DOI:10.3969/j.issn.10001565.2024.04.004
摘要:為評(píng)價(jià)自制谷氨酸鐵(Glu-Fe(Ⅲ))和谷氨酸亞鐵(Glu-Fe(Ⅱ))的補(bǔ)鐵效果,采用低鐵飼料聯(lián)合放血法建立缺鐵性貧血(IDA)小鼠模型,并將IDA小鼠隨機(jī)分成硫酸亞鐵組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和Glu-Fe(Ⅲ)組,分別灌胃給予同等鐵劑量的不同補(bǔ)鐵劑4周,并以IDA小鼠為陰性對(duì)照、正常小鼠為空白對(duì)照組進(jìn)行比較.用全自動(dòng)血液分析儀監(jiān)測(cè)小鼠血中血紅蛋白(HGB)、紅細(xì)胞(RBC)和血細(xì)胞比容(HCT)變化,采用血清鐵(SI)、總鐵結(jié)合力(TIBC)和轉(zhuǎn)鐵蛋白(TRF)試劑盒測(cè)定小鼠體內(nèi)鐵狀況并測(cè)定小鼠組織(心、肝、脾和腎)鐵含量,利用總超氧化物歧化酶(SOD)、過氧化氫酶(CAT)和丙二醛(MDA)試劑盒檢測(cè)各種補(bǔ)鐵劑對(duì)小鼠體內(nèi)抗氧化的影響.結(jié)果顯示:IDA小鼠建模成功,Glu-Fe(Ⅲ)和Glu-Fe(Ⅱ)可提高IDA小鼠的HGB、RBC和HCT值,降低TIBC和TRF水平并提升SI含量,而Glu-Fe(Ⅲ)補(bǔ)鐵劑效果更佳.此外,相比硫酸亞鐵和右旋糖酐鐵,飼喂Glu-Fe(Ⅲ)在改善IDA小鼠內(nèi)臟器官(心、脾和腎)腫大、促進(jìn)肝恢復(fù)、提升肝脾儲(chǔ)鐵、清除組織活性氧(ROS)且增強(qiáng)抗氧化活性等方面表現(xiàn)更佳.
關(guān)鍵詞:谷氨酸亞鐵螯合物;谷氨酸鐵螯合物;缺鐵性貧血;補(bǔ)鐵劑
中圖分類號(hào):R973文獻(xiàn)標(biāo)志碼:A文章編號(hào):10001565(2024)04036508
Evaluation the iron supplementation effect of glutamate chelated
iron on iron deficiency anemia of mice
REN Zhiyuan1, LIU Xinshuo1, LU Shijin2, YANG Wenzhi1, LI Haiying1
(1. Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical
Sciences, Hebei University, Baoding 071002, China;2. Department of Pharmacy, Chinese 967th Hospital of
the Joint Logistics Support Force of the Peoples Liberation Army, Dalian 116021, China)
Abstract: Glutamate chelated ferric iron (Glu-Fe (Ⅲ)) and glutamate chelated ferrous iron (Glu-Fe (Ⅱ)) were prepared and their iron supplementation effects were evaluated. The iron deficiency anemia (IDA) mouse model was established by combining low iron feed and bloodletting. IDA mice were randomly divided into five groups (n=5): ferrous sulfate group, commercially available iron dextran group, Glu-Fe (Ⅲ) group, Glu-Fe (Ⅱ) group and negative controls group, using normal mice as blank controls. Different iron supplements at equal iron doses were given by intragastric administration for 4 weeks. The changes of hemoglobin (HGB), red blood cells (RBC) and hematocrit (HCT) in blood were monitored by automatic hematology analyzer. The iron status of IDA mice were determined by serum iron (SI), total iron
收稿日期:20230504;修回日期:20240119
基金項(xiàng)目:河北省自然科學(xué)基金資助項(xiàng)目(C2021201026)
第一作者:任梽源(2000—),男,河北大學(xué)在讀碩士研究生,主要從事藥物制劑方向研究.E-mail:17835420887@163.com
通信作者:李海鷹(1973—),女,河北大學(xué)副教授,博士,主要從事藥物制劑與質(zhì)量控制方面研究.E-mail:lihylihy@163.com
binding capacity (TIBC) and transferrin (TRF) kits and the iron contents in mouse tissues (heart, liver, spleen and kidney) were measured. Superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) kits were used to detect the effects of various iron supplements on antioxidant activity of IDA mice in vivo. The results showed that IDA mouse model was successfully established. Glu-Fe (Ⅲ) and Glu-Fe (Ⅱ) could improve the HGB, RBC and HCT values of IDA mice, meanwhile, reduce TIBC and TRF content and increase SI level for administrated IDA mice, especially Glu-Fe (Ⅲ). Compared with ferrous sulfate and iron dextran, Glu-Fe (Ⅲ) was more effective in reducing the swollen of organs (heart, spleen and kidney), improving liver recovery, enhancing iron storage in liver and spleen, scavenging tissue ROS and enhancing antioxidant activity in IDA mice.
Key words: glutamate chelated ferrous iron; glutamate chelated ferric iron; iron deficiency anemia; iron supplements
鐵元素在維持大腦功能中起著至關(guān)重要的作用,哺乳動(dòng)物中缺鐵會(huì)降低樹突的細(xì)度,干擾突觸功能,導(dǎo)致發(fā)育性認(rèn)知缺陷.鐵也是細(xì)胞和嘌呤代謝、DNA和神經(jīng)遞質(zhì)合成的重要輔酶因子,對(duì)細(xì)胞生長與分化至關(guān)重要[1].體內(nèi)血紅蛋白(HGB)和肌紅蛋白(MB)中鐵不可或缺[2],體內(nèi)約2/3鐵儲(chǔ)于血紅蛋白,少量存于肌紅蛋白、代謝酶和鐵蛋白中[3].鐵攝入受限會(huì)發(fā)生鐵缺乏癥,導(dǎo)致鐵減少(ID)、缺鐵性紅細(xì)胞生成(IDE)和缺鐵性貧血(IDA),嚴(yán)重程度依次增加,服用鐵營養(yǎng)強(qiáng)化劑是治療和預(yù)防鐵缺乏癥的常用辦法[4].氨基酸是維持生命的基本組成部分,參與眾多細(xì)胞代謝活動(dòng)[5],其分子富含氨基和羧基,基團(tuán)孤對(duì)電子可與鐵離子形成配位鍵,生成穩(wěn)定的具環(huán)狀結(jié)構(gòu)的螯合鐵[6].氨基酸鐵可改善無機(jī)鐵對(duì)胃腸道的刺激性[7],具有更佳的生物利用度[8].氨基酸鐵螯合物已被開發(fā)用于食品添加劑和缺鐵性貧血的預(yù)防和治療[9].含谷氨酸的肽顯示出更好的亞鐵螯合能力,可有效改善IDA癥狀,但補(bǔ)鐵劑需加抗氧劑以避免亞鐵氧化[10].而鐵(Ⅲ)螯合物可避免鐵氧化和水解,在生理pH條件下補(bǔ)鐵,是治療IDA常見補(bǔ)鐵劑[11].谷氨酸(Glu)屬人體非必需氨基酸,是中樞神經(jīng)系統(tǒng)的興奮性神經(jīng)遞質(zhì),參與興奮性突觸活動(dòng)[12]、神經(jīng)元發(fā)育和神經(jīng)內(nèi)分泌控制[13],也是一種重要代謝燃料,可作為體內(nèi)能量來源[14].本實(shí)驗(yàn)室已報(bào)道Glu-Fe(Ⅲ)螯合物的制備,但對(duì)其補(bǔ)鐵效果未加評(píng)價(jià)[15].因此,本文自制谷氨酸鐵(Glu-Fe(Ⅲ))和谷氨酸亞鐵(Glu-Fe(Ⅱ)),并建立缺鐵性貧血(IDA)模型,對(duì)IDA小鼠灌胃治療,考察其補(bǔ)鐵效果.
1實(shí)驗(yàn)部分
1.1儀器與試藥
TEK-Ⅱ系列全自動(dòng)三分群血液分析儀(江西特康科技有限公司);Synergy HT酶標(biāo)儀(美國伯騰儀器有限公司);HWS-80B恒溫恒濕培養(yǎng)箱(天津市宏諾儀器有限公司);KZ-Ⅲ-F高速低溫組織研磨儀(武漢塞維爾生物科技有限公司).
谷氨酸(分析純,天津福晨化學(xué)試劑有限公司);四水氯化亞鐵(國藥集團(tuán)化學(xué)試劑);六水氯化鐵(上海麥克林生化科技有限公司);小鼠組織鐵測(cè)定試劑盒、血清鐵(SI)測(cè)定試劑盒、總鐵結(jié)合力(TIBC)測(cè)定試劑盒、轉(zhuǎn)鐵蛋白(TRF)測(cè)定試劑盒、過氧化氫酶(CAT)測(cè)定試劑盒、丙二醛(MDA)測(cè)定試劑盒和總超氧化物歧化酶(SOD)測(cè)試盒均購自南京建成生物工程研究所;其他試劑均為分析純,實(shí)驗(yàn)用水為二次蒸餾水.SPF級(jí)三周齡雄性ICR小鼠,體質(zhì)量18~22 g,斯貝福(北京)生物技術(shù)有限公司提供(許可證號(hào):SCXK(京)2019-0010,合格證編號(hào):110324220103742158).1.2實(shí)驗(yàn)方法
1.2.1谷氨酸鐵和谷氨酸亞鐵的制備
Glu-Fe(Ⅱ)的制備[16]:稱取1.5 g的Glu溶于30 mL蒸餾水中,70 ℃恒溫水浴條件下,加熱攪拌0.5 h,使Glu完全溶解.取2.0 g的四水氯化亞鐵配成1 mol/L的水溶液,將其緩慢滴入Glu溶液中,邊加邊攪拌,用1 mol/L的NaOH溶液調(diào)節(jié)反應(yīng)pH至6,加適量還原鐵粉,通入N2,繼續(xù)恒溫水浴反應(yīng)1.5 h.反應(yīng)結(jié)束后,趁熱過濾,在旋轉(zhuǎn)蒸發(fā)儀上濃縮濾液,放冷至室溫.濃縮濾液加入9倍體積的無水乙醇,醇沉靜置24 h,離心所得沉淀即為Glu-Fe(Ⅱ)粗品.用少量的蒸餾水溶解,真空冷凍干燥即得Glu-Fe(Ⅱ).
Glu-Fe(Ⅲ)的制備[15]:稱取1.5 g的Glu完全溶解于30 mL蒸餾水中.取4.6 g的六水氯化鐵配成1 mol/L的水溶液,將其緩慢滴入Glu溶液中,邊加邊攪拌,用1 mol/L的NaOH溶液調(diào)節(jié)反應(yīng)pH至4.8,50 ℃恒溫水浴反應(yīng)3 h.反應(yīng)結(jié)束后,取濾液濃縮,放冷至室溫,醇沉靜置24 h,離心所得沉淀即為Glu-Fe(Ⅲ)粗品,用少量蒸餾水溶解,真空冷凍干燥即得Glu-Fe(Ⅲ).
1.2.2小鼠缺鐵性貧血模型的建立和治療
所有小鼠均飼養(yǎng)于不銹鋼籠中,溫度23~25 ℃,相對(duì)濕度50%~70%,自由攝食和飲水.將小鼠隨機(jī)分為正常對(duì)照組和貧血模型組.正常對(duì)照組小鼠用含鐵200 mg/kg的飼料喂養(yǎng),貧血模型組將飼料鐵含量降低到7 mg/kg,以低鐵飼料喂養(yǎng)聯(lián)合放血法,造模IDA小鼠.實(shí)驗(yàn)過程中每天記錄食物攝入量.每周監(jiān)測(cè)HGB和體質(zhì)量,并觀察小鼠的精神狀態(tài).小鼠HGB含量低于100 g/L認(rèn)為成功建立缺鐵性貧血模型.
將IDA模型組小鼠隨機(jī)分為5組,每組6只,依次分為貧血模型對(duì)照組、Glu-Fe(Ⅱ)組、Glu-Fe(Ⅲ)組、FeSO4組和市售右旋糖酐鐵組.除正常對(duì)照組以正常飲食外,IDA小鼠均以低鐵飼料喂養(yǎng).以含鐵量為45.5 mg/(kg·d)的劑量分別灌胃給予IDA模型組小鼠Glu-Fe(Ⅱ)、Glu-Fe(Ⅲ)、硫酸亞鐵和市售右旋糖酐鐵溶液,正常對(duì)照組和貧血模型組灌胃等體積生理鹽水,每天固定時(shí)間灌胃小鼠,持續(xù)4周,每周監(jiān)測(cè)HGB含量和體質(zhì)量.
1.2.3小鼠血常規(guī)指標(biāo)測(cè)定
小鼠眼眶取血,通過全自動(dòng)三分群血液分析儀測(cè)定小鼠的HGB、RBC和HCT.
1.2.4小鼠血清指標(biāo)、器官指數(shù)、組織鐵含量和氧化應(yīng)激反應(yīng)測(cè)定
小鼠灌胃4周,摘眼球取血于離心管中,室溫靜置30 min,2 500~4 000 r/min離心15 min分離血清,采用小鼠SI、TIBC和TRF測(cè)試盒測(cè)定血清指標(biāo).
將小鼠解剖,摘取心、肝、脾和腎,用生理鹽水沖洗,用濾紙吸干并稱重,按式(1)計(jì)算器官指數(shù).分別稱取0.1 g心、肝、腎和脾,以1∶9(g∶mL)的比例加入生理鹽水,制備質(zhì)量分?jǐn)?shù)為10%的組織勻漿液,4 ℃ 2 500 r/min離心10 min,棄去沉淀取上清液檢測(cè).采用組織鐵測(cè)試盒測(cè)定小鼠各組織鐵含量,SOD、CAT和MDA試劑盒測(cè)定小鼠肝臟的抗氧化活性.器官指數(shù)=器官質(zhì)量(g)活體質(zhì)量(g)×100%.(1)1.2.5數(shù)據(jù)處理方法
實(shí)驗(yàn)數(shù)據(jù)用x±s表示,采用SPSS軟件對(duì)數(shù)據(jù)進(jìn)行單因素方差分析(ANOVA),并且進(jìn)行多重比較檢驗(yàn),以P<0.05為有顯著性差異.
2結(jié)果與討論
2.1小鼠缺鐵性貧血模型的建立和體質(zhì)量差異分析
造模42 d后,36只小鼠造模成功,造模成功率64%.與正常對(duì)照組小鼠相比,IDA小鼠體形偏瘦,毛發(fā)稀疏,耳朵和爪子蒼白,見圖1a和圖1b.在造模初期,正常對(duì)照組與IDA組的體質(zhì)量無統(tǒng)計(jì)學(xué)意義.而造模3周,IDA組小鼠體質(zhì)量增長停滯,4周后IDA組小鼠體質(zhì)量明顯下降,見圖1c.IDA小鼠飼喂補(bǔ)鐵劑后體質(zhì)量變化見圖1d,治療恢復(fù)初期,正常對(duì)照組小鼠體質(zhì)量明顯高于其他組;治療4周,硫酸亞鐵組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和Glu-Fe(Ⅲ)組的小鼠體質(zhì)量,均逐漸上升.a(chǎn).正常小鼠;b.IDA小鼠;c.小鼠造模與治療體質(zhì)量;d.小鼠治療體質(zhì)量
2.2小鼠血中HGB、RBC和HCT指標(biāo)測(cè)定
造模與治療過程IDA小鼠HGB變化,見圖2a與圖2b.紅細(xì)胞的HGB負(fù)責(zé)運(yùn)輸氧氣,鐵是HGB重要組成成分,缺鐵會(huì)降低HGB含量[17].正常對(duì)照組HGB含量穩(wěn)定在約135 g/L,造模小鼠的HGB逐漸降低至57.2 g/L.飼喂補(bǔ)鐵劑后,在7、14、21、28 d分別測(cè)定HGB含量,各組HGB含量均隨時(shí)間增加而增大,治療前2周增加顯著.補(bǔ)鐵4周,所有補(bǔ)鐵組的HGB含量均得到改善,HGB含量大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組.
圖2c和圖2d是小鼠RBC變化圖,RBC代表紅細(xì)胞數(shù),約占血量的50%,負(fù)責(zé)CO2和O2的運(yùn)輸[18].相比正常組RBC穩(wěn)定在約8.70×1012/L,造模小鼠RBC含量逐漸降低至4.27×1012/L.飼喂補(bǔ)鐵劑4周后,補(bǔ)鐵組IDA小鼠的RBC含量大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組.
圖2e和圖2f是小鼠HCT變化圖.HCT代表計(jì)算出的紅細(xì)胞在血液中的體積百分比[19],取決于紅細(xì)胞中的HGB濃度,IDA癥狀會(huì)導(dǎo)致HCT水平偏低.正常對(duì)照組HCT體積分?jǐn)?shù)穩(wěn)定在46%左右,造模IDA組小鼠HCT體積分?jǐn)?shù)逐漸降低至21%.給予補(bǔ)鐵劑4周,補(bǔ)鐵組小鼠HCT含量均得到改善,各補(bǔ)鐵組HCT含量大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組.
綜上,飼喂補(bǔ)鐵劑后各組IDA小鼠血中HGB、RBC和HCT指標(biāo)都得到改善,其中Glu-Fe(Ⅲ)組效果最佳,補(bǔ)鐵劑可以在一定程度上改善貧血癥狀.
2.3給予補(bǔ)鐵劑后IDA小鼠體內(nèi)指標(biāo)評(píng)價(jià)
血清生化指標(biāo)是評(píng)價(jià)機(jī)體健康狀況的重要指標(biāo),SI指標(biāo)有助于判斷體內(nèi)鐵含量狀況[20],TIBC是鐵狀態(tài)的生物標(biāo)志物[21],TRF是負(fù)責(zé)鐵運(yùn)輸?shù)牡鞍踪|(zhì)[22],SI、TIBC和TRF可反映體內(nèi)鐵代謝的情況.如圖3a-3c,正常組小鼠的SI、TIBC和TRF分別為50.00 μmol/L、82.31 μmol/L、18.61 mg/dL,而IDA小鼠分別為34.62 μmol/L、136.20 μmol/L和23.66 mg/dL.給予補(bǔ)鐵劑4周,相比IDA組小鼠,各補(bǔ)鐵組小鼠SI含量明顯提高,TIBC水平和TRF含量降低,3種指標(biāo)參數(shù)均有所改善.SI含量大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組;TIBC含量大小依次為硫酸亞鐵組、Glu-Fe(Ⅱ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅲ)組;TRF含量大小依次為硫酸亞鐵組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和Glu-Fe(Ⅲ)組.此外,市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和Glu-Fe(Ⅲ)組的SI、TIBC和TRF含量之間無顯著性差異,Glu-Fe(Ⅲ)組的3個(gè)指標(biāo)更接近正常組.
小鼠器官質(zhì)量和指數(shù)是研究藥物毒性的指標(biāo),IDA組小鼠的心、肝、脾和腎器官指數(shù)與正常組小鼠均具有顯著差異(圖3d).貧血會(huì)導(dǎo)致血液攜氧能力下降,限制紅細(xì)胞生成,導(dǎo)致鐵消耗和鐵儲(chǔ)存量減少[23].鐵缺乏會(huì)導(dǎo)致心臟肥厚和心肌細(xì)胞增大[24],IDA組小鼠的心臟指數(shù)明顯高于正常對(duì)照組.肝和脾是儲(chǔ)鐵的主要器官,體內(nèi)多余的鐵主要以鐵蛋白和血紅蛋白的形式沉積在肝、脾和骨髓中[25].IDA組小鼠肝臟較小,文獻(xiàn)[26]認(rèn)為缺鐵導(dǎo)致肝臟生長和DNA合成受損.缺鐵會(huì)引起免疫功能變化,且貧血引起的血紅蛋白改變導(dǎo)致脾腫大[27],缺鐵會(huì)導(dǎo)致腎臟損傷發(fā)生水腫[28],這與IDA組小鼠的脾和腎指數(shù)明顯高于正常對(duì)照組的結(jié)果一致,表明IDA組小鼠發(fā)生了器官損傷.飼喂補(bǔ)鐵劑4周,各組小鼠器官指數(shù)均有改善,與IDA組小鼠具有顯著性差異.補(bǔ)鐵組IDA小鼠的肝臟指數(shù)大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組;而IDA小鼠的心、脾和腎臟指數(shù)明顯下降,心、脾和腎指數(shù)大小依次為硫酸亞鐵組、Glu-Fe(Ⅱ)組、市售右旋糖酐鐵組和Glu-Fe(Ⅲ)組.
機(jī)體鐵穩(wěn)態(tài)需要多個(gè)器官的協(xié)同,小鼠器官組織中的鐵含量可反映鐵穩(wěn)態(tài)[29].圖3e是各組小鼠的心、肝、脾和腎的鐵含量(以每g蛋白中的含量表示),IDA組小鼠的各器官組織鐵含量與正常組小鼠均具有顯著差異.經(jīng)過4周的補(bǔ)鐵劑飼喂,各補(bǔ)鐵組心臟鐵含量大小依次為Glu-Fe(Ⅲ)組、市售右旋糖酐鐵組、Glu-Fe(Ⅱ)組和硫酸亞鐵組;肝和脾中鐵含量大小依次為Glu-Fe(Ⅲ)組、Glu-Fe(Ⅱ)組、市售右旋糖酐鐵組和硫酸亞鐵組;腎臟鐵含量大小依次為市售右旋糖酐鐵組、Glu-Fe(Ⅲ)組、Glu-Fe(Ⅱ)組和硫酸亞鐵組.飼喂Glu-Fe(Ⅲ)的IDA小鼠心、肝和脾中鐵含量均高于其他補(bǔ)鐵劑的IDA小鼠.a(chǎn). 血清鐵;b. 總鐵結(jié)合力;c. 轉(zhuǎn)鐵蛋白;d. 器官指數(shù);e. 組織鐵(以每g蛋白的含量表示);f. 過氧化氫酶;g. 丙二醛;
h. 總超氧化物歧化酶;比較了兩者的顯著性差異,*P<0.05,**P<0.01,***P<0.001
圖3飼喂補(bǔ)鐵劑4周后IDA小鼠體內(nèi)指標(biāo)檢測(cè)
Fig.3In vivo index detection in IDA mice after iron supplementation for 4 weeks氧化應(yīng)激是體內(nèi)活性氧失衡[30],IDA癥狀可導(dǎo)致氧化應(yīng)激[31],降低抗氧化酶的活性.體內(nèi)抗氧化是清除活性氧(ROS),防止氧化損傷,而酶系統(tǒng)SOD和CAT變化是評(píng)價(jià)細(xì)胞氧化還原態(tài)重要指標(biāo)[32].體內(nèi)自由基作用于脂質(zhì)發(fā)生過氧化反應(yīng),產(chǎn)生的MDA會(huì)導(dǎo)致蛋白質(zhì)或核酸等大分子交聯(lián),產(chǎn)生細(xì)胞毒性[33].飼喂補(bǔ)鐵劑的IDA小鼠氧化應(yīng)激結(jié)果見圖3f-3h,正常組小鼠每mg蛋白中CAT、SOD和MDA含量為194.65 nmol、27.24 U和9.28 nmol,而IDA組小鼠分別為31.36 nmol、14.79 U和15.39 nmol,CAT值和SOD值降低,MDA值升高.由于IDA癥狀導(dǎo)致體內(nèi)氧化損傷,使得抗氧化標(biāo)志物下降和脂質(zhì)過氧化增加[34].相比IDA組,各補(bǔ)鐵組小鼠的CAT值和SOD值升高,而MDA值降低.各補(bǔ)鐵組CAT大小依次為市售右旋糖酐鐵組、Glu-Fe(Ⅲ)組、Glu-Fe(Ⅱ)組和硫酸亞鐵組;SOD含量大小依次為Glu-Fe(Ⅲ)組、Glu-Fe(Ⅱ)組、市售右旋糖酐鐵組和硫酸亞鐵組;MDA含量大小依次為硫酸亞鐵組、市售右旋糖酐鐵組、Glu-Fe(Ⅲ)組和Glu-Fe(Ⅱ)組.通過3項(xiàng)指標(biāo)檢測(cè)發(fā)現(xiàn)飼喂FeSO4補(bǔ)鐵劑IDA小鼠體內(nèi)的抗氧化能力最差,可能與無機(jī)鐵體內(nèi)吸收相對(duì)較差有關(guān);Glu-Fe(Ⅱ)和Glu-Fe(Ⅲ)補(bǔ)鐵劑在對(duì)抗體內(nèi)脂質(zhì)氧化(圖3g)和催化超氧化物陰離子歧化作用上(圖3h)表現(xiàn)較優(yōu);市售右旋糖酐鐵組小鼠的體內(nèi)清除過氧化氫顯示出高能力(圖3f);此外,飼喂Glu-Fe(Ⅲ)IDA小鼠的MDA和SOD值更接近對(duì)照的正常組小鼠.
3結(jié)論
本文建立IDA小鼠模型,評(píng)價(jià)Glu-Fe(Ⅱ)和Glu-Fe(Ⅲ)的補(bǔ)鐵效果.結(jié)果表明2種補(bǔ)鐵劑均可提升IDA小鼠HGB、RBC和HCT值,使得小鼠體質(zhì)量、主要臟器獲得恢復(fù),血中SI、TIBC和TRF指標(biāo)趨向正常.此外,2種補(bǔ)鐵劑均可提升IDA小鼠的SOD和CAT,并抑制MDA產(chǎn)生,顯示出自由基清除能力.相比市售硫酸亞鐵和右旋糖酐鐵,飼喂Glu-Fe(Ⅲ)改善IDA小鼠貧血相關(guān)的HGB、RBC和HCT血常規(guī)指標(biāo)及SI、TIBC和TRF血生化指標(biāo)、減輕內(nèi)臟器官(心、脾和腎)腫大、促進(jìn)肝恢復(fù)、提升肝脾儲(chǔ)鐵、清除組織ROS且增強(qiáng)抗氧化活性等表現(xiàn)更佳.而Glu-Fe(Ⅱ)制劑在改善IDA小鼠貧血相關(guān)的血常規(guī)指標(biāo)、減輕內(nèi)臟器官(心、脾和腎)腫大并增加肝脾儲(chǔ)鐵上僅比市售硫酸亞鐵好.綜上,Glu-Fe(Ⅲ)制劑可作為同時(shí)補(bǔ)充氨基酸和鐵的營養(yǎng)強(qiáng)化劑.
參考文獻(xiàn):
[1]GUO X, JIN X, HAN K, et al. Iron promotes neurological function recovery in mice with ischemic stroke through endogenous repair mechanisms[J]. Free Radic Biol Med, 2022, 182: 59-72. DOI:10.1016/j.freeradbiomed.2022.02.017.
[2]JING J L, NING T C Y, NATALI F, et al. Iron supplementation delays aging and extends cellular lifespan through potentiation of mitochondrial function[J]. Cells, 2022, 11(5): 862. DOI:10.3390/ cells11050862.
[3]ZORODDU M A, AASETH J, CRISPONI G, et al. The essential metals for humans: a brief overview[J]. J Inorg Biochem, 2019, 195: 120-129. DOI: 10.1016/j.jinorgbio.2019.03.013.
[4]韋曉麗,周吉超,張曉偉.鐵代謝及其在心力衰竭治療中的作用機(jī)制研究進(jìn)展[J].藥學(xué)學(xué)報(bào),2022,57(6):1584-1592.DOI: 10.16438/j.0513-4870.2022-0268.
[5]KELLY B, PEARCE E L. Amino assets: how amino acids support immunity[J]. Cell Metab, 2020, 32(2): 154-175. DOI: 10.1016/j.cmet.2020.06.010.
[6]SANCHEZ J, VILLADA O A, ROJAS M L, et al. Effect of zinc amino acid chelate and zinc sulfate in the incidence of respiratory infection and diarrhea among preschool children in child daycare centers[J]. Biomedica, 2014, 34(1): 79-91. DOI:10.1590/S0120-41572014000100011.
[7]MOETY G A F A, ALI A M, FOUAD R, et al. Amino acid chelated iron versus an iron salt in the treatment of iron deficiency anemia with pregnancy: A randomized controlled study[J]. Eur J of Obst Gynecol Reprod Biol, 2017, 210: 242-246. DOI: 10.1016/j.ejogrb.2017.01.003.
[8]FISCHER J A J, CHERIAN A M, Bone J N, et al. The effects of oral ferrous bisglycinate supplementation on hemoglobin and ferritin concentrations in adults and children: a systematic review and meta-analysis of randomized controlled trials[J]. Nutr Rev, 2023,81(8):904-920. DOI: 10.1093/nutrit/nuac106.
[9]HERTRQMPFE, OLIVARES M. Iron qmino acid chelates[J]. International Journal for Vitamin and Nutrition Research, 2004,74(6):435-443. DOI: 10.1024/0300-9831.74.6.635.
[10]JIANG S, DONG W, ZHANG Z, et al. A new iron supplement: The chelate of pig skin collagen peptide and Fe2+ can treat iron-deficiency anemia by modulating intestinal flora[J]. Front Nutr, 2022, 9: 1055725. DOI: 10.3389/fnut.2022.1055725.
[11]LU Q, XU L, MENG Y, et al. Preparation and characterization of a novel astragalus membranaceus polysaccharide-iron (Ⅲ) complex[J]. Int J Biol Macromol, 2016, 93: 208-216. DOI: 10.1016/j.ijbiomac.2016.08.049.
[12]RODRIGUEZ-CAMPUZANO A G, ORTEGA A. Glutamate transporters: Critical components of glutamatergic transmission[J]. Neuropharmacology, 2021, 192: 108602. DOI: 10.1016/j.neuropharm.2021.108602.
[13]代毅聰,陳鳳容,王昆華.谷氨酸轉(zhuǎn)運(yùn)體的結(jié)構(gòu)、功能及其在神經(jīng)精神疾病中的作用[J].昆明醫(yī)科大學(xué)學(xué)報(bào),2020,41(9):142-148.
[14]MORTENSEN A, AGUILAR F, CREBELLI R, et al. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives[J]. EFSA J, 2017, 15(7): e04910. DOI: 10.2903/j.efsa.2017.4910.
[15]劉新碩,王真,李晴,等.谷氨酸鐵的制備及表征[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,43(5):476-483. DOI:10.3969/j.issn.1000 1565.2023.05.005.
[16]黃杰,于新,刁麗婷,等.響應(yīng)面法優(yōu)化谷氨酸亞鐵的制備工藝[J].食品科學(xué),2015,36(10):81-85.DOI: 10.7506/spkx1002-6630-201510016.
[17]BAHDILA D, MARKOWITZ K, PAWAR S, et al. The effect of iron deficiency anemia on experimental dental caries in mice[J]. Arch Oral Biol, 2019, 105: 13-19. DOI: 10.1016/j.archoralbio.2019.05.002.
[18]TOBIAN A, HEDDLE N M, WIEGMANN T L, et al. Red blood cell transfusion: 2016 clinical practice guidelines from AABB[J]. Transfusion, 2016, 56(10): 2627-2630. DOI: 10.1111/trf.13735.
[19]謝曉恬.兒科血常規(guī)檢查的意義與解讀[J].臨床兒科雜志,2013,31(4):398-400.DOI: 10.3969/j.issn.1000-3606.2013.04.029.
[20]NGUYEN L T, BUSE J D, BASKIN L, et al. Influence of diurnal variation and fasting on serum iron concentrations in a community-based population[J]. Clin Biochem, 2017, 50(18): 1237-1242. DOI: 10.1016/j.clinbiochem.2017.09.018.
[21]IKEDA-TANIGUCHI M, TAKAHASHI K, SHISHIDO K, et al. Total iron binding capacity is a predictor for muscle loss in maintenance hemodialysis patients[J]. Clini Exp Nephrol, 2022, 26(6): 583-592. DOI: 10.1007/s10157-022-02193-1.
[22]KAWABATA H. Transferrin and transferrin receptors update[J]. Free Radic Biol and Med, 2019, 133: 46-54. DOI: 10.1016/j.freeradbiomed.2018.06.037.
[23]TANGEDA P R, PATIL S, SHASTRI N, et al. Maternal myocardial performance in second trimester of pregnancy with iron deficiency anaemia[J]. J Clin Diagn Res, 2016, 10(3): CC16-18. DOI: 10.7860/JCDR/2016/17774.7507.
[24]KOBAK K A, RADWANSKA M, DZIEGALA M, et al. Structural and functional abnormalities in iron-depleted heart[J]. Heart Fail Rev, 2019, 24: 269-277. DOI: 10.1007/s10741-018-9738-4.
[25]REGENBOOG M, BOHTE A E, AKKERMAN E M, et al. Iron storage in liver, bone marrow and splenic Gaucheroma reflects residual disease in type 1 Gaucher disease patients on treatment[J]. Br J Haematol, 2017, 179(4): 635-647. DOI: 10.1111/bjh.14915.
[26]JANA F, ROGALSKY D W, TRUKSA J, et al. Effect of stimulated erythropoiesis on liver SMAD signaling pathway in iron-overloaded and iron-deficient mice[J]. PLoS One, 2019, 14(4): e0215028. DOI: 10.1371/journal.pone.0215028.
[27]ANGERMEIER E, DOMES K, LUKOWSKI R, et al. Iron deficiency anemia in cyclic GMP kinase knockout mice[J]. Haematologica, 2016, 101(2): e4851. DOI: 10.3324/haematol.2015.137026.
[28]DRAKE K A, SAUERBRY M J, BLOHOWIAK S E, et al. Iron deficiency and renal development in the newborn rat[J]. Pediatr Res, 2009, 66(6): 619-624. DOI: 10.1203/PDR.0b013e3181be79c2.
[29]PARK K T, SIM I, KO H S, et al. Gamma aminobutyric acid increases absorption of glycine-bound iron in mice with iron deficiency anemia[J]. Biol Trace Elem Res, 2020, 197(2): 628-638. DOI: 10.1007/s12011-020-02027-9.
[30]藺冬冬,侯亞璐,唐婷,等.白藜蘆醇對(duì)紫外線誘導(dǎo)家蠅氧化損傷的保護(hù)作用[J].河北大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,39(5):510-515.DOI: 10.3969/j.issn.1000-1565.2019.05.011.
[31]SCHWARTZ A J, CONVERSO-BARAN K, MICHELE D E, et al. A genetic mouse model of severe iron deficiency anemia reveals tissue-specific transcriptional stress responses and cardiac remodeling[J]. J Biol Chem, 2019, 294(41): 14991-15002. DOI: 10.1074/jbc.RA119.009578.
[32]NAGABABU E, GULYANI S, EARLEY C J, et al. Iron-deficiency anaemia enhances red blood cell oxidative stress[J]. Free Radic Res, 2008, 42(9): 824-829. DOI: 10.1080/10715760802459879.
[33]ZHANG C, JIN Y, YU Y, et al. Cadmium-induced oxidative stress, metabolic dysfunction and metal bioaccumulation in adult palaemonid shrimp Palaemon macrodactylus (Rathbun, 1902)[J]. Ecotoxicol Environ Saf, 2021, 208: 111591. DOI: 10.1016/j.ecoenv.2020.111591.
[34]USMAN S S, DAHIRU M, ABDULLAHI B, et al. Status of malondialdehyde, catalase and superoxide dismutase levels/activities in schoolchildren with iron deficiency and iron-deficiency anemia of Kashere and its environs in Gombe State, Nigeria[J]. Heliyon, 2019, 5(8): e02214. DOI: 10.1016/j.heliyon.2019.e02214.
(責(zé)任編輯:梁俊紅)