H, PARIKH D, CHENG Y C, DOLAN S, LIN C. Regulation of photoperiodic flowering byphotoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 2140-2145.
[39] WEI J, FANG Y, JIANG H, WU X T, ZUO J H, XIA X C, LI J Q, STICH B, CAO H, LIU Y X. Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat. BMC Plant Biology, 2022, 22(1): 288.
[40] 呂波. 植物開(kāi)花基因FT的遺傳轉(zhuǎn)化及其參與開(kāi)花調(diào)控的研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2014.
Lü B. Genetic transformation of plant flowering gene FT and its involvement in flowering control [D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[41] LI T, DENG G B, SU Y, YANG Z, TANG Y Y, WANG J H, ZHANG J Y, QIU X, PU X, YANG W Y, LI J, LIU Z H, ZHANG H L, LIANG J J, YU M Q, WEI Y M, LONG H. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (L.). Theoretical and Applied Genetics, 2022, 135(1): 257-271.
QTL Mapping and Molecular Marker Development of traits related to Grain weight in Wheat
ZHANG ZeYuan1, LI Yue2, ZHAO WenSha1, GU JingJing3, ZHANG AoYan1, ZHANG HaiLong1, SONG PengBo1, WU JianHui1, ZHANG ChuanLiang1, SONG QuanHao4, JIAN JunTao5, SUN DaoJie1, WANG XingRong2
1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi;2Institute of Crop Science, Gansu Academy of Agricultural Sciences, Lanzhou 730000;3Luoyang Academy of Agriculture and Forestry Sciences, Luoyang 471023, Henan;4Zhumadian Academy of Agricultural Sciences, Zhumadian 463000, Henan;5Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan
【Objective】The yield of wheat, the second-highest-yielding food product in the world, has a major impact by grain weight. This research used materials from a recombinant inbred line (RIL) population derived from Heshangtou (HST) and Longchun 23 (LC23). Based on 55K SNP genotype data, QTL mapping was performed for traits related to grain weight of wheat, and co-segregation markers of major grain length QTL were developed and verified to provide reference for molecular marker assisted selection breeding. 【Method】The wheat 55K SNP microarray was used to genotype parents and RIL populations, and a high density genetic linkage map was constructed, and its correlation with Chinese spring reference genome IWGSC RefSeq v1.0 was analyzed.QTL mapping of traits related to grain weight in multiple environments based on inclusive composite interval mapping method.The analysis of variance of major effect QTLs were performed to judge the additive interaction effect among different QTLs, and to analyse its effect on traits related to grain weight.At the same time, the corresponding kompetitive allele specific PCR marker was developed according to the closely linked SNP loci of major QTL for grain length, and verified in 242 wheat accessions worldwide.【Result】In this study, a high density genetic map of Heshangtou/Longchun 23 RIL population was constructed, with full length 4 543 cM, including 22 linkage groups, covering 21 chromosomes of wheat, and the average genetic distance was 1.7 cM.There was a significant correlation between genetic map and physical map, and the Pearson correlation coefficient were 0.77-0.99 (<0.001).A total of 51 QTLs related to grain weight were detected, among them, 4 stable major QTLs were found in multi-environments (three or more environments) and distributed on 2D, 5A, 6B and 7D chromosomes.According to the physical interval and functional markers, it is inferred that stable major QTLsandare photoperiod geneand flowering gene, respectively. The analysis of variance shows that there is a significant interaction between them.The favorite alleles polymerization ofandcan significantly increase thousand grain weight and grain width of wheat.In addition, the corresponding KASP molecular detection markerwas developed based on the co-segregated SNP of the major locusfor grain length,which was significantly correlated with grain length and grain weight traits in a diversity panel comprising of 242 wheat accessions, and could increase grain length by 3.33% to 4.59% and grain weight 5.70% to 10.35% in different environments (<0.001). 【Conclusion】There are several genetic loci that affect traits linked to grain weight in Heshangtou (HST) and Longchun 23 (LC23), andanddramatically increased thousand grain weight and grain width through additive interaction effects.is significantly correlated with grain weight and grain length, and its co-segregated molecular markercan be used in molecular marker assisted selection breeding.
wheat; thousand-grain weight; QTL; KASP marker; molecular marker-assisted selection breeding
2023-03-28;
2023-04-20
陜西省“兩鏈”融合重點(diǎn)專項(xiàng)(2023KXJ-011)
張澤源,E-mail:18238768351@163.com。通信作者孫道杰,E-mail:sunwheat@nwsuaf.edu.cn。通信作者王興榮,E-mail:wxr_0618@163.com
(責(zé)任編輯 李莉)