摘要 胡桃屬約有22個物種,為第三紀(jì)孑遺植物,全球范圍均有分布。該屬植物種質(zhì)資源豐富,具有重要的食用、材用、生態(tài)、經(jīng)濟(jì)、藥用價值。其中,胡桃栽培歷史悠久。綜述胡桃屬植物演化歷史和基因組學(xué)方面的研究進(jìn)展,從胡桃屬植物物種形成、系統(tǒng)發(fā)育、生物地理和基因組學(xué)幾個方面進(jìn)行了闡述。對該屬植物遺傳多樣性和馴化歷史方面的研究前景進(jìn)行展望。隨著測序和分子生物技術(shù)的迅速發(fā)展,基因組學(xué)、轉(zhuǎn)錄組學(xué)、代謝組學(xué)、重測序、DNA甲基化、細(xì)胞器基因組、全基因組基因關(guān)聯(lián)分析和其他組學(xué)技術(shù)將成為胡桃屬植物演化歷史、組學(xué)和育種的有利工具。
關(guān)鍵詞 胡桃屬;演化歷史;分子系統(tǒng)發(fā)育;基因組學(xué);生物地理;馴化
中圖分類號:S718.49 DOI:10.16152/j.cnki.xdxbzr.2024-05-003
A review of research progress on evolutionaryhistory and genomics in Juglans
ZHAO Peng
(Key Laboratory of Resource Biology and Biotechnology in Western China,Ministry of Education/College of Life Sciences, Northwest University, Xi’an 710069,China)
Abstract The genus Juglans (walnut) consists of about 22 species, which are relic of the Tertiary period, with a widely global distribution. This genus is rich in germplasm resources and has significant value for food, timber, ecology, economy, and medicine. Persian walnut (Juglans regia L.) is the most important with a long history of cultivation. In this article, the evolutionary history and progress in genomic research of walnuts were reviewed. The speciation, phylogeny, biogeography, and genomics were discussed in genus Juglans. The prospects for research on the genetic diversity and domestication history of these plants are also discussed. With the rapid development of molecular biological technology and the next generation sequencing techniques, the genomics, transcriptomics, metabolomics, whole genome resequencing, DNA methylation sequencing, organelle genomes, genome-wide association studies, and other omics would be useful tools in studying the evolutionary history, genomics, and breeding of Juglans.
Keywords Juglans; evolutionary history; molecular phylogenetic; genomics; biogeography; domestication
胡桃屬(Juglans)植物隸屬胡桃科(Juglandaceae),全球約有21~23個種,占胡桃科的35%,是該科較為進(jìn)化的屬[1-3],亞洲、歐洲和美洲等國家和地區(qū)均有分布[4-5]。該屬多數(shù)成員為重要的資源植物,具有食用、材用、藥用和生態(tài)價值。例如,胡桃(Juglans regia L., 常稱為核桃)果仁具有很高的抗氧化能力[6-8], 且含有高濃度的Omega-3脂肪酸和蛋白質(zhì)等營養(yǎng)成分,對人類健康非常有利[7-11]。全球分布的胡桃屬植物主要有黑胡桃(J.nigra L.)、白胡桃(J. cinerea L.)、小果胡桃(J.microcarpa Berland.)、北加州黑胡桃(J. hindsii Jeps. ex R. E. Sm.)、姬核桃(J. major Torr.)等[1,12-13]。我國是胡桃屬植物分布中心和起源地之一[1-3],是重要的核桃產(chǎn)區(qū),種質(zhì)資源豐富[14-15]。主要有以下物種:核桃(J. regia L.)、鐵核桃(J. sigillata Dode, 也稱為泡核桃)、胡桃楸(J. mandshurica Maxim.包含野核桃J. cathayensis Dode)和文玩核桃麻核桃(J. hopeiensis Hu)[12,15-16]。近20多年來,隨著測序技術(shù)和分子生物學(xué)技術(shù)的迅猛發(fā)展,多組學(xué)技術(shù)被廣泛用于解決演化歷史、物種形成、系統(tǒng)發(fā)育、基因遺傳資源保護(hù)和育種中的科學(xué)問題。傳統(tǒng)的遺傳標(biāo)記例如:RAPD(random amplification polymorphic DNA)[17-18]、RFLP(restriction fragment length polymorphism)、SSR(simple sequence repeat)、ITS(internal transcribed spacer)、cpDNA(chloroplast DNA)、nrDNA(nuclear DNA)、SNP(single nucleotide polymorphism)等也曾被用于胡桃屬上述各方面研究工作[19-27]。人們利用多學(xué)科的方法解決胡桃屬植物物種形成、演化歷史、系統(tǒng)發(fā)育、譜系地理、遺傳多樣性和基因組學(xué)等方面研究的科學(xué)問題[2-3,28-32],并取得長足的進(jìn)步。
1 系統(tǒng)發(fā)育
人們根據(jù)植物學(xué)形態(tài)特征將胡桃屬植物分為4組:核桃組(Dioscaryon或Juglans)、胡桃楸組(Cardiocaryon)、灰核桃組(Trachycaryon)和黑胡桃組(Rhysocaryon)[4,15,33]。核桃組和胡桃楸組分布于歐亞大陸,灰核桃組和黑胡桃組分布于美洲地區(qū)(見圖1)。然而,根據(jù)化石證據(jù)結(jié)合形態(tài)學(xué)卻將該屬植物分為3組[34],其中,將灰核桃組和胡桃楸組合并為一組,從地理分布特點(diǎn)來看,胡桃楸組的物種均分布在東亞地區(qū),而灰核桃組唯一的物種美國白核桃(J. cinerea)卻天然分布在北美地區(qū),這一東亞-北美間斷分布模式使人們對胡桃屬植物的生物地理學(xué)研究進(jìn)入了爭議和不解的謎團(tuán)中(見圖1)[4,34]。中國植物志記載我國胡桃屬植物主要有以下5個種:核桃(Juglas regia)、鐵核桃(J. sigillata Dode)、麻核桃(J. hopeiensis Hu)、胡桃楸(J. mandshurica Maxim.)和野核桃(J. cathayensis Dode)[12]。核桃和鐵核桃歸到核桃組,麻核桃、胡桃楸和野核桃(J. cathayensis Dode)歸到胡桃楸組(該組還有一個物種天然分布于日本,即日本核桃(J. ailantifolia)(見圖1)。
研究表明,野核桃和麻核桃與胡桃楸表型相似、遺傳組成相近,建議可以歸并為同一物種[35-36]。然而,根據(jù)DNA分子遺傳標(biāo)記證據(jù),如限制片段長度多態(tài)性(restriction fragment length polymorphisms,RFLPs)[29]、核糖體內(nèi)轉(zhuǎn)錄間隔區(qū)(ITS)[21]、隨機(jī)擴(kuò)增多態(tài)性DNA(randomly amplified polymorphic DNA, RAPD)[17-18,37]以及6套葉綠體基因序列(MatK、trnT-trnF、psbA-trnH、atpB-rbcL、trnV-16S、trnS-trnM)分析均支持灰核桃組(美國白胡桃)與胡桃楸組親緣關(guān)系近的結(jié)論[1,28]。更有趣的是,最近研究表明胡桃屬植物中核桃組與黑胡桃組也屬于姊妹組。因此,該2組物種也存在屬內(nèi)歐亞-美洲生物地理間斷分布模式現(xiàn)象(見圖1)[5]。
胡桃屬植物天然地理分布范圍縮小、地理隔離及2大分支的植物區(qū)域性滅絕都是一個謎。目前,從形態(tài)學(xué)、化石、孢粉和分子均沒有清晰地解析自然界胡桃屬植物復(fù)雜的進(jìn)化歷史[1,4,28-29,34],有待進(jìn)一步研究。從化石證據(jù)表明,胡桃屬植物(Juglans)和楓楊屬植物(Pterocarya)分化時間大約在0.54億年前的古新世/晚新世時期,古生物學(xué)家分別在美洲(0.4~0.5億年前)、亞洲(0.25億年前)和歐洲(0.3億年前)均發(fā)現(xiàn)了胡桃屬植物化石[1,29,34]。然而,化石記錄和分子系統(tǒng)學(xué)均發(fā)現(xiàn)胡桃屬于始新世中、漸新世初出現(xiàn)物種分化[38],這與第三紀(jì)末期的全球地質(zhì)氣候變化在時間上相吻合。因此,推測中新世末期的降溫及隨后的冰期震蕩所導(dǎo)致的環(huán)境變化為胡桃屬物種形成提供了推動作用。文獻(xiàn)表明,胡桃屬植物的起源地可能為歐亞大陸,并且東亞可能是該屬植物的冰期避難所[39]。這些證據(jù)又表明,第四紀(jì)冰期動蕩導(dǎo)致的環(huán)境變化可能又為胡桃屬植物快速適應(yīng)成種提供了機(jī)遇與推動作用,如鳳仙花(Impatiens)的快速輻射[40]、高山松(Pinus densata Mast.)的雜交成種[41]、連香樹屬(Cercidiphyllum Siebold & Zucc.)的物種分化都是當(dāng)時全球變化引發(fā)物種形成的典型例子[42]。如前所述,胡桃屬植物的地理分布十分有趣(見圖1):我國分布的核桃組和胡桃楸組植物分布于歐亞大陸,與黑胡桃組和灰核桃組(分布于北美地區(qū)南部和南美北部)物種呈現(xiàn)典型的地理隔離異域分布模式[1-5];我國特有種麻核桃(J. hopeiensis Hu)、胡桃楸(J. mandshurica Maxim.)和野核桃(J. cathayensis Dode)與天然分布在北美地區(qū)的美國白胡桃(J. cinerea)遺傳關(guān)系非常近,又呈現(xiàn)東亞-北美間斷分布模式[5,14];胡桃楸主要分布于小興安嶺、完達(dá)山脈、長白山區(qū)及遼寧東部,與日本核桃(J. ailantifolia)也呈間斷異域分布[23,28];野核桃(J. cathayensis Dode)、核桃和鐵核桃分布在云南、西藏東南部、四川南部、西南部附近,呈現(xiàn)鄰域分布與同域分布模式[2,28,32,43];與其他胡桃屬植物不同,核桃與鐵核桃親緣關(guān)系最近,二者交匯于青藏高原,但核桃的分布范圍更廣[1-3,16,26];麻核桃可能作為核桃與胡桃楸的雜交種僅分布在北京和河北部分地區(qū),與胡桃楸呈明顯的重疊分布模式[2,30,44]。
目前,我國學(xué)者已完成了核桃(J. regia)樣品葉綠體全基因組從頭組裝測序工作[45]。采用該葉綠體全基因組為參考,對近緣種葉綠體基因組進(jìn)行測序工作[3,31]。為了搞清楚胡桃屬物種形成與分化,我們通過簡化基因組學(xué)(genotyping by sequencing, GBS)、轉(zhuǎn)錄組學(xué)和葉綠體全基因組學(xué)數(shù)據(jù),突出體現(xiàn)了雜交物種形成歷史和系統(tǒng)發(fā)育關(guān)系(見圖2)。結(jié)果發(fā)現(xiàn):核桃與近緣種泡核桃(J. sigillata Dode)遺傳關(guān)系近,且存在基因漸滲;麻核桃(J. hopeiensis Hu)為核桃和胡桃楸的雜交種;從3種組學(xué)數(shù)據(jù)均證明野核桃(J. cathayensis Dode)和胡桃楸遺傳關(guān)系很近,可作為一個物種[2]。核桃種內(nèi)不同地理群體間遺傳分化明顯,尤其是新疆、云南與其他地區(qū)差異明顯,且系統(tǒng)進(jìn)化樹位于基部,暗示著核桃起源于我國西南與新疆地區(qū),經(jīng)歷馴化后,通過人類長距離傳播(絲綢之路等)向其他地區(qū)擴(kuò)散[2-3]。
基于胡桃屬植物前期系統(tǒng)發(fā)育研究基礎(chǔ),需要根據(jù)胡桃屬地理分布[1]及當(dāng)前譜系地理研究現(xiàn)狀[24,47-48]、地理學(xué)與地質(zhì)學(xué)化石證據(jù)[34,49-51],結(jié)合最新分子系統(tǒng)學(xué)研究[1-2,16,52],對胡桃屬植物系統(tǒng)發(fā)育進(jìn)行詳細(xì)闡述?;谛螒B(tài)學(xué)、化石、分子遺傳標(biāo)記等方法對胡桃屬植物系統(tǒng)發(fā)育關(guān)系進(jìn)行了大量系統(tǒng)研究[1-2,5,14,28,33-34],今后該屬植物中需要解決的系統(tǒng)發(fā)育關(guān)系問題主要有:胡桃屬植物分為4組〔核桃組(Dioscaryon/Juglans)、胡桃楸組(Cardiocaryon)、灰核桃組(Trachycaryon)和黑胡桃組(Rhysocaryon)〕,還是3組(核桃組、胡桃楸組和黑胡桃組[4,15,33]),其中,灰核桃組(Trachycaryon)的歸屬問題;如果分成3組,核桃組(Dioscaryon/Juglans)、胡桃楸組(Cardiocaryon)和黑胡桃組(Rhysocaryon)到底哪組物種更為原始,還是平行演化;胡桃屬下物種哪些需要合并,哪些為亞種或變種仍需要進(jìn)一步確認(rèn)和研究。
2 生物地理
生物地理學(xué)(biogeography, 也稱譜系地理學(xué))是了解進(jìn)化歷史在等位基因、種群和物種形成現(xiàn)有的譜系地理分布格局過程中所起的作用,結(jié)合群體遺傳研究物種地理分布。近30年,生物地理學(xué)成為植物研究熱點(diǎn),有趣的一個現(xiàn)象是在自然界中植物地理間斷分布現(xiàn)象普遍存在[53-54],從地衣、苔蘚、蕨類、裸子植物到被子植物均有發(fā)現(xiàn)[55]。東亞-北美物種間斷分布的發(fā)現(xiàn)已有260多年歷史[54,56-57],該類地理分布植物約有34科49屬975種,東亞地區(qū)730種,占總數(shù)的75%,北美地區(qū)245種,占25%。如薔薇科三花水楊梅(Geum triflorum Pursh)[58]、桃科山核桃屬(Carya Nutt)[49]、茜草科蔓虎刺屬(Mitchella L.)及葡萄科地錦屬等(Parthenocissus Planch.)[53,59]。典型的東亞-北美洲際間斷分布的對應(yīng)種為木蘭科鵝掌揪屬僅殘存的2個種,鵝掌楸(Liriodendron chinensis Hemsl.)與其姊妹種北美鵝掌楸(L. tulipifera L.)[60]。
主要有2種物種間斷分布模型的解釋:地理隔離模式(geographic isolation)(見 圖3)[61-62]和長距離擴(kuò)散模式(long distance dispereal)(見圖3)[63-64]。地質(zhì)變遷和氣候變化是物種間斷分布的主要原因[65-66]。這些現(xiàn)象證明,地理隔離和基因流的缺乏并不是物種形成的必要條件[67-68],例如,大陸和島嶼地理隔離形成新物種后仍有基因流現(xiàn)象存在[69]。而基因流存在的情況下,物種形成事件如何發(fā)生一直是進(jìn)化生物學(xué)中有爭議的問題,雖然人們可利用重疊地理分布區(qū)進(jìn)行上述物種形成模式研究(如同域成種或生態(tài)成種)[68,70-72]。然而,針對近緣種大尺度洲際生物地理間斷分布模式及種間生態(tài)位大小差異仍不甚清楚,缺乏系統(tǒng)研究[73-74],有待結(jié)合分子生物學(xué)、古生態(tài)學(xué)(paleoecology)及表型形態(tài)等對其擴(kuò)散機(jī)制和遷移動態(tài)進(jìn)行研究[75-77]。比較親緣關(guān)系近與生態(tài)位相似的自然種群可以更好地理解物種形成與環(huán)境的關(guān)系[55,75-77]。如對北美溝酸漿屬等植物研究發(fā)現(xiàn),親緣關(guān)系近的物種(如姊妹種)有共同的進(jìn)化歷史與重疊地理分布范圍,但生態(tài)位明顯不同[74,78-84];向日葵屬(Helianthus L.)近緣種間物種分化的主要原因也并不是地理隔離[69]。由此可見,生物地理學(xué)、生態(tài)學(xué)和進(jìn)化生物學(xué)相結(jié)合為物種形成和間斷分布提供了新的依據(jù)[85-88],通過綜合科學(xué)方法才可以更好地理解物種分化和譜系地理分布的原則和過程[65,87-89]。
前期研究過程中我們發(fā)現(xiàn)胡桃屬(Juglans)植物既存在近緣種洲際生物地理間斷分布現(xiàn)象,又存在同域分布、鄰域分布現(xiàn)象,能夠作為驗證多個物種形成理論及東亞-北美間斷分布的隔離機(jī)制極好的研究材料(見圖1、3)[1-3]。同時,該屬植物可能作為第三紀(jì)孑遺植物,對研究古植物區(qū)系的變遷和古地理及第三紀(jì)氣候波動和環(huán)境變遷有著重要的科學(xué)價值。通過對胡桃屬物種分化歷史動態(tài)的研究,能夠使我們更好地理解物種地理分布式樣的形成原因,揭示新物種產(chǎn)生的機(jī)制、近緣種間斷分布的原因及種間雜交漸滲,發(fā)現(xiàn)胡桃屬物種分化與過去全球氣候環(huán)境變遷的可能相關(guān)性。
胡桃屬植物可能是由于全球氣候變化、地質(zhì)歷史和環(huán)境變化等因素引起物種生物地理間斷分布現(xiàn)象。證據(jù)主要有:過去氣候變化和洲際大陸動蕩是造成現(xiàn)代物種的生物地理格局的主要原因[90-93],漸新世中期氣候變暖時,物種由北美遷移到歐亞大陸。利用古氣候數(shù)據(jù)來解讀分布區(qū)變化留存下的遺傳信息也成為推測過去氣候變遷物種遷移路線的有效手段[65,94]。全球氣候尤其是第四紀(jì)氣候的劇烈波動,導(dǎo)致反復(fù)而劇烈的環(huán)境變化,這些變化影響著不同緯度地區(qū)動植物的分布和遺傳結(jié)構(gòu)[95-97]。物種種群在第四紀(jì)盛冰期向南退縮至避難所[98-99],冰期后種群迅速重建擴(kuò)張[100],許多物種在末次盛冰期隱藏的避難所為高緯度地區(qū)[101-103]。目前,分子鐘和化石證據(jù)廣泛用于估算東亞和北美東部地區(qū)物種分化時間[57,104-106],分布于歐亞大陸的植物(如沙棘,Hippophae rhamnoides L.)起源于青藏高原及其周邊區(qū)域[107-108],其形成過程與青藏高原東南部的近期隆升相關(guān)(高山松,Pinus densata Mast.)[41]。生物地理學(xué)研究表明,美國白胡桃自然種群急劇減少的原因也是由于第四紀(jì)冰期的影響,并非外來真菌的危害[18,109]。胡桃楸(J.mandshurica Maxim.)的譜系地理歷史研究結(jié)果顯示,該植物在第四紀(jì)冰期有2個獨(dú)立的避難所,且有著不對稱的基因流存在于2個避難所之間[24,110]。因此,我們推測更新世冰期,胡桃楸組有較強(qiáng)的基因漸滲到黑胡桃組植物,而核桃組可能是黑胡桃組的祖先種。第三紀(jì)時期物種廣泛分布在東亞和北美地區(qū),第四紀(jì)冰期胡桃屬植物向南退縮至避難所,冰期后迅速重建擴(kuò)張分化成美國黑胡桃和美國白核桃2大組,而經(jīng)過幾次收縮和擴(kuò)張,南遷和北移,美國白核桃最終形成現(xiàn)代地理分布格局。由于第四紀(jì)冰期氣候動蕩影響和青藏高原的隆升使得歐亞大陸分布的胡桃屬植物分化形成核桃組(核桃、鐵核桃)和胡桃楸組(胡桃楸、野核桃、麻核桃和日本核桃)2大組的分布格局。核桃后來經(jīng)過長期氣候變化影響演化形成鐵核桃。胡桃楸由于冰期氣候引起的環(huán)境變化最終可能分化形成3個物種:①演化形成秦嶺以南分布的野核桃(J. cathayensis Dode);②與核桃雜交形成麻核桃;③擴(kuò)散到日本形成日本核桃。
由于胡桃屬植物類群在兩地區(qū)之間(歐亞-北美)可進(jìn)行遠(yuǎn)距離擴(kuò)散和遷移,進(jìn)而演化為不同物種(見圖1、3)。胡桃楸組、灰核桃組和黑胡桃組植物均由歐亞大陸現(xiàn)代分布的核桃組植物分化而來。也有研究報道,溫帶森林樹種起源于東亞,并在東亞多樣化后在不同時期擴(kuò)散至其他地區(qū),大部分植物都是從東亞遷移擴(kuò)散到北美地區(qū),進(jìn)而形成東亞-北美間斷分布種[75-77,111]。我國和日本分布的胡桃楸組植物(胡桃楸和日本核桃)與美國白核桃(J. cinerea)親緣關(guān)系近,說明該2組植物祖先種可能具有長距離的擴(kuò)散能力[24,109],由于胡桃屬植物為風(fēng)媒傳粉植物,長距離的海風(fēng)花粉基因傳播是可能的(見圖2~4)[112-113],且胡桃屬植物堅果具有很高營養(yǎng)價值,人類活動的傳播也是可能的[3,5]。由于美國白核桃的植物化石早于其他胡桃楸組植物,胡桃屬植物是否由祖先種美國白核桃分化而來?因此,如果能對美國白核桃的洲際間斷分布格局進(jìn)化歷史和生物地理學(xué)進(jìn)行系統(tǒng)研究和解釋,這一結(jié)果將會為植物生物地理學(xué)的研究提供一個非常經(jīng)典的理論參考依據(jù)[114]。另外,我們推測在成種過程中,核桃與其他幾個物種存在較強(qiáng)的基因交流,可能為歐亞胡桃屬植物共同的祖先[39]。證據(jù)主要有3方面:①形態(tài)學(xué)方面,核桃組與其他3組有著明顯的差異,即果實成熟后有開裂的果皮[4,33];②分子系統(tǒng)發(fā)育關(guān)系研究表明核桃組植物處于胡桃屬植物基部單獨(dú)為一支;③目前胡桃屬雜交試驗表明,核桃與胡桃楸雜交種可能為麻核桃[2,30,44],日本核桃與美國白核桃可形成可育雜種后代,但美國黑胡桃和美國灰核桃能否雜交仍有待研究[19]。這些結(jié)果也可以推斷,核桃與美國黑胡桃同時起源,美國黑胡桃可能屬于美洲土著起源種,并快速輻射成種。我國有3個胡桃屬植物天然地理分布重疊區(qū)在青藏高原和橫斷山附近,遺傳多樣性中心可能在該地區(qū),根據(jù)其他植物地理學(xué)研究推測[41,107],青藏高原隆起可能對我國胡桃屬植物分化也有著明顯的影響作用[52,115]。另外,由于第四紀(jì)冰期影響,日本海形成及擴(kuò)張導(dǎo)致日本與中國大陸間陸橋反復(fù)出現(xiàn),使兩地植物區(qū)系得以交流,深刻影響了東亞植物區(qū)系的組成,可能由胡桃楸遷移與擴(kuò)散到日本后形成現(xiàn)代的物種日本核桃。
前期利用微衛(wèi)星分子標(biāo)記進(jìn)行了核桃群體遺傳學(xué)研究,得出以下結(jié)論:氣候變化對我國核桃地理分布有著重要影響。在中國核桃的3個避難所為西南地區(qū)、秦嶺巴山地區(qū)和北方,冰期后氣候變暖群體擴(kuò)散,并由于地理環(huán)境多樣性逐漸適應(yīng)分化成現(xiàn)代分布格局。人類活動如絲綢之路和古銅路線對核桃有長距離傳播作用[3,116]。隨著氣候變化西南地區(qū)由于生態(tài)環(huán)境適應(yīng)產(chǎn)生生態(tài)種泡核桃(J. sigillata Dode),該物種保留了果實、葉片等原始形態(tài)特征[3,23]。隨著測序技術(shù)的迅速發(fā)展,生物地理學(xué)研究方法也趨向于基于多組學(xué)方法進(jìn)行研究,尤其是對植物3套全基因組學(xué)的測序數(shù)據(jù)大量公布。因此,后續(xù)胡桃屬植物也將采用全因組學(xué)序列、葉綠體基因組序列和線粒體基因組學(xué)結(jié)合起來更深層次地解析該屬植物生物地理等科學(xué)問題。
3 物種形成
達(dá)爾文早在1859年《物種起源》著作中就提到了物種形成與地理間斷分布模式[119]。傳統(tǒng)理論認(rèn)為,突變基因為物種分化提供基礎(chǔ),自然選擇是進(jìn)化的主導(dǎo)因素,隔離是物種形成的必要條件。地理隔離群體由于基因流中斷和遺傳分化的異域成種(allopatric speciation)是新物種形成的主要機(jī)制(見圖5)[120-121]。這種進(jìn)化模式為距離隔離模式(isolation-by-distance, IBD),即低水平的遷移率會增加遺傳漂變的影響,增強(qiáng)群體分化,常用遺傳距離和地理距離相關(guān)性表示[122],種群隔離時間足夠長,基因突變和基因流減少導(dǎo)致群體遺傳分化和生殖隔離進(jìn)化從而促使新物種的產(chǎn)生[123-125]。事實上,自然種群完全隔離只是暫時的(如冰期時期與間斷分布),因此,物種的擴(kuò)散能力和地理距離就決定著種群遷移水平[2,44,126-127]。
同域成種(sympatric speciation)[70]、邊域成種(peripatirc speciation)和鄰域成種(parapatric speciation)[128]也是物種形成的重要機(jī)制[129-132],與異域成種觀點(diǎn)不同的是,該成種模式在物種形成過程中往往存在基因流(見圖5)[133-134]。其中,同域成種理論認(rèn)為,真核生物僅有少數(shù)等位基因與有效生殖隔離及不同生態(tài)位適應(yīng)有關(guān)[135]。近期研究提出生態(tài)成種(ecological speciation)模式[136-137],即最初由達(dá)爾文提出的生態(tài)介導(dǎo)選擇重新被關(guān)注[138-139]。物種由于適應(yīng)不同的生態(tài)環(huán)境條件而分化成種,其強(qiáng)調(diào)地理隔離以自然選擇方式降低種群間的遷移率[140-141],中性遺傳分化與環(huán)境因素之間的相關(guān)性,即生態(tài)隔離(isolation-by-ecology, IBE)或環(huán)境隔離(isolation-by-environment, IBE)是物種形成的主要機(jī)制(見圖5)[129,142-143]。此外,雜交成種,即不同物種雜交后與親本生殖隔離產(chǎn)生新的物種模式也是物種形成的機(jī)制,尤其在植物中比較常見[126,144]。研究表明,全球氣候波動(冰期、氣候變暖)引起環(huán)境變化也是影響物種形成的主要因素之一[121],強(qiáng)烈的自然選擇是維持物種分化的決定性因素[145]。因此,理解物種形成模式和預(yù)測物種自然群體對地理隔離與環(huán)境變化的響應(yīng)至關(guān)重要,目前,人們對物種空間變異和環(huán)境變化下物種的反應(yīng)模式還是了解甚少[146]。
我們提出以下2種胡桃屬植物物種形成假說。
1)胡桃屬植物為異域成種(isolation-by-distance, IBD),即由于地理隔離(如海洋淹沒大陸、大陸漂移、島嶼形成等因素)使得胡桃屬分化成不同新種,與各分布類群獨(dú)立產(chǎn)生于其各自不同的分布區(qū)有關(guān)(見圖1、3、5)[1-3,5,13,15,34]。生物地理學(xué)和地質(zhì)歷史證據(jù)表明,從中生代(250~65 Ma)到晚中新世或早上新世(23.3~5.3 Ma),亞洲和美洲之間曾經(jīng)通過白令海峽路橋(或者可能為阿留申路橋)連接,白令路橋當(dāng)時的地理位置大約在北緯70°~80°之間漂移[147-149],歐洲美洲路橋也有存在[28,150]。因而北半球各陸塊間的植物區(qū)系相互交匯,可以推測胡桃屬植物可能通過路橋在亞洲、歐洲和美洲等地區(qū)之間進(jìn)行遷移[2,34]。在進(jìn)化歷史中,胡桃屬植物是由黑胡桃組和胡桃楸組的共同祖先分化成現(xiàn)在的這些物種,核桃組植物現(xiàn)代地理分布格局可能是由于歐亞大陸隔離分化或者中亞地層活動造成的[1,5,34]。亞洲-美洲和歐洲-美洲路橋消失后,由于長期地理隔離、基因流中斷、遺傳漂變和選擇適應(yīng)等因素使得該屬植物分化成2大組,即北美地區(qū)和歐亞地區(qū)2部分?;液颂医M(美國白核桃)從古老的胡桃楸組中分化到美國黑胡桃組中,時間大約在更新世冰期,而化石證據(jù)表明美國白核桃在漸新世和新近紀(jì)后期廣泛分布于新大陸(美洲大陸及鄰近群島)和舊大陸(歐洲、亞洲和非洲)。后因青藏高原隆升、秦嶺太白山與東北長白山等地質(zhì)事件,使得胡桃屬物種因地理隔離分化成現(xiàn)在的4個組(黑胡桃組、灰核桃組、核桃組和胡桃楸組)。
2)胡桃屬植物為生態(tài)成種(IBE),即生態(tài)環(huán)境的選擇分化使物種種群之間產(chǎn)生生殖隔離[151],進(jìn)而產(chǎn)生新物種(見圖5)[137]。由于生態(tài)環(huán)境的不同(如生物區(qū)系環(huán)境、溫度、海拔、光照、降水等因子)引起植物在自然界中降低種群間的遷移率,基因突變增加以及生理和生殖功能的演化等導(dǎo)致新的物種形成[100,138,152]。根據(jù)70項已發(fā)表研究表明,約有37.1 %的物種符合生態(tài)成種環(huán)境隔離(isolation-by-ecology, IBE)模式理論。同一物種在環(huán)境相同的不同種群之間基因流大于環(huán)境不同的種群[146],這一模式在玄參科溝酸漿屬[74]與菊科向日葵屬中得到了很好驗證[68-69]。生態(tài)成種研究表明,遷移和雜交并不使鄰域分布的不同種群之間基因流明顯減少[153-154],而是由于不同的生態(tài)環(huán)境造成的[155-158],如孔雀魚(Poecilia mexicana)[159]、蝸牛(Rhagada)[151]和大山雀(Parus major)[160]等。我國分布的胡桃屬植物中,核桃喜光、耐寒、抗旱、抗病能力強(qiáng),適應(yīng)多種土壤生長,喜肥沃濕潤的沙質(zhì)壤土,同時對水肥要求不嚴(yán)[3,22,26,32];鐵核桃生長的海拔梯度范圍大,可生長在太行山和青藏高原地區(qū),極端最低氣溫-2 ℃[8,32,43];胡桃楸則可以生長在極端最低溫度可達(dá)-40 ℃,年降水量500~1 000 mm、海拔梯度范圍為400~1 000 m的灰化棕色森林土壤下[17,23,110];野核桃(J. cathayensis Dode)對土壤肥力要求較高,不耐瘠薄,喜肥沃、濕潤、排水良好的微酸性土至微堿性土;麻核桃生長的生態(tài)環(huán)境與胡桃楸相似[30,113]。胡桃屬植物所生長的生態(tài)環(huán)境有著很大的差異,不同環(huán)境的適應(yīng)性會使種群間遠(yuǎn)交衰退可能性增加,常見于風(fēng)媒植物種中[161-162]。如植物的選型交配[163-165]、生態(tài)異質(zhì)性[74]、邊緣種群的適應(yīng)[109]等生態(tài)環(huán)境因素均影響物種形態(tài)特征與新物種的形成。由于植物所擁有的若干特殊性質(zhì)(如種子休眠、有限擴(kuò)散和局部適應(yīng)),遺傳變異是物種適應(yīng)變化環(huán)境的基礎(chǔ),而當(dāng)?shù)剡m應(yīng)則是種群適應(yīng)局部環(huán)境遺傳分化的結(jié)果。因此可以推測,我國不同生態(tài)環(huán)境條件的差異使得胡桃屬植物種群間存在較強(qiáng)的選擇壓力,進(jìn)而引起基因流減少與生殖隔離分化,逐漸形成現(xiàn)在的5個不同物種[2]。而美國白核桃和日本核桃作為東亞分布的核桃祖先種,由于長期的生態(tài)環(huán)境因子的影響分化成種[2,164]。
物種形成和分化是生物學(xué)非常重要的研究課題,在胡桃屬植物全球樣品資源收集的基礎(chǔ)上,該屬植物物種起源的研究仍需繼續(xù)?;趯W(xué)者前期研究結(jié)果發(fā)現(xiàn),黑胡桃組植物主要分布在美洲地區(qū),而該組有多個物種地理分布范圍小,其背后物種多樣化和形成機(jī)制值得研究;黑胡桃作為北美最重要的胡桃屬植物,其食用和材用向著2個育種方向發(fā)展,后續(xù)如果對人工選擇性狀和物種內(nèi)不分化驅(qū)動力進(jìn)行研究將為揭示木本植物種內(nèi)物種形成和分化提供參考;核桃作為胡桃屬最重要的物種,自然選擇和人工選擇在該物種內(nèi)部產(chǎn)生的遺傳變異值得關(guān)注,另外,作為栽培歷史悠久的木本油料,其廣泛的地理分布產(chǎn)生的物種內(nèi)生態(tài)適應(yīng)性分化的機(jī)制也將成為該屬植物值得關(guān)注的研究方向。
4 馴化歷史
馴化是人類利用野生動植物通過無性或有性方式進(jìn)行遺傳物質(zhì)交換的獨(dú)特生物演化形式[166-167]。過去150年來,作物馴化歷史及選擇研究發(fā)現(xiàn),現(xiàn)代作物均起源于幾個主要馴化中心,栽培成功后迅速擴(kuò)散到其他地理分布區(qū)。選擇壓力下,現(xiàn)代馴化植物和野生種在形態(tài)和遺傳上均產(chǎn)生了較大分化[167-171]。馴化在地質(zhì)時間尺度屬于現(xiàn)代生物演化(lt;1.2萬年前)[168],馴化中心及物種擴(kuò)散和多樣化有著較為清晰的考古學(xué)證據(jù)和歷史記載[172]。因此,栽培植物為馴化歷史研究提供了一個理想的進(jìn)化生物學(xué)實驗室。全球馴化植物約有160科2 500種,3大主糧小麥[166,172-174]、水稻[175-178]、玉米[179-182]及西紅柿[183-184]、黃瓜[185]、大豆等[186]一年生作物的馴化歷史備受關(guān)注[168,187],研究成果大大提高了對栽培植物起源的理解和育種資源的認(rèn)知。隨著全球水和耕地資源的短缺、人口增長及氣候變化等因素的影響,研究多年生植物起源馴化歷史也變得越來越重要[169]。占世界糧食產(chǎn)量1/8的果樹及油料植物中,已有柑橘[170]、橄欖樹[188]、梨[189]、桃[190]等水果植物鮮有起源馴化歷史報道;對于核桃、巴旦杏、榛子和腰果等干果植物的起源馴化歷史關(guān)注較少[115,191-192]。
核桃(J. regia)為世界重要栽培經(jīng)濟(jì)樹種,具有很高的食用、材用、藥用和生態(tài)等方面價值[115,193-194]。由于核桃關(guān)乎人類飲食與健康,產(chǎn)量持續(xù)增加,據(jù)聯(lián)合國糧食及農(nóng)業(yè)組織(food and agriculture organization of the United Nations, FAO)統(tǒng)計,2017年全球產(chǎn)量為380萬噸。胡桃屬植物約有22個物種[14],核桃野生地理分布范圍在歐亞山地[3],可生長在極端最低溫度達(dá)-40 ℃的環(huán)境條件下。在自然選擇下,野生和地方核桃資源具有較高的遺傳多樣性。核桃栽培歷史已有6 800多年,全球約有500多個栽培品種廣泛種植[194-195]。根據(jù)FAO統(tǒng)計,產(chǎn)量高的國家(地區(qū))有中國、美國、土耳其、伊朗、法國等,且我國穩(wěn)居第一。群體基因組學(xué)與選擇基因分析研究不僅能揭示栽培植物的起源馴化歷史,還可以為分子育種提供重要參考[187]。相比多年生植物,一年生草本作物起源馴化歷史研究早且深入,例如,玉米(Zea mays)在約9 000年前墨西哥低洼地帶經(jīng)歷1次馴化事件后,快速傳播到美洲各地;大麥至少經(jīng)歷2次馴化事件,一次從中東“新月沃土”到扎格羅斯山脈,另一次則是不同野生種遺傳貢獻(xiàn)[181,195-196];水稻也至少經(jīng)歷2次馴化事件[197];菜豆和高粱經(jīng)歷了多次馴化事件[198]。典型農(nóng)藝性狀“馴化綜合征”的馴化基因鑒定對作物育種改良非常重要,比較栽培/地方和野生群體基因組學(xué)結(jié)合選擇等分子實驗可鑒定出馴化基因[115,199]。相反,多年生木本植物由于繁殖周期長、童期長(核桃8~10年),栽培群體遺傳貢獻(xiàn)來源于直接“祖先”與馴化基因庫(見圖6)。梨起源于中國的西南部,經(jīng)過歐亞大陸傳播到中亞,最后到達(dá)亞洲西部和歐洲[189]。柑橘經(jīng)過2次馴化事件[200-201],葡萄和橄欖樹都經(jīng)歷多次馴化事件且伴隨著地方/野生遺傳混合[188,202-205]??梢娔颈局参锲鹪瘩Z化及適應(yīng)機(jī)制較復(fù)雜,有待進(jìn)一步深入研究(見圖6)[205-208]。
核桃作為重要經(jīng)濟(jì)植物,其起源中心和馴化備受關(guān)注,研究學(xué)者提出了不同觀點(diǎn)。Bayazit認(rèn)為中亞是核桃遺傳多樣性中心,起源于伊朗-阿富汗[209],后來主要由古代部落將核桃傳入中國、俄羅斯和東歐;有研究認(rèn)為土耳其東北部和高加索南部可能為核桃馴化中心,在青銅時代由人為引入巴爾干和中歐[210];也有學(xué)者認(rèn)為中亞為馴化中心,即喜馬拉山西部從克什米爾地區(qū)到吉爾吉斯斯坦[211];而化石證據(jù)表明核桃上新世分布于歐洲和地中海地區(qū),在更新世冰川時期(從2 588 000年前到11 700年前)分布于新疆西部到高加索到整個中亞地區(qū)[210]。此外,有多個起源中心的說法,即核桃起源于喀爾巴阡山脈、高加索地區(qū)、土耳其東北部、伊朗北部、天山西部、喜馬拉雅山脈東部和青藏高原;針對中國核桃的起源問題,以漢使張騫從西域波斯帝國(約2 100年前)帶回種子流傳最廣[13];最近發(fā)現(xiàn),核桃可能是在3.45百萬年前由黑胡桃組(Rhysocaryon)和胡桃楸組(Cardiocaryon)祖先種的古雜交起源[212]。
基于簡化基因?qū)W數(shù)據(jù)結(jié)果,世界范圍核桃種質(zhì)資源進(jìn)行了全基因組重測序分析。系統(tǒng)發(fā)育樹表明,在核桃屬植物中,核桃組(Dioscaryon/Juglans)樣品為單系分支(見圖7)。核桃群體遺傳結(jié)構(gòu)可以分成4大支,所檢測的樣品不存在明顯的地理分布聚類。核桃種質(zhì)資源遺傳多樣性的核心區(qū)域是青藏高原和喜馬拉雅山脈附近的中國西南部和亞洲南部,喜馬拉雅山脈的隆起是導(dǎo)致核桃種群動態(tài)變化的主要因素。核苷酸多樣性、連鎖不平衡、單核苷酸多態(tài)性和插入/缺失方面的基因組變異模式揭示了核桃的馴化和選擇足跡[115]。較高的群體遺傳分化現(xiàn)象為本項目研究提供依據(jù),在此基礎(chǔ)上,我們對核桃栽培品種和野生種群體重測序數(shù)據(jù)進(jìn)行選擇消除分析,并得到一些候選馴化基因,如MYB, CYP450, GRAS等生物與非生物脅迫相關(guān)的基因。選擇性掃描分析、全基因組關(guān)聯(lián)分析(genome-wide association studies,GWAS)和表達(dá)分析進(jìn)一步確定了2個轉(zhuǎn)錄因子影響堅果隔膜的厚度(JrbHLH和JrMYB),可作為核桃馴化過程中選擇的候選基因位點(diǎn)(見圖7)[115,213]。因此,利用更大范圍核桃個體,用已公布高質(zhì)量染色體水平核桃參考基因組進(jìn)行群體基因組學(xué)分析,揭示核桃起源進(jìn)化歷史、遷移路線與馴化基因[115,194-195,214-215]。
5 基因組學(xué)
隨著測序技術(shù)的迅速發(fā)展,全球植物全基因組數(shù)據(jù)公布日新月異。胡桃屬植物作為木本油料近年也有高質(zhì)量基因組數(shù)據(jù)公布。高質(zhì)量參考基因組數(shù)據(jù)對植物進(jìn)行群體遺傳學(xué)、演化歷史和農(nóng)藝性狀篩選等研究均具有十分重要的作用,同時,基因組學(xué)也是進(jìn)行種質(zhì)資源保護(hù)和開發(fā)利用及分子育種的基礎(chǔ)[193,216]。胡桃屬基因組學(xué)研究領(lǐng)域公布的第1個全基因組數(shù)據(jù)個體為核桃(J. regia L.)品種‘Chandler’[193],當(dāng)時研究團(tuán)隊采用了一代和二代測序技術(shù),并對其基因組進(jìn)行了scaffold水平的組裝注釋。首次公布的核桃基因組數(shù)據(jù)為研究人員提供了寶貴的資源。通過對核桃多酚代謝通路中的基因進(jìn)行分析,研究者揭示了PPO2基因在該代謝過程中發(fā)揮著重要作用[193]。為了得到更好質(zhì)量的參考基因組數(shù)據(jù),科研人員結(jié)合三代測序技術(shù)和Hi-C測序技術(shù)對核桃品種‘Chandler’基因組進(jìn)行了染色體水平質(zhì)量提升,共注釋到了37 554個基因,為胡桃屬植物提供了重要的參考基因組數(shù)據(jù)資源[216]。
2018年,美國普渡大學(xué)等研究團(tuán)隊利用二代測序平臺對胡桃屬6個物種,包括核桃(J. regia L.)、黑胡桃(J. nigra L.)、野核桃(J. cathayensis Dode)、鐵核桃(J. sigillata Dode)、小果黑胡桃(J. microcarpa Berland.)、加州黑胡桃(J. hindsii Jeps. ex R. E. Sm.)、楓楊(Pterocarya stenoptera)進(jìn)行了scaffold水平全基因組測序和組裝,分析了胡桃屬植物基因組內(nèi)遺傳變異[217]。2018年,我國北京師范大學(xué)研究人員利用二代測序平臺對胡桃楸(J. mandshurica Maxim.)、核桃(J. regia)和黑胡桃(J. nigra L.)3個胡桃屬物種進(jìn)行了全基因組數(shù)據(jù)分析,并基于重測序數(shù)據(jù)揭示了氣候變化對該屬植物的影響[164]。2019年,美國加州大學(xué)科研人員結(jié)合了三代測序技術(shù)及Hi-C測序技術(shù)的優(yōu)勢,對胡桃屬雜合個體(J. regia為父本,J. microcarpa Berland.為母本F1代)進(jìn)行了全基因組測序分析,成功獲得了高質(zhì)量染色體水平全基因組序列[218]。2020年我國林業(yè)科學(xué)院裴東研究員團(tuán)隊結(jié)合二代、三代、Hi-C測序技術(shù)獲得了西藏地區(qū)核桃(‘Zhongmucha-1’)高質(zhì)量染色體水平的基因組,并注釋了39 432個基因[219],為核桃的系統(tǒng)演化及遺傳改良研究提供了資源數(shù)據(jù)[219]。2020年,中南林業(yè)科技大學(xué)利用二、三代與Hi-C測序技術(shù)對漾濞泡核桃(J. sigillata Dode)進(jìn)行了染色體水平基因組組裝注釋[220]。隨后科研人員從泡核桃里分離出來內(nèi)生真菌Talaromyces purpureogenus并對其進(jìn)行全基因組測序分析[221]。
2021年西北大學(xué)進(jìn)化植物學(xué)研究團(tuán)隊結(jié)合二代Illumina測序平臺、三代Nanopore及Hi-C進(jìn)行了染色體水平測序,對秦嶺胡桃楸(J. mandshurica Maxim.)個體‘8C22N’進(jìn)行了全基因組測序,并采集了大量的胡桃屬植物組織材料進(jìn)行二代轉(zhuǎn)錄組數(shù)據(jù)和三代全轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行輔助注釋,以期得到高質(zhì)量水平的參考基因組數(shù)據(jù)[222]。其中,獲得了548 Mb的精細(xì)基因組圖譜,評估結(jié)果表明,Contig N50值達(dá)到6.49 Mb;Scaffold N50大小為36.1 Mb;組裝基因序列錨定到16條染色體,其錨定率達(dá)到了99 %,一共注釋到了29 032個蛋白編碼基因。比較基因組學(xué)結(jié)果顯示,胡桃楸相比較于核桃缺失了1 657個基因和插入2 827個基因[222]。與其他胡桃屬植物分析發(fā)現(xiàn),胡桃楸基因組包含了1 440個特有基因,且這些基因主要富集在黃酮類和植物抗病等代謝通路[222]。通過進(jìn)一步的基因家族生物信息分析發(fā)現(xiàn),胡桃楸JmaPR10可作為抵抗線蟲病的重要候選基因[222](見圖8)。我國學(xué)者對東北的胡桃楸(Juglans mandshurica Maxim.)也進(jìn)行了染色體水平基因組組裝注釋,揭示了胡桃楸與其他胡桃科物種的系統(tǒng)分類地位,并對胡桃楸果實發(fā)育過程中胡桃醌和油脂合成相關(guān)基因進(jìn)行了分析,這些基因組學(xué)數(shù)據(jù)為胡桃科比較基因組及胡桃楸開發(fā)利用提供了寶貴的遺傳信息[223]。
前期科研人員對黑胡桃基因組Scaffold水平基因?qū)W數(shù)據(jù)進(jìn)行了公布[164,217],為胡桃屬植物研究提供了數(shù)據(jù)資源。為了進(jìn)一步提升黑胡桃基因組數(shù)據(jù)質(zhì)量,服務(wù)科學(xué)研究,2023年,西北農(nóng)林科技大學(xué)與西北大學(xué)研究團(tuán)隊合作,利用二代、三代、Hi-C測序技術(shù)對黑胡桃(J. nigra L.)進(jìn)行了染色體水平基因組測序和組裝,結(jié)合不同組織轉(zhuǎn)錄組學(xué)測序和三代全轉(zhuǎn)錄組學(xué)提升了黑胡桃基因組染色體水平基因組注釋(見圖8)[224]?;诮M裝注釋的高質(zhì)量染色體水平黑胡桃基因組為參考,通過對黑胡桃組(Rhysocaryon)植物進(jìn)行重測序分析,揭示了該物種動態(tài)歷史(見圖8),解析了抗病和油脂代謝基因家族演化及表達(dá)模式,助力了核桃分子育種(見圖8)[224]。此外,在胡桃屬植物物種中,科研人員對加州核桃(J. californica)[225]、新疆野核桃(J. regia L.)[226]和白胡桃(J. cinerea)[227]也進(jìn)行全基因組數(shù)據(jù)公布。
胡桃科(Juglandaceae)共11個屬60多個物種,隨著測序技術(shù)的發(fā)展,該科陸續(xù)也有基因組學(xué)研究報道。青錢柳(Cyclocarya paliurus Batal.)為第四紀(jì)孑遺植物,屬于胡桃科青錢柳屬植物,具有重要藥用和材用價值的珍稀樹種。青錢柳為二倍體(2n=2x=32)和同源四倍體(2n=4x=64)共存的物種。2023年,我國學(xué)者破譯了多個青錢柳基因組,揭示了多倍化在其適應(yīng)性演化中扮演的重要角色[228],組裝了2個青錢柳單倍體基因組[229],之后人們又組裝了一個拆分等位基因的染色體水平的同源四倍體基因組和一個嵌合的染色體水平的二倍體基因組,推斷同源四倍體青錢柳可能是單次起源[230]。此外,我國科研人員對馬尾樹(Rhoiptelea chiliantha Diels et Hand.)、黃杞(Engelhardia roxburghiana Wall.)、圓果化香(Platycarya longipes Hu)和化香樹(Platycarya strobilacea Sieb.)幾個物種的染色體水平的基因組進(jìn)行了公布,在胡桃科系統(tǒng)演化研究中取得突破[231],并提示了化香樹屬植物適應(yīng)機(jī)制及其對物種分化的影響,為適應(yīng)性進(jìn)化的接力賽假說提供了分子數(shù)據(jù)支持[232-233]。上述這些胡桃科基因組數(shù)據(jù)為孑遺植物的保護(hù)和資源開發(fā)利用提供了重要借鑒意義[229-233]。隨著測序技術(shù)的不斷提升和測序成本的不斷降低,未來基因組學(xué)數(shù)據(jù)可以為我們解析胡桃屬植物系統(tǒng)演化和群體基因組學(xué)提供堅實基礎(chǔ)。
綜上所述,胡桃屬植物基因組學(xué)研究得了顯著進(jìn)展。西北大學(xué)研究團(tuán)隊對我國胡桃屬物種進(jìn)行基因組測序及葉綠體全基因組組裝和注釋工作,揭示了這些物種之間的進(jìn)化關(guān)系,并探討了種內(nèi)變異[31]。對核桃楸和黑胡桃進(jìn)行了全基因組測序組裝注釋分析,并與其他物種進(jìn)行了比較基因組學(xué)研究[222,224]?;谌~綠體基因組、轉(zhuǎn)錄組學(xué)、微衛(wèi)星標(biāo)記、簡化基因組學(xué)及甲基化修飾等技術(shù)探究了胡桃屬植物群體遺傳學(xué)、系統(tǒng)發(fā)育、物種形成和環(huán)境適應(yīng)機(jī)制,有助于理解胡桃屬植物演化歷史和生物地理學(xué)[2,32,43,115-116]。上述研究不僅為胡桃屬植物進(jìn)化生物學(xué)和生態(tài)學(xué)研究提供了寶貴信息,也為核桃分子育種和品種改良提供了科學(xué)依據(jù)。隨著基因組學(xué)技術(shù)的不斷進(jìn)步,未來胡桃屬植物的研究將更加深入,有望揭示更多關(guān)于這些重要經(jīng)濟(jì)林木的遺傳基因組學(xué)秘密。
6 結(jié)語與展望
隨著分子生物學(xué)和測序技術(shù)的發(fā)展,胡桃屬植物在演化歷史和基因組學(xué)方面的研究有著長足的進(jìn)步[164,195,222,224]。目前,普遍用于演化歷史研究的組學(xué)方法主要有以下幾種:葉綠體基因組、全基因組學(xué)、重測序、轉(zhuǎn)錄組學(xué)、代謝組學(xué)、DNA甲基化和基因組家族等[31,195,213,224,234-238]。利用線粒體基因組對胡桃屬植物演化歷史的研究較少。隨著測序和生物技術(shù)的迅速發(fā)展和測序成本的降低,植物多組學(xué)研究將會非常普遍,這些可能會對非模式生物的研究提供非常有利的工具,尤其對木本胡桃屬植物將會產(chǎn)生深遠(yuǎn)影響,基于高質(zhì)量無間隙完整基因組和泛基因組學(xué)為參考,科學(xué)家們可以利用多組學(xué)技術(shù)開發(fā)大量SNP(single nucleotide polymorphism)、SV(structure variation)、CNV(copy number variation)及PAV(presence-absence variation)等遺傳標(biāo)記用于生物學(xué)和生態(tài)學(xué)研究領(lǐng)域[238-245],不僅可進(jìn)行植物大類群的研究,同時,可以進(jìn)行科、屬、種各個分類單元的演化歷史與基因組學(xué)研究,有助于更加全面地了解植物基因組的遺傳變異特征、基因組大小變異的規(guī)律和機(jī)制。海量的數(shù)據(jù)發(fā)表和生物信息學(xué)分析將會大力促進(jìn)對胡桃屬植物研究,非模式木本植物研究也將會進(jìn)入一個振奮人心的嶄新階段。
參考文獻(xiàn)
[1] ARADHYA M K, POTTER D, GAO F Y, et al. Molecular phylogeny of Juglans (Juglandaceae): A biogeographic perspective[J].Tree Genetics & Genomes, 2007, 3(4): 363378.
[2] ZHAO P, ZHOU H J, POTTER D, et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS) [J]. Molecular Phylogenetics and Evolution, 2018, 126: 250-265.
[3] FENG X J, ZHOU H J, ZULFIQAR S, et al. The phytogeographic history of common walnut in China[J].Frontiers in Plant Science, 2018, 9: 1399.
[4] MANNING W E. The classification within the Juglandaceae[J].Annals of the Missouri Botanical Garden, 1978, 65(4): 1058-1087.
[5] MANOS P S, STONE D E. Evolution, phylogeny, and systematics of the Juglandaceae[J].Annals of the Missouri Botanical Garden, 2001, 88(2): 231-269.
[6] RORABAUGH J M. English and black walnut phenolic antioxidant activity in vitro and following human nut consumption [J]. Food and Nutrition Sciences, 2011, 2(3): 193-200.
[7] ELOUAFY Y, EL IDRISSI Z L, EL YADINI A, et al. Variations in antioxidant capacity, oxidative stability, and physicochemical quality parameters of walnut (Juglans regia) oil with roasting and accelerated storage conditions[J].Molecules, 2022, 27(22): 7693.
[8] GAO P, LIU R J, JIN Q Z, et al. Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata[J].Food Chemistry, 2019, 279: 279-287.
[9] ROS E, MATAIX J. Fatty acid composition of nuts: Implications for cardiovascular health[J].The British Journal of Nutrition, 2006, 96 (S2): S29-S35.
[10]TORABIAN S, HADDAD E, CORDERO-MACINTYRE Z, et al. Long-term walnut supplementation without dietary advice induces favorable serum lipid changes in free-living individuals[J].European Journal of Clinical Nutrition, 2010, 64(3): 274-279.
[11]VINSON J A, CAI Y X. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits[J].Food amp; Function, 2012, 3(2): 134-140.
[12]奚聲珂.我國胡桃屬(Juglans L.)種質(zhì)資源與核桃(Juglans. regia L.)育種 [J].林業(yè)科學(xué), 1987,23(3):342-350.
XI S K. Gene resources of Juglans and genetic improvement of Juglans regia in China [J]. Scientia Silvae Sinicae, 1987, 23(3): 342-350.
[13]郗榮庭. 中國核桃(Juglans regia L.)起源考證[J].河北農(nóng)業(yè)大學(xué)學(xué)報,1990,13(1):89-94.
XI R T. Textural criticism of walnut (Juglans regia L.) origin in China[J].Journal of Hebei Agricultural University, 1990, 13(1): 89-94.
[14]路安民,張志耘. 胡桃目的分化,進(jìn)化和系統(tǒng)關(guān)系[J].植物分類學(xué)報, 1990,28(2): 96-102.
LU A M, ZHANG Z Y. The differentiation, evolution and systematic relationship of Juglandales[J].Acta Phytotaxonomica Sinica, 1990, 28(2): 96-102.
[15]路安民.論胡桃科植物的地理分布[J].植物分類學(xué)報, 1982,20(3): 257-274.
LU A M. On the geographic distribution of the Juglandaceae[J].Acta Phytotaxonomica Sinica, 1982, 20(3): 257-274.
[16]趙鵬,周惠娟,劉占林,等. 胡桃屬植物分子系統(tǒng)發(fā)育和生物地理研究進(jìn)展[J].林業(yè)科學(xué), 2014, 50(11):147-157.
ZHAO P, ZHOU H J, LIU Z L, et al. A review of research progress on molecular phylogeny and biogeography in Juglans[J].Scientia Silvae Sinicae, 2014, 50(11):147-157.
[17]ZHAO P, ZHAO G F, ZHANG S X, et al. RAPD derived markers for separating Manchurian walnut (Juglans mandshurica) and Japanese walnut (J. ailantifolia) from close congeners [J]. Journal of Systematics and Evolution, 2014, 52(1): 101-111.
[18]ZHAO P, WOESTE K E. DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.)[J].Tree Genetics & Genomes, 2011, 7(3): 511533.
[19]ZHAO P, WOESTE K E, ZHANG S X. Molecular identification and genetic analysis of Juglans resources[M].Saarbrücken: Lambert Aacdemic Publishing, 2012:3-20.
[20]ZHAO P, ZHANG S X, WOESTE K. Genotypic data changes family rank for growth and quality traits in a black walnut (Juglans nigra L.) progeny test[J].New Forests, 2013, 44(3): 357-368.
[21]胡昳恒,黨萌,張?zhí)穑? 秦嶺地區(qū)核桃自然群體和栽培群體的遺傳多樣性及其演化關(guān)系:基于nrDNA ITS序列分析[J].林業(yè)科學(xué), 2014, 50(12):47-55.
HU Y H, DANG M, ZHANG T, et al. Genetic diversity and evolutionary relationship of Juglans regia wild and domesticated populations in Qinling mountains based on nrDNA ITS sequences [J]. Scientia Silvae Sinicae, 2014, 50(12):47-55.
[22]張?zhí)?,王瑪麗,趙鵬. 基于核基因序列JRD5680的核桃群體遺傳多樣性和遺傳結(jié)構(gòu)研究 [J]. 植物研究, 2016, 36(2): 232-241.
ZHANG T, WANG M L, ZHAO P. Sequence analysis of nuclear DNA JRD5680 for determining genetic diversity and genetic structure analysis of common walnut (Juglans regia L.) [J]. Bulletin of Botanical Research, 2016, 36(2): 232-241.
[23]HU Z, ZHANG T, GAO X X, et al. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing[J].Molecular Genetics and Genomics: MGG, 2016, 291(2): 849-862.
[24]BAI W N, LIAO W J, ZHANG D Y. Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia[J].The New Phytologist, 2010, 188(3): 892-901.
[25]POTTER D, GAO F Y, BAGGETT S, et al. Defining the sources of Paradox: DNA sequence markers for North American walnut (Juglans L.) species and hybrids[J].Scientia Horticulturae, 2002, 94 (1/2): 157-170.
[26]POLLEGIONI P, WOESTE K, OLIMPIERI I, et al. Long-term human impacts on genetic structure of Italian walnut inferred by SSR markers[J].Tree Genetics & Genomes, 2011, 7(4): 707-723.
[27]MALVOLTI M E, FINESCHI S, PIGLIUCCI M. Morphological integration and genetic variability in Juglans regia L.[J].Journal of Heredity, 1994, 85(5): 389-394.
[28]STANFORD A M, HARDEN R, PARKS C R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data[J].American Journal of Botany, 2000, 87(6): 872-882.
[29]FJELLSTROM R G, PARFITT D E. Phylogenetic analysis and evolution of the genus Juglans (Juglandaceae) as determined from nuclear genome RFLPs [J]. Plant Systematics and Evolution, 1995, 197(1): 19-32.
[30]HU Y H, DANG M, FENG X J, et al. Genetic diversity and population structure in the narrow endemic Chinese walnut Juglans hopeiensis Hu: Implications for conservation[J].Tree Genetics & Genomes, 2017, 13(4): 91.
[31]HU Y H, WOESTE K E, ZHAO P. Completion of the chloroplast genomes of five Chinese Juglans and their contribution to chloroplast phylogeny[J].Frontiers in Plant Science,2017, 7:1955.
[32]FENG X J, YUAN X Y, SUN Y W, et al. Resources for studies of iron walnut (Juglans sigillata) gene expression, genetic diversity, and evolution[J].Tree Genetics & Genomes, 2018, 14(4): 51.
[33]MU X Y, SUN M, YANG P F,et al.Unveiling the identity of wenwan walnuts and phylogenetic relationships of Asian Juglans species using restriction site-associated DNA-sequencing[J].Frontiers in Plant Science, 2017,8:1708.
[34]MANCHESTER S R. The fossil history of the Juglandaceae[M].Saint Louis: Missouri Botanical Garden, 1987:1-37.
[35]吳燕民, 裴東, 奚聲珂,等.用RAPD分析麻核桃起源與分類地位[J].林業(yè)科學(xué), 1999, 35(4): 25-30.
WU Y M, PEI D, XI S K. Analysis of the origin and the taxonomic position of Juglans hopeiensis using RAPF markers [J].Scientia Silvae Sinicae, 1999, 35(4): 25-30.
[36]DANG M, ZHOU H J, WOESTE K E, et al. Comparative phylogeography of Juglans regia and J. mandshurica combining organellar and nuclear DNA markers to assess genetic diversity and introgression in regions of sympatry[J].Trees, 2021, 35(6): 1993-2007.
[37]OREL G, MARCHANT A D, MCLEOD J A, et al. Characterization of 11 Juglandaceae genotypes based on morphology, cpDNA, and RAPD[J].HortScience, 2003, 38(6): 1178-1183.
[38]ROGERS R. Temperate Ecosystems | Juglandaceae[M]∥Encyclopedia of Forest Sciences. Amsterdam: Elsevier, 2004: 1427-1430.
[39]J?RGENSEN T, HAILE J, M?LLER P, et al. A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability[J].Molecular Ecology, 2012, 21(8): 1989-2003.
[40]JANSSENS S B, KNOX E B, HUYSMANS S, et al. Rapid radiation of Impatiens (Balsaminaceae) during Pliocene and Pleistocene: Result of a global climate change[J].Molecular Phylogenetics and Evolution, 2009, 52(3): 806-824.
[41]GAO J, WANG B S, MAO J F, et al. Demography and speciation history of the homoploid hybrid pine Pinus densataon the Tibetan Plateau[J].Molecular Ecology, 2012, 21(19): 4811-4827.
[42]QI X S, CHEN C, COMES H P, et al. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae)[J].New Phytologist, 2012, 196(2): 617-630.
[43]SUN Y W, HOU N, WOESTE K, et al. Population genetic structure and adaptive differentiation of iron walnut Juglans regia subsp. sigillata in southwestern China[J].Ecology and Evolution, 2019, 9(24): 14154-14166.
[44]ZHANG W P, CAO L, LIN X R, et al. Dead-end hybridization in walnut trees revealed by large-scale genomic sequence data[J].Molecular Biology and Evolution, 2022, 39(1): msab308.
[45]HU Y H, WOESTE K E, DANG M, et al. The complete chloroplast genome of common walnut (Juglans regia) [J]. Mitochondrial DNA Part B, Resources, 2016, 1(1): 189-190.
[46]ALEXANDER D H, NOVEMBRE J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664.
[47]LIU J Q, SUN Y S, GE X J, et al. Phylogeographic studies of plants in China: Advances in the past and directions in the future[J].Journal of Systematics and Evolution, 2012, 50(4): 267-275.
[48]QIU Y X, FU C X, COMES H P, et al. Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora[J].Molecular Phylogenetics and Evolution,2011, 59(1): 225-244.
[49]ZHANG J B, LI R Q, XIANG X G, et al. Integrated fossil and molecular data reveal the biogeographic diversification of the eastern Asian-eastern North American disjunct hickory genus (Carya Nutt.) [J]. PLoS One, 2013, 8(7): e70449.
[50]PEDERSEN M W, GINOLHAC A, ORLANDO L, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa [J]. Quaternary Science Reviews,2013, 75: 161-168.
[51]LI Y, SMITH T, SVETLANA P, et al. Paleobiogeography of the lotus plant (Nelumbonaceae:Nelumbo): and its bearing on the paleoclimatic changes[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 284-293.
[52]GENG F, LEI M, ZHANG N, et al. Demographical complexity within walnut species provides insights into the heterogeneity of geological and climatic fluctuations in East Asia[J/OL].Journal of Systematics and Evolution.(2024-02-28)[2024-05-10].https:∥ doi.org/10.1111/jse.13061.
[53]WEN J. Evolution of eastern Asian-eastern North American biogeographic disjunctions: A few additional issues[J].International Journal of Plant Sciences, 2001, 162(S6): S117-S122.
[54]MA Z Y, NIE Z L, LIU X Q, et al. Phylogenetic relationships, hybridization events, and drivers of diversification of East Asian wild grapes as revealed by phylogenomic analyses[J].Journal of Systematics and Evolution, 2023, 61(2): 273-283.
[55]QIAN H, RICKLEFS R E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America [J]. Journal of Ecology, 2004, 92(2): 253-265.
[56]XIANG Q Y J, ZHANG W H, RICKLEFS R E, et al. Regional differences in rates of plant speciation and molecularevolution: A comparison between eastern Asia and eastern North America [J]. Evolution, 2004, 58(10): 2175-2184.
[57]DONOGHUE M J, SMITH S A. Patterns in the assembly of temperate forests around the Northern Hemisphere[J].Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 2004, 359(1450): 1633-1644.
[58]HAMILTON J A, ECKERT C G. Population genetic consequences of geographic disjunction: A prairie plant isolated on Great Lakes alvars[J].Molecular Ecology, 2007, 16(8): 1649-1660.
[59]ZHOU W B, SHI W, SOLTIS P S, et al. Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species-influences of host identity, environment, phylogeny, and geographic isolation[J].Frontiers in Plant Science, 2023, 14:1274746.
[60]CHEN J H, HAO Z D, GUANG X M, et al. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation[J].Nature Plants, 2019, 5(1): 18-25.
[61]COWMAN P F, BELLWOOD D R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers[J].Proceedings Biological Sciences, 2013, 280(1768): 20131541.
[62]KORALL P, PRYER K M. Global biogeography of scaly tree ferns (Cyatheaceae): Evidence for Gondwanan vicariance and limited transoceanic dispersal[J].Journal of Biogeography, 2014, 41(2): 402-413.
[63]SAURA S, BODIN ?, FORTIN M J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks[J].Journal of Applied Ecology, 2014, 51(1): 171-182.
[64]SANZ M, SCHèNSWETTER P, VALLèS J, et al. Southern isolation and northern long-distance dispersal shaped the phylogeography of the widespread, but highly disjunct, European high mountain plant Artemisia eriantha (Asteraceae)[J].Botanical Journal of the Linnean Society, 2014, 174(2): 214-226.
[65]AVISE J C. Phylogeography: The history and formation of species[M].Cambridge: Harvard University Press, 2000:230-292.
[66]OTáLORA M A G, MARTíNEZ I, ARAGóN G, et al. Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern[J].American Journal of Botany, 2010, 97(2): 216-223.
[67]BIRD C E, FERNANDEZ-SILVA I, SKILLINGS D J, et al. Sympatric speciation in the post “modern synthesis” era of evolutionary biology[J].Evolutionary Biology, 2012, 39(2): 158180.
[68]RENAUT S, GRASSA C J, YEAMAN S, et al. Genomic islands of divergence are not affected by geography of speciation in sunflowers[J].Nature Communications, 2013, 4: 1827.
[69]RENAUT S, OWENS G L, RIESEBERG L H. Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers [J]. Molecular Ecology, 2014, 23(2): 311-324.
[70]FITZPATRICK B M, TURELLI M. The geography of mammalian speciation: Mixed signals from phylogenies and range maps[J].Evolution, 2006, 60(3): 601-615.
[71]KISEL Y, BARRACLOUGH T G. Speciation has a spatial scale that depends on levels of gene flow[J].The American Naturalist, 2010, 175(3): 316-334.
[72]ZHENG X M, GE S. Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara)[J].Molecular Ecology, 2010, 19(12): 2439-2454.
[73]BüSSE S, VON GRUMBKOW P, HUMMEL S, et al. Phylogeographic analysis elucidates the influence of the ice ages on the disjunct distribution of relict dragonflies in Asia[J].PLoS One, 2012, 7(5): e38132.
[74]GROSSENBACHER D L, VELOZ S D, SEXTON J P. Niche and range size patterns suggest that speciation begins in small, ecologically diverged populations in North American monkeyflowers (Mimulus spp.)[J].Evolution, 2014, 68(5):1270-1280.
[75]LI Q Q, KHASBAGAN, ZHANG Z P, et al. Plastid phylogenomics of the tribe potentilleae (Rosaceae)[J].Molecular Phylogenetics and Evolution, 2024, 190:107961.
[76]MA Z Y, NIE Z L, REN C, et al. Phylogenomic relationships and character evolution of the grape family (Vitaceae)[J].Molecular Phylogenetics and Evolution,2021, 154:106948.
[77]MA Z Y, WEN J, ICKERT-BOND S M, et al. Phylogenomics, biogeography, and adaptive radiation of grapes[J].Molecular Phylogenetics and Evolution,2018, 129:258-267.
[78]NIE Z L, SUN H, CHEN Z D, et al. Molecular phylogeny and biogeographic diversification of Parthenocissus (Vitaceae) disjunct between Asia and North America[J].American Journal of Botany, 2010, 97(8):1342-1353.
[79]WARREN D L, GLOR R E, TURELLI M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution[J].Evolution, 2008, 62(11): 2868-2883.
[80]EVANS M E K, SMITH S A, FLYNN R S, et al. Climate, niche evolution, and diversification of the \"bird-cage\" evening primroses (Oenothera, sections Anogra and Kleinia)[J].American Naturalist,2009, 173: 225-240.
[81]DORMANN C F, GRUBER B, WINTER M, et al. Evolution of climate niches in European mammals?[J].Biology Letters, 2010,6(2): 229-232.
[82]NAKAZATO T, WARREN D L, MOYLE L C.Ecological and geographic modes of species divergence in wild tomatoes[J].American Journal of Botany, 2010, 97(4): 680-693.
[83]BROWNSTEIN C D, NEAR T J. Phylogenetics and the Cenozoic radiation of lampreys[J].Current Biology, 2023, 33(2):397-404.
[84]BOJKO J, REINKE A W, STENTIFORD G D, et al. Microsporidia: A new taxonomic, evolutionary, and ecological synthesis[J].Trends in Parasitology, 2022, 38(8):642-659.
[85]BEATTY G E, PROVAN J. Refugial persistence and postglacial recolonization of North America by the cold-tolerant herbaceous plant Orthilia secunda[J].Molecular Ecology, 2010, 19(22): 5009-5021.
[86]BEATTY G E, PROVAN J. Phylogeographic analysis of North American populations of the parasitic herbaceous plant Monotropa hypopitys L. reveals a complex history of range expansion from multiple late glacial refugia[J].Journal of Biogeography, 2011, 38(8): 1585-1599.
[87]BEATTY G E, PROVAN J. Post-glacial dispersal, rather than in situ glacial survival, best explains the disjunct distribution of the Lusitanian plant species Daboecia cantabrica (Ericaceae)[J].Journal of Biogeography, 2013, 40(2): 335-344.
[88]MORRONE J J. When phylogenetics met biogeography: Willi Hennig, Lars Brundin and the roots of phylogenetic and cladistic biogeography[J].Cladistics, 2023, 39(1):58-69.
[89]SKEMA C, JOURDAIN-FIEVET L, DUBUISSON J Y,et al. Out of Madagascar, repeatedly: The phylogenetics and biogeography of Dombeyoideae (Malvaceae s.l.)[J].Molecular Phylogenetics and Evolution, 2023, 182:107687.
[90]COWLING R M, LOMBARD A T. Heterogeneity, speciation/extinction history and climate: Explaining regional plant diversity patterns in the Cape Floristic Region[J].Diversity and Distributions, 2002, 8(3): 163-179.
[91]CARSTENS B C, KNOWLES L L. Shifting distributions and speciation: Species divergence during rapid climate change[J].Molecular Ecology, 2007, 16(3): 619-627.
[92]HUA X, WIENS J J. How does climate influence speciation?[J].The American Naturalist,2013, 182(1): 1-12.
[93]HADID Y, PAVLí?EK T, BEILES A, et al. Sympatric incipient speciation of spiny mice Acomys at “Evolution Canyon,” Israel[J].Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(3): 1043-1048.
[94]ALSOS I G, EHRICH D, THUILLER W, et al. Genetic consequences of climate change for northern plants[J].Proceedings Biological Sciences, 2012, 279(1735): 2042-2051.
[95]WANG W, ORTIZ R C, JACQUES F M B, et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous—Paleogene boundary [J]. New Phytologist, 2012, 195(2): 470-478.
[96]HAMANN E, BLEVINS C, FRANKS S J, et al. Climate change alters plant—herbivore interactions[J].New Phytologist, 2021, 229(4):1894-1910.
[97]STEWART J R, STRINGER C B. Human evolution out of Africa: The role of refugia and climate change[J].Science, 2012, 335(6074): 1317-1321.
[98]STEWART J R, LISTER A M, BARNES I, et al. Refugia revisited: Individualistic responses of species in space and time[J].Proceedings Biological Sciences, 2010, 277(1682): 661-671.
[99]HEWITT G M. Quaternary phylogeography: The roots of hybrid zones[J].Genetica, 2011, 139(5): 617-638.
[100]WANG I J, GLOR R E, LOSOS J B. Quantifying the roles of ecology and geography in spatial genetic divergence[J].Ecology Letters, 2013, 16(2): 175-182.
[101]DAHAL N, KUMAR S, NOON B R, et al. The role of geography, environment, and genetic divergence on the distribution of pikas in the Himalaya[J].Ecology and Evolution, 2020, 10(3):1539-1551.
[102]STEWART J R. LISTER A M. Cryptic northern refugia and the origins of the modern biota[J].Trends in Ecology amp; Evolution, 2001, 16(11): 608-613.
[103]TZEDAKIS P C, EMERSON B C, HEWITT G M. Cryptic or mystic? Glacial tree refugia in northern Europe[J].Trends in Ecology & Evolution, 2013, 28(12): 696-704.
[104]ANGELIS K, áLVAREZ-CARRETERO S, DOS REIS M, et al. An evaluation of different partitioning strategies for Bayesian estimation of species divergence times[J].Systematic Biology, 2018, 67(1): 61-77.
[105]TEJADA J V, ANTOINE P O, MüNCH P, et al. Bayesian total-evidence dating revisits sloth phylogeny and biogeography: A cautionary tale on morphological clock analyses[J].Systematic Biology, 2024, 73(1): 125-139.
[106]LINDSEY C R, KNOLL A H, HERRON M D, et al. Fossil-calibrated molecular clock data enable reconstruction of steps leading to differentiated multicellularity and anisogamy in the Volvocine algae[J].BMC Biology, 2024, 22(1): 79.
[107]JIA D R, ABBOTT R J, LIU T L, et al. Out of the Qinghai-Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippopha rhamnoides (Elaeagnaceae)[J].New Phytologist, 2012, 194(4): 1123-1133.
[108]ZHANG G Y, SONG Y T, CHEN N, et al. Chromosome-level genome assembly of Hippophae tibetana provides insights into high-altitude adaptation and flavonoid biosynthesis[J].BMC Biology, 2024,22(1): 82.
[109]HOBAN S M, BORKOWSKI D S, BROSI S L, et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline[J].Molecular Ecology, 2010, 19(22): 4876-4891.
[110]WANG W T, XU B, ZHANG D Y, et al. Phylogeography of postglacial range expansion in Juglans mandshurica (Juglandaceae) reveals no evidence of bottleneck, loss of genetic diversity, or isolation by distance in the leading-edge populations[J].Molecular Phylogenetics and Evolution, 2016, 102:255-264.
[111]HUANG W P, SUN H, DENG T, et al. Molecular phylogenetics and biogeography of the eastern Asian-eastern North American disjunct Mitchella and its close relative Damnacanthus (Rubiaceae, Mitchelleae)[J].Botanical Journal of the Linnean Society, 2013, 171(2): 395-412.
[112]FICHANT T, LEDENT A, COLLART F, et al. Dispersal capacities of pollen, seeds and spores: Insights from comparative analyses of spatial genetic structures in bryophytes and spermatophytes[J].Frontiers in Plant Science, 2023, 14:1289240.
[113]OMONDI S F, GITHAE E W, KHASA D P. Long-distance gene flow in Acacia senegal: Hope for disturbed and fragmented populations[J].Ecology and Evolution, 2023, 13(7):e10292.
[114]LI E Z, WANG Y S, LIU K J, et al. Historical climate change and vicariance events contributed to the intercontinental disjunct distribution pattern of ash species (Fraxinus, Oleaceae)[J].Communications Biology, 2024, 7(1):603.
[115]LUO X, ZHOU H J, CAO D, et al. Domestication and selection footprints in Persian walnuts (Juglans regia)[J].PLoS Genetics, 2022, 18(12): e1010513.
[116]HAN H, WOESTE K E, HU Y H, et al. Genetic diversity and population structure of common walnut (Juglans regia) in China based on EST-SSRs and the nuclear gene phenylalanine ammonia-lyase (PAL)[J].Tree Genetics & Genomes, 2016, 12(6): 111.
[117]DANG M, YUE M, ZHANG M, et al. Gene introgression among closely related species in sympatric populations: A case study of three walnut (Juglans)species[J].Forests, 2019, 10(11): 965.
[118]MANNI F, GUéRARD E, HEYER E. Geographic patterns of (genetic, morphologic, linguistic) variation: How barriers can be detected by using Monmonier’s algorithm[J].Human Biology, 2004, 76(2): 173-190.
[119]DARWIN C. On the origin of species by means of natural selection: Or, the preservation of favoured races in the struggle for life[M].London: John Murray, 1859:7-19.
[120]HOSKIN C J, HIGGIE M, MCDONALD K R, et al. Reinforcement drives rapid allopatric speciation[J].Nature, 2005, 437(7063): 1353-1356.
[121]APRIL J, HANNER R H, DION-C?Té A M, et al. Glacial cycles as an allopatric speciation pump in northeastern American freshwater fishes[J].Molecular ecology, 2013, 22(2): 409-422.
[122]BECKER F S, ALEXANDER G J, TOLLEY K A. Substrate specialisation drives an unexpectedly diverse radiation in barking geckos (Ptenopus: Gekkonidae)[J].Molecular Phylogenetics and Evolution, 2024, 197:108104.
[123]GAVRILETS S. Perspective: Models of speciation: What have we learned in 40 years?[J].Evolution, 2003,57(10): 2197-2215.
[124]XIAO L Q, M?LLER M, ZHU H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: Incomplete concerted evolution and the origin of pseudogenes[J].Molecular Phylogenetics and Evolution, 2010, 55(1): 168-177.
[125]DUPIN J, HONG-WA C, GAUDEUL M, et al. Phylogenetics and biogeography of the olive family (Oleaceae)[J].Annals of Botany, 2024:mcae100.
[126]ABBOTT R, ALBACH D, ANSELL S, et al. Hybridization and speciation[J].Journal of Evolutionary Biology, 2013, 26(2): 229-246.
[127]PHILLIPSEN I C, KIRK E H, BOGAN M T, et al. Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects[J].Molecular Ecology, 2015, 24(1):54-69.
[128]BANK C, BüRGER R, HERMISSON J. The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model[J].Genetics, 2012, 191(3): 845-863.
[129]DIECKMANN U, DOEBELI M. On the origin of species by sympatric speciation[J].Nature, 1999, 400(6742): 354-357.
[130]BARLUENGA M, ST?LTING K N, SALZBURGER W, et al. Sympatric speciation in Nicaraguan crater lake cichlid fish[J].Nature, 2006, 439(7077): 719-723.
[131]NOSIL P. Speciation with gene flow could be common[J].Molecular Ecology,2008, 17(9): 21032106.
[132]SCHMID S, BACHMANN SALVY M, GARCIA JIMENEZ A, et al. Gene flow throughout the evolutionary history of a colour polymorphic and generalist clownfish[J].Molecular Ecology, 2024, 33(14): e17436.
[133]LIU J, NIE Z L, REN C, et al. Phylogenomics of Aralia sect. Aralia (Araliaceae): Signals of hybridization and insights into its species delimitations and intercontinental biogeography[J].Molecular Phylogenetics and Evolution, 2023, 181: 107727.
[134]BOLTE C E, PHANNARETH T, ZAVALA-PAEZ M, et al. Genomic insights into hybrid zone formation: The role of climate, landscape, and demography in the emergence of a novel hybrid lineage[J].Molecular Ecology, 2024, 33(14): e17430.
[135]ROSSER N, SEIXAS F, QUESTE LM, et al. Hybrid speciation driven by multilocus introgression of ecological traits[J].Nature, 2024, 628(8009): 811-817.
[136]WIESE J. Digest: Pelagic habitats promote speciation but constrain morphological evolution[J].Evolution, 2024: qpae091.
[137]NOSIL P.Ecological speciation[M].Oxford: Oxford University Press, 2012:280.
[138]SCHLUTER D. Evidence for ecological speciation and its alternative[J].Science,2009, 323(5915): 737-741.
[139]SCHLUTER D, CONTE G L. Genetics and ecological speciation[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (S1): 9955-9962.
[140]SOBEL J M, CHEN G F, WATT L R, et al. The biology of speciation[J].Evolution, 2010, 64(2): 295-315.
[141]MAYA-LASTRA C A, SWEENEY P W, EATON D A R, et al. Caught in the act: Incipient speciation at the southern limit of viburnum in the central Andes[J].Systematic Biology, 2024: syae023.
[142]LI Y R, FRITSCH P W, ZHAO G G, et al. Population differentiation and dynamics of five pioneer species of Gaultheria from the secondary forests in subtropical China[J].BMC Plant Biology, 2024, 24(1): 516.
[143]SUN P W, CHANG J T, LUO M X, et al. Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change[J].BMC Plant Biology, 2024, 24(1): 279.
[144]CIANCHI R, ARDUINO P, MOSCO M C, et al. Evidence of hybrid speciation in the North American primroses Primula suffrutescensP. parryiP. rusbyi and P. angustifolia (Primulaceae)[J].Plant Biosystems-an International Journal Dealing with All Aspects of Plant Biology, 2015, 149(2): 229-234.
[145]ROSSETTO M, ALLEN C B, THURLBY K A G, et al. Genetic structure and bio-climatic modeling support allopatric over parapatric speciation along a latitudinal gradient[J].BMC Evolutionary Biology, 2012, 12: 149.
[146]SEXTON J P, HANGARTNER S B, HOFFMANN A A.Genetic isolation by environment or distance: Which pattern of gene flow is most common? [J].Evolution, 2014, 68(1): 1-15.
[147]FRISTOE T S, BLEILEVENS J, KINLOCK N L, et al. Evolutionary imbalance, climate and human history jointly shape the global biogeography of alien plants[J].Nature Ecology amp; Evolution, 2023, 7(10): 1633-1644.
[148]BROWN L E, KHAMIS K, WILKES M, et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover[J].Nature Ecology amp; Evolution, 2018, 2(2): 325-333.
[149]LI J, ZHENG Z, HUANG K Y, et al. Vegetation changes during the past 40,000 years in Central China from a long fossil record[J].Quaternary International, 2013,310: 221-226.
[150]SMITH T, ROSE K D, GINGERICH P D. Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum[J].Proceedings of the National Academy of Sciences of the United States of America,2006, 103(30): 11223-11227.
[151]STANKOWSKI S. Ecological speciation in an island snail: Evidence for the parallel evolution of a novel ecotype and maintenance by ecologically dependent postzygotic isolation[J].Molecular Ecology,2013, 22(10): 2726-2741.
[152]SHAFER A B A, WOLF J B W. Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology[J].Ecology Letters, 2013, 16(7): 940-950.
[153]R?S?NEN K, HENDRY A P. Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification[J].Ecology Letters, 2008, 11(6): 624-636.
[154]SERVEDIO M R, HERMISSON J, VAN DOORN G S. Hybridization may rarely promote speciation[J].Journal of Evolutionary Biology, 2013, 26(2): 282-285.
[155]NOSIL P, VINES T H, FUNK D J. Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats[J].Evolution, 2005, 59(4): 705-719.
[156]BOLNICK D I, NOSIL P. Natural selection in populations subject to a migration load[J].Evolution,2007, 61(9):2229-2243.
[157]BRIDLE J R, POLECHOVá J, KAWATA M, et al. Why is adaptation prevented at ecological margins? New insights from individual-based simulations[J].Ecology Letters,2010, 13(4): 485-494.
[158]KARIMI N, KRIEG C P, SPALINK D, et al. Chromosomal evolution, environmental heterogeneity, and migration drive spatial patterns of species richness in Calochortus(Liliaceae)[J].Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(10): e2305228121.
[159]PLATH M, PFENNINGER M, LERP H, et al. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments[J].Evolution, 2013, 67(9): 2647-2661.
[160]GARROWAY C J, RADERSMA R, SEPIL I, et al. Fine-scale genetic structure in a wild bird population: The role of limited dispersal and environmentally based selection as causal factors[J].Evolution, 2013, 67(12): 3488-3500.
[161]FRANKHAM R, BALLOU J D, ELDRIDGE M D B, et al. Predicting the probability of outbreeding depression[J].Conservation Biology, 2011, 25(3): 465-475.
[162]PEKKALA N, KNOTT K E, KOTIAHO J S, et al. The benefits of interpopulation hybridization diminish with increasing divergence of small populations[J].Journal of Evolutionary Biology, 2012, 25(11): 2181-2183.
[163]SOULARUE J P, KREMER A. Assortative mating and gene flow generate clinal phenological variation in trees[J].BMC Evolutionary Biology, 2012, 12: 79.
[164]BAI W N, YAN P C, ZHANG B W, et al. Demographically idiosyncratic responses to climate change and rapid Pleistocene diversification of the walnut genus Juglans (Juglandaceae) revealed by whole-genome sequences[J].The New Phytologist, 2018, 217(4): 1726-1736.
[165]BAI W N, ZENG Y F, LIAO W J, et al. Flowering phenology and wind-pollination efficacy of heterodichogamous Juglans mandshurica (Juglandaceae)[J].Annals of Botany, 2006, 98(2): 397-402.
[166]AVNI R, NAVE M, BARAD O, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication[J].Science, 2017, 357(6346): 93-97.
[167]DIAMOND J. Evolution, consequences and future of plant and animal domestication[J].Nature, 2002, 418(6898): 700-707.
[168]GAUT B S, SEYMOUR D K, LIU Q P, et al. Demography and its effects on genomic variation in crop domestication[J].Nature Plants, 2018, 4(8): 512-520.
[169]MEYER R S, DUVAL A E, JENSEN H R. Patterns and processes in crop domestication: An historical review and quantitative analysis of 203 global food crops[J].The New Phytologist, 2012;196(1):29-48.
[170]HUANG X H, HUANG S W, HAN B, et al. The integrated genomics of crop domestication and breeding[J].Cell, 2022, 185(15): 2828-2839.
[171]CHENG S F, FENG C, WINGEN L U, et al. Harnessing landrace diversity empowers wheat breeding[J].Nature, 2024, 632: 823-831.
[172]MEYER R S, PURUGGANAN M D. Evolution of crop species: Genetics of domestication and diversification[J].Nature Reviews Genetics, 2013, 14(12): 840-852.
[173]XIAO J, LIU B, YAO Y Y, et al. Wheat genomic study for genetic improvement of traits in China[J].Science China Life Sciences, 2022, 65(9): 1718-1775.
[174]HAAS M, SCHREIBER M, MASCHER M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions[J].Journal of Integrative Plant Biology, 2019, 61(3): 204-225.
[175]FORNASIERO A, WING R A, RONALD P. Rice domestication[J].Current Biology, 2022, 32(1): R20-R24.
[176]IZAWA T. Reloading DNA history in rice domestication[J].Plant amp; Cell Physiology, 2022, 63(11): 1529-1539.
[178]YU H, LIN T, MENG X B, et al. A route to de novo domestication of wild allotetraploid rice[J].Cell, 2021, 184(5): 1156-1170.
[179]STITZER M C, ROSS-IBARRA J. Maize domestication and gene interaction[J].The New Phytologist, 2018, 220(2): 395-408.
[180]DONG Z B, ALEXANDER M, CHUCK G. Understanding grass domestication through maize mutants[J].The Trends in Genetics, 2019, 35(2): 118-128.
[181]ABRAHAM-JUáREZ M J, BARNES A C, ARAGóN-RAYGOZA A, et al. The arches and spandrels of maize domestication, adaptation, and improvement[J].Current Opinion in Plant Biology, 2021, 64: 102124.
[182]CHEN Q Y, LI W Y, TAN L B, et al. Harnessing knowledge from maize and rice domestication for new crop breeding[J].Molecular Plant, 2021, 14(1):9-26.
[183]ZHU G T, WANG S C, HUANG Z J, et al. Rewiring of the fruit metabolome in tomato breeding[J].Cell, 2018, 172(1/2): 249-261.
[184]CONSORTIUM T G. The tomato genome sequence provides insights into fleshy fruit evolution[J].Nature, 2012, 485(7400): 635-641.
[185]CHE G, ZHANG X L. Molecular basis of cucumber fruit domestication[J].Current Opinion in Plant Biology, 2019, 47:38-46.
[186]SEDIVY E J, WU F Q, HANZAWA Y. Soybean domestication: The origin, genetic architecture and molecular bases[J].The New Phytologist, 2017, 214(2): 539-553.
[187]GAO L, GONDA I, SUN H H, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor[J].Nature Genetics, 2019, 51(6): 1044-1051.
[188]UNVER T, WU Z Y, STERCK L, et al. Genome of wild olive and the evolution of oil biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 144(44): E9413-E9422.
[189]WU J, WANG Y T, XU J B, et al. Diversification and independent domestication of Asian and European pears[J].Genome Biology, 2018, 19(1): 77.
[190]LI Y, CAO K, ZHU G R, et al. Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history[J].Genome Biology, 2019, 20(1): 36.
[191]BERNARD A, LHEUREUX F, DIRLEWANGER E. Walnut: Past and future of genetic improvement[J].Tree Genetics & Genomes, 2017, 14(1): 1.
[192]DING Y M, CAO Y, ZHANG W P, et al. Population-genomic analyses reveal bottlenecks and asymmetric introgression from Persian into iron walnut during domestication[J].Genome Biology, 2022, 23(1):145.
[193]MARTíNEZ-GARCíA P J, CREPEAU M W, PUIU D, et al. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols[J].The Plant Journal, 2016, 87(5): 507-532.
[194]CHEN L N, MA Q G, CHEN Y K, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J].Scientia Horticulturae, 2014, 168: 240248.
[195]JI F Y, MA Q G, ZHANG W T, et al. A genome variation map provides insights into the genetics of walnut adaptation and agronomic traits[J].Genome Biology, 2021, 22(1): 300.
[196]YANG C J, SAMAYOA L F, BRADBURY P J, et al. The genetic architecture of teosinte catalyzed and constrained maize domestication[J].Proceedings of the National Academy of Sciences of the United States of America,2019, 116(12): 5643-5652.
[197]HUANG X H, KURATA N, WEI X H, et al. A map of rice genome variation reveals the origin of cultivated rice[J].Nature, 2012, 490(7421): 497-501.
[198]WU J, WANG L F, FU J J, et al. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline[J].Nature Genetics, 2020, 52(1): 118-125.
[199]CLARK R M, WAGLER T N, QUIJADA P, et al. A distant upstream enhancer at the maize domestication gene Tb1 has pleiotropic effects on plant and inflorescent architecture[J].Nature Genetics, 2006, 38(5):594-597.
[200]WU G A, TEROL J, IBANEZ V, et al. Genomics of the origin and evolution of Citrus[J].Nature, 2018, 554(7692):311-316.
[201]WANG L, HE F, HUANG Y, et al. Genome of wild mandarin and domestication history of mandarin[J].Molecular Plant, 2018, 11(8):1024-1037.
[202]ZHOU Y F, MASSONNET M, SANJAK J S, et al. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): 11715-11720.
[203]ALLABY R G. Two domestications for grapes[J].Science, 2023, 379(6635):880-881.
[204]DIEZ C M, TRUJILLO I, MARTINEZ-URDIROZ N, et al. Olive domestication and diversification in the Mediterranean Basin[J].The New Phytologist, 2015, 206(1): 436-447.
[205]GAUT B S, DíEZ C M, MORRELL P L. Genomics and the contrasting dynamics of annual and perennial domestication[J].Trends in Genetisc, 2015, 31(12):709-719.
[206]MCCLURE K A, SAWLER J, GARDNER K M, et al. Genomics: A potential panacea for the perennial problem[J].American Journal of Botany, 2014, 101(10):1780-1790.
[207]MILLER A J, GROSS B L. From forest to field: Perennial fruit crop domestication[J].American Journal of Botany, 2011, 98(9):1389-1414.
[208]HARFOUCHE A, MEILAN R, KIRST M, et al. Accelerating the domestication of forest trees in a changing world[J].Trends in Plant Science, 2012, 17(2):64-72.
[209]BAYAZIT S, KAZAN K, GüLBITTI S, et al. AFLP analysis of genetic diversity in low chill requiring walnut (Juglans regia L.) genotypes from Hatay, Turkey[J].Scientia Horticulturae, 2007, 111(4): 394-398.
[210]ZOHARY D, HOPF M, WEISS E. Domestication of plants in the Old World: The origin and spread of domesticated plants in south-west Asia, Europe, and the Mediterranean Basin[M].4th ed. Oxford: Oxford University Press, 2012:1-68.
[211]ROOR W, KONRAD H, MAMADJANOV D, et al. Population differentiation in common walnut (Juglans regia L.) across major parts of its native range—Insights from molecular and morphometric data[J].Journal of Heredity, 2017, 108(4): 391-404.
[212]ZHANG B W, XU L L, LI N, et al. Phylogenomics reveals an ancient hybrid origin of the Persian walnut [J]. Molecular Biology and Evolution, 2019, 36(11): 2451-2461.
[213]WANG J T, YE H, ZHOU H J, et al. Genome-wide association analysis of 101 accessions dissects the genetic basis of shell thickness for genetic improvement in Persian walnut (Juglans regia L.)[J].BMC Plant Biology, 2022,22(1):436.
[214]SONG B, NING W D, WEI D, et al. Plant genome resequencing and population genomics: Current status and future prospects[J].Molecular Plant,2023, 16(8):1252-1268.
[215]LONG Q M, CAO S, HUANG G Z, et al. Population comparative genomics discovers gene gain and loss during grapevine domestication[J].Plant Physiology, 2024, 195(2):1401-1413.
[216]MARRANO A, BRITTON M, ZAINI P A, et al. High-quality chromosome-scale assembly of the walnut (Juglans regia L.) reference genome[J].GigaScience, 2020, 9(5):giaa050.
[217]STEVENS K A, WOESTE K, CHAKRABORTY S, et al. Genomic variation among and within six Juglans species[J].G3: Genes, Genomes, Genetics, 2018, 8(7): 2153-2165.
[218]ZHU T T, WANG L, YOU F M,et al. Sequencing a Juglans regia×J. microcarpa hybrid yields high-quality genome assemblies of parental species[J].Horticulture Research, 2019, 6: 55.
[219]ZHANG J P, ZHANG W T, JI F Y, et al. A high-quality walnut genome assembly reveals extensive gene expression divergences after whole-genome duplication[J].Plant Biotechnology Journal, 2020, 18(9):1848-1850.
[220]NING D L, WU T, XIAO L J, et al. Chromosomal-level assembly of Juglans sigillata genome using Nanopore, BioNano, and Hi-C analysis[J].GigaScience, 2020, 9(2):giaa006.
[221]WANG Y, YANG Y X, YUAN X L, et al. Draft genome sequence of endophytic fungus Talaromyces purpureogenuss train YAFEF302, isolated from Juglans sigillata[J].Microbiology Resource Announcements, 2024, 13(1):e0082923.
[222]YAN F, XI R M, SHE R X, et al. Improved de novo chromosome-level genome assembly of the vulnerable walnut tree Juglans mandshurica reveals gene family evolution and possible genome basis of resistance to lesion nematode[J].Molecular Ecology Resources, 2021, 21(6):2063-2076.
[223]LI X, CAI K W, ZHANG Q H, et al. The manchurian walnut genome: Insights into juglone and lipid biosynthesis[J].GigaScience, 2022, 11:giac057.
[224]ZHOU H J, YAN F, HAO F, et al. Pan-genome and transcriptome analyses provide insights into genomic variation and differential gene expression profiles related to disease resistance and fatty acid biosynthesis in eastern black walnut (Juglans nigra)[J].Horticulture Research, 2023, 10(3):uhad015.
[225]FITZ-GIBBON S, MEAD A, O’DONNELL S, et al. Reference genome of California walnut, Juglans californica, and resemblance with other genomes in the order Fagales[J]. The Journal of Heredity, 2023, 114(5):570-579.
[226]HAN L Q, LUO X, ZHAO Y, et al. A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L.)[J].Scientific Data, 2024, 11(1):278.
[227]GUZMAN-TORRES C R, TRYBULEC E, LEVASSEUR H, et al. Conserving a threatened North American walnut: A chromosome-scale reference genome for butternut (Juglans cinerea)[J].G3: Genes, Genomes, Genetics, 2024, 14(2):jkad189.
[228]QU Y Q, SHANG X L, ZENG Z Y, et al. Whole-genome duplication reshaped adaptive evolution in a relict plant species, Cyclocarya paliurus[J].Genomics, Proteomics amp; Bioinformatics, 2023, 21(3):455-469.
[229]QU Y Q, SHANG X L, FANG S Z, et al. Genome assembly of two diploid and one auto-tetraploid Cyclocarya paliurus genomes[J].Scientific Data, 2023, 10(1):507.
[230]YU R M, ZHANG N, ZHANG B W, et al. Genomic insights into biased allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya paliurus[J].BMC Biology, 2023, 21(1):168.
[231]DING Y M, PANG X X, CAO Y, et al. Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes[J].Nature Communications, 2023, 14(1):617.
[232]CAO Y, ALMEIDA-SILVA F, ZHANG W P, et al. Genomic insights into adaptation to karst limestone and incipient speciation in East Asian Platycarya spp. (Juglandaceae)[J].Molecular Biology and Evolution, 2023, 40(6):msad121.
[233]ZHOU H J, ZHANG X D, LIU H Z, et al. Chromosome-level genome assembly of Platycarya strobilacea[J].Scientific Data, 2024,11(1):269.
[234]LIU H Z, ZHOU H T, YE H, et al. Integrated metabolomic and transcriptomic dynamic profiles of endopleura coloration during fruit maturation in three walnut cultivars[J].BMC Plant Biology, 2024, 24(1): 109.
[235]MA J Y, ZUO D J, YE H, et al. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J. mandshurica[J].BMC Plant Biology, 2023, 23(1): 80.
[236]MA J Y, ZUO D J, ZHANG X D, et al. Genome-wide identification analysis of the 4-Coumarate: CoA ligase (4CL) gene family expression profiles in Juglans regia and its wild relatives J. Mandshurica resistance and salt stress[J].BMC Plant Biology, 2024, 24(1): 211.
[237]LI M D, OU M W, HE X Z, et al. DNA methylation role in subgenome expression dominance of Juglans regia and its wild relative J. mandshurica[J].Plant Physiology, 2023, 193(2): 1313-1329.
[238]ZHOU H J, MA J Y, LIU H Z, et al. Genome-wide identification of the CBF gene family and ICE transcription factors in walnuts and expression profiles under cold conditions[J].International Journal of Molecular Science, 2023, 25(1): 25.
[239]CHEN F, CHEN J, WANG Z, et al. Genomics: Cracking the mysteries of walnuts[J].Jounal of Genetics, 2019,98(2):33.
[240]CHEN M J, FAN W J, JI F Y, et al. Genome-wide identification of agronomically important genes in outcrossing crops using OutcrossSeq[J].Molecular Plant, 2021, 14(4): 556-570.
[241]GUILLAUME C, ISABELLE C, MARC B, et al. Assessing frost damages using dynamic models in walnut trees: Exposure rather than vulnerability controls frost risks[J].Plant, Cell amp; Environment, 2018, 41(5): 1008-1021.
[242]SONG J M, GUAN Z L, HU J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus[J].Nature Plants, 2020, 6(1): 34-45.
[243]ZHOU R, DONG Y H, LIU X, et al. JrWRKY21 interacts with JrPTI5L to activate the expression of JrPR5L for resistance to Colletotrichum gloeosporioides in walnut[J].The Plant Journal, 2022, 111(4): 1152-1166.
[244]ARAB M M, BROWN P J, ABDOLLAHI-ARPANAHI R, et al. Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut[J].Horticulture Research, 2022, 9: uhac124.
[245]ARAB M M, MARRANO A, ABDOLLAHI-ARPANAHI R, et al. Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut[J].Journal of Experimental Botany, 2020, 71(3): 1107-1127.
(編 輯 李 靜)