摘 要 目的:探討吲哚菁綠(ICG)近紅外熒光(NIRF)實(shí)時(shí)顯影技術(shù)在機(jī)器人輔助腹腔鏡上尿路修復(fù)重建手術(shù)中的可行性及臨床應(yīng)用價(jià)值。方法:回顧性分析2021年3月—2023年10月蘭州大學(xué)第二醫(yī)院收治的8例行吲哚菁綠引導(dǎo)下機(jī)器人輔助腹腔鏡上尿路重建修復(fù)手術(shù)患者的臨床資料,8例患者術(shù)中均經(jīng)腎造瘺管和(或)輸尿管導(dǎo)管注入吲哚菁綠溶液,通過(guò)機(jī)器人熒光實(shí)時(shí)顯影技術(shù)輔助辨認(rèn)輸尿管,指導(dǎo)手術(shù)策略。收集患者基線(xiàn)資料、手術(shù)信息及術(shù)后隨訪(fǎng)等資料進(jìn)行分析。結(jié)果:8例患者均順利完成手術(shù),其中腎盂成形術(shù)3例,舌黏膜補(bǔ)片代輸尿管術(shù)2例,輸尿管端端吻合術(shù)、膀胱瓣代輸尿管術(shù)及自體腎移植術(shù)各1例,均借助ICG-NIRF技術(shù)完成輸尿管狹窄段的精準(zhǔn)定位及分離,無(wú)中轉(zhuǎn)開(kāi)腹。8例患者平均手術(shù)時(shí)長(zhǎng)257.5(140~330)min,平均術(shù)中估計(jì)出血量55(5~150)ml,1例二次腎盂成形術(shù)患兒術(shù)中結(jié)腸粘連嚴(yán)重,機(jī)械損傷出現(xiàn)腸破裂,同期縫合修復(fù)受損結(jié)腸,術(shù)后愈合良好,其余患者術(shù)后恢復(fù)良好,無(wú)術(shù)中及術(shù)后短期并發(fā)癥出現(xiàn)。8例患者平均隨訪(fǎng)時(shí)間5.5(2~19)月,均未見(jiàn)吲哚菁綠副反應(yīng)。8例患者術(shù)后3月復(fù)查泌尿系B超,顯示腎積水緩解,梗阻解除。3例患者術(shù)后4月行泌尿系腎盂輸尿管順行造影示輸尿管通暢,拔除造瘺管。結(jié)論:吲哚菁綠熒光實(shí)時(shí)顯影技術(shù)在復(fù)雜機(jī)器人上尿路修復(fù)重建手術(shù)中顯示輸尿管及狹窄段準(zhǔn)確可靠,多種技術(shù)的聯(lián)合有助于實(shí)現(xiàn)微創(chuàng)和精準(zhǔn)化,值得臨床推廣。
關(guān)鍵詞 吲哚菁綠;舌黏膜補(bǔ)片;輸尿管狹窄;自體腎移植;機(jī)器人輔助手術(shù)
中圖分類(lèi)號(hào) R608 R695 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 2096-7721(2024)03-0412-08
Application of indocyanine green and near-infrared fluorescence imaging in robot-assisted laparoscopic urinary tract repair and reconstruction surgery(with surgical video)
ZUO Jiale, LI Xiaoran, HE Qiqi, MA Teng, SHI Wei, BAO Junsheng
(Department of Urology, the Second Hospital of Lanzhou University, Lanzhou, 730030, China)
Abstract Objective: To explore the feasibility and the clinical application value of indocyanine green (ICG) and near-infrared fluorescence (NIRF) imaging in robot-assisted laparoscopic upper urinary tract repair and reconstruction surgery.Methods: The clinical data of 8 patients who underwent ICG-guided robot-assisted laparoscopic upper urinary tract repair and reconstruction in the Second Hospital of Lanzhou University between March 2021 to October 2023 were retrospectively analyzed. ICG solution was injected into the 8 patients through nephrostomy tube and / or ureteral catheter during operation. Real-time fluorescence imaging technique was used to identify the ureter to help surgical decision-making. Patient characteristics, perioperative outcomes, and complications were analyzed. Results: All the 8 cases of surgery were successfully completed without conversion to laparotomy, including 3cases of pyeloplasty, 2 cases of lingual mucosal graft ureteroplasty, 1 case of ureteroureterostomy, 1 case of bladder muscle flap ureteroplasty and 1 case of kidney autotransplantation. ICG-NIRF technology was used to accurately locate and separate the ureteral stenosis. The average operative time of the 8 patients was 257.5(140 to 330)min, and the average intraoperative blood loss was 55(5 to 150)ml. A child who underwent secondary pyeloplasty for intestinal rupture caused by severe colonic adhesion and mechanical injury. The ascending colon was repaired in one stage and healed well after surgery. The other patients recovered well after the operation, and no intraoperative or short-term postoperative complications occurred. The average follow-up time was 5.5(2 to 19)months, and no ICG side effect was found in the 8 patients. B-ultrasound of urinary system showed that hydronephrosis and obstruction were relieved 3 months after surgery in the 8 patients. Antegrade urography of urinary pelvis and ureter was performed in 3 patients 4 months after surgery, and the results indicated that the ureter was unobstructed and the fistula tube was removed. Conclusion: ICG real-time imaging technique is accurate and reliable in displaying ureter and stenosis during complex robotic upper urinary tract reconstruction surgery. The combination of ICG and NIRF in robot-assisted urologic surgery can achieve minimally invasive and accurate operation, which is worthy of clinical promotion.
Key words Indocyanine Green; Lingual Mucosal Graft; Ureteral Stricture; Kidney Autotransplantation; Robot-assisted Surgery
輸尿管狹窄是泌尿外科的常見(jiàn)病,可由手術(shù)損傷、惡性腫瘤、結(jié)石、放療、纖維化、感染和創(chuàng)傷等引起,其中由醫(yī)源性損傷及結(jié)石引起的占半數(shù)以上,且泌尿科手術(shù)和非泌尿科手術(shù)導(dǎo)致的輸尿管狹窄患者在年齡、性別和輸尿管損傷部位方面存在顯著差異[1-2]。上尿路修復(fù)手術(shù)應(yīng)基于輸尿管損傷的位置及長(zhǎng)度等多種因素選擇合適的手術(shù)方式,術(shù)中明確輸尿管病變的位置、長(zhǎng)度以及病變周?chē)M織條件是手術(shù)成功的關(guān)鍵[3]。機(jī)器人輔助腹腔鏡技術(shù)具有三維高清成像、器械精細(xì)靈活、操作精準(zhǔn)穩(wěn)定、符合人體工程學(xué)等優(yōu)勢(shì),已在泌尿外科上尿路修復(fù)領(lǐng)域得到廣泛應(yīng)用[4]。吲哚菁綠(Indocyanine Green,ICG)已在外科各個(gè)專(zhuān)科中得到運(yùn)用,如普通外科、皮膚科、眼科和心臟外科等[5-7]。有文獻(xiàn)報(bào)道,ICG在泌尿外科的使用有助于在腎部分切除術(shù)中區(qū)分正常腎實(shí)質(zhì)和腫瘤,指導(dǎo)選擇性動(dòng)脈夾閉[8-9];在前列腺癌根治術(shù)中輔助顯影淋巴結(jié)及淋巴回流,有助于指導(dǎo)前哨淋巴結(jié)清掃[10];在腎上腺切除術(shù)中加強(qiáng)術(shù)中腫瘤定
位等[11]。理論上ICG輸尿管注射后,利用機(jī)器人近紅外熒光顯影技術(shù)可幫助術(shù)者快速辨認(rèn)輸尿管及其狹窄段,從而縮短手術(shù)時(shí)間,保護(hù)血液供應(yīng),但目前國(guó)內(nèi)外關(guān)于上尿路重建手術(shù)中應(yīng)用ICG的相關(guān)報(bào)道較少[12-13]。本研究回顧分析2021年3月—2023年10月蘭州大學(xué)第二醫(yī)院收治的8例醫(yī)源性損傷導(dǎo)致的輸尿管狹窄患者,均根據(jù)具體輸尿管狹窄情況施行相應(yīng)的上尿路重建手術(shù),術(shù)中借助ICG-NIRF顯影技術(shù)進(jìn)行輸尿管狹窄段的精準(zhǔn)定位及分離并順利完成手術(shù),現(xiàn)報(bào)道如下。
1 資料與方法
1.1 患者資料 輸尿管狹窄患者共8例(見(jiàn)表 1),男性5例,女性3例,平均年齡41(10~48)歲,平均體重指數(shù)22.6(10.7~31.2)kg/m2,其中6例患者存在腰痛癥狀。6例輸尿管狹窄患者考慮結(jié)石或鈥激光碎石損傷所致,1例為婦科手術(shù)損傷所致,1例考慮直腸癌根治術(shù)及術(shù)后放療所致。8例輸尿管狹窄患者中,左側(cè)5例,右側(cè)3例,3例為腎盂輸尿管連接處(Ureteropelvic Junction,UPJ)狹窄,2例為上段長(zhǎng)段狹窄,2例為中段狹窄,1例為多處長(zhǎng)段狹窄。初次行上尿路重建手術(shù)5例,二次手術(shù)3例。7例患者于術(shù)前行患腎造瘺和輸尿管導(dǎo)管置入,1例患者于術(shù)中置入雙J管,便于ICG注入。術(shù)前已完善順(逆)行尿路造影(如圖1)以及泌尿系CT成像等常規(guī)化驗(yàn)檢查,均無(wú)ICG使用禁忌證及其他手術(shù)禁忌證,所有患者在完全披露后(包括輸尿管內(nèi)注射ICG的不良反應(yīng)尚未明確)均同意輸尿管內(nèi)ICG給藥,均簽署手術(shù)知情同意書(shū)和超說(shuō)明書(shū)用藥知情同意書(shū)。
1.2 手術(shù)方法 患者于全麻下取健側(cè)傾斜60°~90°
側(cè)臥位。留置F16雙腔導(dǎo)尿管。于患側(cè)腹直肌外側(cè)緣平臍位置作2 cm切口置入8 mm Trocar作為鏡頭孔,建立CO2氣腹,氣腹壓力維持在12 mmHg,置入內(nèi)窺鏡。直視下距離鏡頭孔左側(cè)8 cm鎖骨中線(xiàn)位置處作8 mm橫行切口置入8 mm Trocar作為3號(hào)機(jī)械臂孔,在鏡頭孔患側(cè)腋前線(xiàn)位置橫作8 mm行切口置入8 mm Trocar作為1號(hào)機(jī)械臂孔。以左側(cè)為例,在患側(cè)麥?zhǔn)宵c(diǎn)位置處作12 mm橫行切口置入12 mm Trocar作為輔助孔。將移動(dòng)床旁機(jī)械臂系統(tǒng)推至患者背側(cè),連接攝像系統(tǒng)及機(jī)械臂。
手術(shù)步驟:腔鏡下觀察腹腔內(nèi)解剖結(jié)構(gòu),沿結(jié)腸旁溝打開(kāi)并將結(jié)腸推開(kāi),沿腎表面依次銳性分離,游離顯露腎盂及輸尿管上段,通過(guò)腎造瘺管順行或輸尿管導(dǎo)管逆行各注入ICG 20 ml(50 mg)之后用10 ml生理鹽水沖洗管路,注射后立即夾住輸尿管導(dǎo)管和腎造瘺管,以最大限度地將ICG保持在輸尿管內(nèi)。留置5 min,開(kāi)啟達(dá)芬奇機(jī)器人Firefly?熒光模式,觀察輸尿管狹窄部位,熒光模式下可見(jiàn)腎盂輸尿管走形,精準(zhǔn)判斷狹窄段,若狹窄段≤2 cm,行狹窄段切開(kāi)輸尿管端端吻合或腎盂成形術(shù);若狹窄段gt;2 cm,行自體組織代輸尿管術(shù)。不作過(guò)多游離,從輸尿管擴(kuò)張段以上剖開(kāi)輸尿管,上下至正常段0.5 cm,依據(jù)狹窄和需要補(bǔ)片的長(zhǎng)度和寬度獲取舌黏膜或其他組織替代材料(病例1、3分別獲取5 cm×2 cm、3 cm×2 cm的梭形舌黏膜組織片,病例6取3 cm×2 cm膀胱肌瓣)。組織瓣置入腹腔內(nèi),覆蓋于剖開(kāi)的輸尿管狹窄部位,4-0可吸收線(xiàn)連續(xù)縫合一側(cè)壁后于輸尿管內(nèi)放置導(dǎo)絲,順導(dǎo)絲在輸尿管內(nèi)留置F5輸尿管支架管,表面用脂肪組織覆蓋,可吸收線(xiàn)縫合另外一側(cè)壁。檢查術(shù)野無(wú)活動(dòng)性出血后,由輔助孔處引出引流管,分別縫合切口并絲線(xiàn)固定引流管,結(jié)束手術(shù)(如圖2)。
術(shù)后處理:尿管留置1~2周,觀察有無(wú)出血、發(fā)熱、臟器損傷及吻合口漏尿等并發(fā)癥出現(xiàn),采用Clavien-Dindo分類(lèi)標(biāo)準(zhǔn)對(duì)圍手術(shù)期并發(fā)癥進(jìn)行分級(jí)。術(shù)后2個(gè)月拔除輸尿管支架管,有腎造瘺患者行泌尿系順行造影評(píng)估手術(shù)療效,梗阻解除則拔除腎造瘺管,術(shù)后3月復(fù)查泌尿系超聲或CT評(píng)估是否有影像學(xué)改善,此后每6月復(fù)查腎積水及腎功能情況。
2 結(jié)果
ICG溶液順行及逆行注入輸尿管內(nèi),在NIRF引導(dǎo)下完成輸尿管的識(shí)別、狹窄段的定位及分離。8例手術(shù)均順利完成(見(jiàn)表2),平均手術(shù)時(shí)長(zhǎng)257.5(140~330)min,術(shù)中平均出血量55(5~150)ml,術(shù)中估計(jì)輸尿管狹窄段平均長(zhǎng)度為3.7(1.5~10)cm,無(wú)中轉(zhuǎn)開(kāi)腹手術(shù)。術(shù)后平均拔除引流管時(shí)間12.1(6~20)d,術(shù)后平均拔除尿管時(shí)間13(3~30)d,術(shù)后平均住院時(shí)間8(5~11)d。1例二次腎盂成形術(shù)患兒術(shù)中結(jié)腸粘連嚴(yán)重,機(jī)械損傷出現(xiàn)腸破裂,同期縫合修復(fù)受損結(jié)腸,術(shù)后愈合良好,未出現(xiàn)腸瘺。其余患者術(shù)后恢復(fù)良好,無(wú)術(shù)中及術(shù)后短期并發(fā)癥出現(xiàn)。平均隨訪(fǎng)時(shí)間5.5(2~19)個(gè)月,未見(jiàn)ICG副反應(yīng)發(fā)生。3例患者術(shù)后4月內(nèi)行泌尿系腎盂輸尿管順行造影示梗阻解除(如圖3),拔除腎造瘺管,平均腎造瘺管留置時(shí)間為4.7(3~8)個(gè)月。病例2及病例3患側(cè)腎小球?yàn)V過(guò)率(Glomerular Filtration Rate,GFR)由術(shù)前16.8 ml/min、12.9 ml/min恢復(fù)至術(shù)后3月的27.8 ml/min、22.6 ml/min,血肌酐由術(shù)前112 ummol/L、166.6 ummol/L降至基本正常。8例患者術(shù)后3月復(fù)查泌尿系超聲,顯示患側(cè)腎積水較術(shù)前有不同程度的改善。截至2023年12月,除1例近期行腎盂成形術(shù)患者由于D-J留置管時(shí)間不足(腎造瘺管已于術(shù)后2周拔除)尚未拔除外,其余患者腎造瘺管及輸尿管支架管均已拔除。
3 討論
盡管術(shù)中術(shù)前輸尿管支架、膀胱鏡等已被用于預(yù)防醫(yī)源性輸尿管損傷,但仍難以達(dá)到滿(mǎn)意的臨床效果。本研究中的8例輸尿管狹窄患者均為醫(yī)源性損傷所致,此類(lèi)患者往往需要留置腎造瘺管或輸尿管支架管,這對(duì)他們的生活質(zhì)量造成了極大的影響[14]。輸尿管損傷患者應(yīng)首選手術(shù)治療,根據(jù)輸尿管狹窄的部位及長(zhǎng)度不同,手術(shù)策略的選擇亦有差異:①尿管鏡下狹窄段內(nèi)切開(kāi)及球囊擴(kuò)張(狹窄段lt;1 cm);②輸尿管膀胱再植術(shù)(輸尿管下段狹窄,聯(lián)合使用膀胱肌瓣或膀胱腰大肌懸吊術(shù)可獲得額外的修復(fù)長(zhǎng)度)[15];③腎盂成形術(shù)或腎盂瓣輸尿管成形術(shù)(腎盂輸尿管連接部狹窄);④輸尿管端端吻合(中上段輸尿管狹窄lt;2 cm);⑤自體組織替代輸尿管或自體腎移植。輸尿管狹窄段過(guò)長(zhǎng)或多段狹窄無(wú)法滿(mǎn)足無(wú)張力吻合時(shí),則采用自體組織移植進(jìn)行修復(fù),常見(jiàn)的組織類(lèi)型包括消化道組織(如回腸、闌尾、結(jié)腸)和口腔黏膜(頰黏膜、舌黏膜),還有腹膜、血管和包皮等其他組織類(lèi)型[16]。上尿路修復(fù)重建手術(shù)一直以來(lái)都是泌尿外科手術(shù)的一大難點(diǎn),其中組織代輸尿管或自體腎移植手術(shù)更是具有技術(shù)難度大、并發(fā)癥發(fā)生率高的特點(diǎn),對(duì)于長(zhǎng)段、多段輸尿管狹窄患者,其受損輸尿管往往與周?chē)M織粘連嚴(yán)重或解剖走行異常,特別是當(dāng)潛在的病理導(dǎo)致正常筋膜平面閉塞和/或輸尿管纖維性包裹時(shí),病變的輸尿管在術(shù)中更加難以辨認(rèn)和分離。因此,在修復(fù)重建病變輸尿管時(shí),需要明確輸尿管病變的病因、位置、長(zhǎng)度以及病變周?chē)M織條件,而如何精準(zhǔn)找到輸尿管及其狹窄部位成為關(guān)鍵點(diǎn)。
ICG是一種熒光染料,被近紅外熒光激活后可以實(shí)時(shí)顯示所需的解剖結(jié)構(gòu)。作為一種實(shí)時(shí)造影劑,ICG因其組織穿透能力強(qiáng)、信噪比高、安全性?xún)?yōu)異等特點(diǎn),非常適合術(shù)中使用。目前,ICG結(jié)合機(jī)器人近紅外熒光成像技術(shù)已在外科各專(zhuān)科中得到廣泛應(yīng)用[17-20]。Bjurlin M A等人[21]首先嘗試在上尿路重建手術(shù)中靜脈注射ICG以確認(rèn)吻合后組織灌注是否良好。Lee Z等人[22]將ICG注入輸尿管內(nèi)直接進(jìn)行熒光顯影,發(fā)現(xiàn)其在術(shù)中能夠?qū)崟r(shí)、準(zhǔn)確地識(shí)別健康與病變輸尿管,且輸尿管腔內(nèi)注射ICG能夠克服靜脈注射產(chǎn)生的背景干擾。國(guó)內(nèi)的北京大學(xué)第一醫(yī)院李學(xué)松團(tuán)隊(duì)先后報(bào)道了7例及11例在機(jī)器人上尿路手術(shù)中應(yīng)用ICG的案例,證明術(shù)中向輸尿管內(nèi)注射ICG后,借助于NIRF的可視化可以識(shí)別、定位輸尿管狹窄,從而提高輸尿管重建手術(shù)的臨床療效[23-24]。
筆者團(tuán)隊(duì)認(rèn)為,一些初次尿路重建手術(shù)的成功率可能不會(huì)受到ICG-NIRF成像的影響,ICG-NIRF這項(xiàng)技術(shù)可能更適合二次修復(fù)等復(fù)雜的上尿路重建手術(shù),尤其對(duì)輸尿管近端長(zhǎng)段狹窄的患者。本研究中的8例患者均有既往輸尿管手術(shù)病史,再次手術(shù)的難度極大,若行開(kāi)放手術(shù),術(shù)中輸尿管的定位相對(duì)困難,周邊粘連嚴(yán)重,完全游離輸尿管則可能導(dǎo)致輸尿管壞死,即使短段的輸尿管狹窄在開(kāi)放手術(shù)后也難以實(shí)現(xiàn)端端吻合。ICG輸尿管內(nèi)注射后,由于尿路上皮細(xì)胞不具備吸收能力,只有輸尿管在NIRF下發(fā)出熒光,其他組織無(wú)背景熒光,這特別有助于指導(dǎo)術(shù)者精確判斷所需切除的狹窄輸尿管的長(zhǎng)度及選擇適當(dāng)?shù)氖中g(shù)方式進(jìn)行重建。通過(guò)ICG實(shí)時(shí)顯影,術(shù)中觀測(cè)到病例1、4、8的輸尿管狹窄長(zhǎng)度較短,遂直接行輸尿管端端吻合及腎盂成形術(shù)。病例5患兒既往右側(cè)腎盂成形術(shù)后出現(xiàn)尿漏、感染,行腎盂瓣腎盂成形術(shù),術(shù)中結(jié)腸粘連嚴(yán)重,機(jī)械損傷出現(xiàn)腸破裂,同期縫合修復(fù)受損結(jié)腸,術(shù)后愈合良好。病例2及病例7輸尿管狹窄長(zhǎng)度約4 cm,行口腔舌黏膜代輸尿管術(shù),病例6行膀胱瓣代輸尿管術(shù)。病例3術(shù)中見(jiàn)輸尿管腎盂連接處下段約2 cm處明顯狹窄,向下縱行探查約4 cm后,仍見(jiàn)輸尿管狹窄僵硬,從留置的輸尿管導(dǎo)管處注入ICG,調(diào)整到熒光視野后,可見(jiàn)輸尿管狹窄下端平骼血管交界處,置入輸尿管導(dǎo)管后測(cè)量狹窄長(zhǎng)度約10 cm,考慮患者左側(cè)分腎功能重度受損,術(shù)前GFR為12.9 m1/min,且患者輸尿管長(zhǎng)段狹窄,管腔消失,管壁纖維化,行輸尿管舌黏膜修補(bǔ)的可行性小,再考慮腸代輸尿管后腎功能及尿液排空的情況不好,術(shù)中反復(fù)與患者家屬協(xié)商后,家屬要求保留腎臟,最后同意行自體腎移植。
整合手術(shù)機(jī)器人的微創(chuàng)及縫合優(yōu)勢(shì)、熒光模塊的定位優(yōu)勢(shì)以及組織移植,能降低輸尿管重建手術(shù)的難度,提高臨床療效。此外,術(shù)中應(yīng)遵守Touchless原則:①輸尿管游離時(shí)避免過(guò)度夾持,輸尿管外膜和血管周?chē)窘M織保持完好;②術(shù)中無(wú)異物,減少Hem-o-lock血管及縫線(xiàn)的使用;③輸尿管游離時(shí)盡量在輸尿管床上進(jìn)行,嚴(yán)禁鈍性撕拉;④腎下極不作過(guò)多游離,腎盂區(qū)域腎周筋膜作簾狀保留用于覆蓋;⑤低張力對(duì)等吻合,引流管遠(yuǎn)離吻合口。除了辨別定位輸尿管及其狹窄部位和長(zhǎng)度,還可以在重建吻合完成后,通過(guò)靜脈注射ICG明確重建組織血供情況[22],但考慮到顯影背景干擾較大[25],本研究中未曾使用。本研究的重點(diǎn)是討論手術(shù)技術(shù),而非比較研究,因而沒(méi)有與未進(jìn)行ICG-NIRF成像的手術(shù)進(jìn)行對(duì)比。由于此類(lèi)病例較少,本研究團(tuán)隊(duì)會(huì)在未來(lái)積累更多的數(shù)據(jù)后研究?jī)烧咧g是否存在臨床差異。目前,ICG輸尿管內(nèi)給藥尚屬超說(shuō)明書(shū)使用,關(guān)于具體給藥時(shí)間、劑量及濃度仍無(wú)規(guī)范標(biāo)準(zhǔn),需要更多精心設(shè)計(jì)的隨機(jī)對(duì)照試驗(yàn)來(lái)進(jìn)一步證明ICG的實(shí)際益處[26]。
綜上所述,ICG-NIRF技術(shù)在機(jī)器人輔助腹腔鏡上尿路修復(fù)重建手術(shù)中是安全可行、方便有效的,有助于精準(zhǔn)辨別和定位輸尿管及狹窄段,并指導(dǎo)術(shù)者制定手術(shù)策略。多種技術(shù)的聯(lián)合應(yīng)用有助于實(shí)現(xiàn)手術(shù)的微創(chuàng)和精準(zhǔn)化,值得臨床推廣。但由于此類(lèi)病例較少,且隨訪(fǎng)時(shí)間相對(duì)較短,未來(lái)將擴(kuò)大樣本量并進(jìn)行長(zhǎng)期隨訪(fǎng),以更好地評(píng)估ICG-NIRF的臨床應(yīng)用價(jià)值。
利益沖突聲明:本研究無(wú)任何利益沖突。
作者貢獻(xiàn)聲明:左佳樂(lè)負(fù)責(zé)設(shè)計(jì)論文框架,數(shù)據(jù)整理與分析,論文撰寫(xiě)與修改;馬騰、石瑋負(fù)責(zé)實(shí)施研究及數(shù)據(jù)收集;李笑然、何綦琪負(fù)責(zé)數(shù)據(jù)分析,繪制圖表及論文修改;包軍勝負(fù)責(zé)論文設(shè)計(jì),指導(dǎo)撰寫(xiě)文章并最后定稿。
參考文獻(xiàn)
[1] DING G P, LI X F, FANG D, et al. Etiology and ureteral reconstruction strategy for iatrogenic ureteral injuries: a retrospective single-center experience [J]. Urol Int, 2021, 105(5-6): 470-476.
[2] Paffenholz P, Heidenreich A. Modern surgical strategies in the management of complex ureteral strictures [J]. Curr Opin Urol, 2021, 31(2): 170-176.
[3] Stief C G, Jonas U, Petry K U, et al. Ureteric reconstruction [J]. BJU Int, 2003, 91(2): 138-142.
[4] Osman N I, Mangir N, Mironska E, et al. Robotic surgery as applied to functional and reconstructive urology [J]. Eur Urol Focus, 2019, 5(3): 322-328.
[5] Daskalaki D, Aguilera F, Patton K, et al. Fluorescence in robotic surgery [J]. J Surg Oncol, 2015, 112(3): 250-256.
[6] Stanga P E, Lim J I, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update [J]. Ophthalmology, 2003, 110(1): 15-21; quiz 22-23.
[7] Desai N D, Miwa S, Kodama D, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts [J]. J Thorac Cardiovasc Surg, 2006, 132(3): 585-594.
[8] Gadus L, Kocarek J, Chmelik F, et al. Robotic partial nephrectomy with indocyanine green fluorescence navigation [J]. Contrast Media Mol Imaging, 2020. DOI: 10.1155/2020/1287530.
[9] ZHANG S D, HONG P, WANG B S, et al. Usefulness of the indocyanine green fluorescence imaging technique in laparoscopic partial nephrectomy [J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2020, 52(4): 657-662.
[10] Pathak R A, Hemal A K. Developing a personalized template for lymph node dissection during radical prostatectomy [J]. Transl Androl Urol, 2018, 7(Suppl 4): S498-S504.
[11] Lerchenberger M, Gundogar U, Al Arabi N, et al. Indocyanine green fluorescence imaging during partial adrenalectomy [J]. Surg Endosc, 2020, 34(5):
2050-2055.
[12] Pathak R A, Hemal A K. Intraoperative ICG-fluorescence imaging for robotic-assisted urologic surgery: current status and review of literature [J]. International Urology and Nephrology, 2019, 51(5): 765-771.
[13] Cacciamani G E, Shakir A, Tafuri A, et al. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus [J]. World J Urol, 2020, 38(4): 883-896.
[14] Kanabur P, Chai C, Taylor J. Use of Indocyanine green for intraoperative ureteral identification in nonurologic surgery [J]. JAMA Surg, 2020, 155(6): 520-521.
[15] Stühler V, Bedke J, Stenzl A. Surgical reconstruction of the ureter [J]. Urologe A, 2019, 58(6): 651-657.
[16] 吳晃, 付宇強(qiáng), 何綦琪, 等. 舌黏膜在輸尿管狹窄修復(fù)中的應(yīng)用 [J]. 國(guó)際泌尿系統(tǒng)雜志, 2023, 43(4): 748-751.
[17] Baddam D O, Ragi S D, Tsang S H, et al. Protocol for indocyanine green angiography [J]. Methods Mol Biol, 2023. DOI: 10.1007/978-1-0716-2651-1_16.
[18] Cassese G, Troisi R I. Indocyanine green applications in hepato-biliary surgery [J]. Minerva Surg, 2021, 76(3): 199-201.
[19] Mcumber H, Dabek R J, Bojovic B, et al. Burn depth analysis using indocyanine green fluorescence: a review [J]. J Burn Care Res, 2019, 40(4): 513-516.
[20] Ferreira H, Smith A V, Wattiez A. Application of indocyanine green in gynecology: review of the literature [J]. Surg Technol Int, 2019. PMID: 31034577.
[21] Bjurlin M A, Gan M, Mcclintock T R, et al. Near-infrared fluorescence imaging: emerging applications in robotic upper urinary tract surgery [J]. Eur Urol, 2014, 65(4): 793-801.
[22] Lee Z, Simhan J, Parker D C, et al. Novel use of indocyanine green for intraoperative, real-time localization of ureteral stenosis during robot-assisted ureteroureterostomy [J]. Urology, 2013, 82(3): 729-733.
[23] HUANG B W, WANG J, ZHANG P, et al. Application of indocyanine green in complex upper urinary tract repair surgery [J]. Beijing Da Xue Xue Bao Yi Xue Ban, 2020, 52(4): 651-656.
[24] 黃晨, 陳昊, 劉靚, 等. 吲哚菁綠熒光顯影技術(shù)在機(jī)器人輔助腹腔鏡上尿路重建手術(shù)中的應(yīng)用 [J]. 泌尿外科雜志(電子版), 2023, 15(1): 18-23.
[25] Colvin J, Zaidi N, Berber E. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy [J]. J Surg Oncol, 2016, 114(2): 153-156.
[26] 左佳樂(lè), 何綦琪, 李笑然, 等. 吲哚菁綠在泌尿外科機(jī)器人手術(shù)中的應(yīng)用 [J]. 臨床泌尿外科雜志, 2023, 38(2): 151-156.
編輯:劉靜凱