摘""要:骨關(guān)節(jié)炎(Osteoarthritis,OA)是一種年齡相關(guān)的慢性退行性關(guān)節(jié)疾病,具有巨大的臨床危害。內(nèi)質(zhì)網(wǎng)應(yīng)激(Endoplasmic reticulum stress,ERS)是內(nèi)質(zhì)網(wǎng)中出現(xiàn)大量錯(cuò)誤折疊或未折疊蛋白質(zhì)過度堆積時(shí)機(jī)體啟動(dòng)的一種保護(hù)性應(yīng)激反應(yīng)。越來越多的研究證實(shí)ERS在骨關(guān)節(jié)炎的發(fā)病機(jī)制中扮演了重要角色,但具體機(jī)制仍不清楚。本文就ERS與OA的聯(lián)系及其研究進(jìn)展進(jìn)行綜述,以期為OA的治療提供參考。
關(guān)鍵詞:內(nèi)質(zhì)網(wǎng)應(yīng)激;骨關(guān)節(jié)炎;凋亡;信號(hào)通路;軟骨細(xì)胞。
中圖分類號(hào):R681.3 """文獻(xiàn)標(biāo)志碼:A """文章編號(hào):1001-5779(2024)08-0840-05
DOI : 10.3969/j.issn.1001-5779.2024.08.017
Research progress of endoplasmic reticulum stress signaling pathway in osteoarthritis
NIU Shuo "YI Jun ZHU Fan-mao HUANG Ji-shang ZHENG Tian-sheng JI Guang-lin
(1.The First Clinical Medical School of Gannan Medical University;"2.Department of Orthopedics,"The First Affiliated Hospital of Gannan Medical University,Ganzhou,"Jiangxi "341000)
Abstract ":"Osteoarthritis (OA)"is an age-associated chronic degenerative joint disease with significant clinical hazard. Endoplasmic reticulum stress (ERS)"is a protective stress response initiated by the body when there is an excessive accumulation of large amounts of misfolded or unfolded proteins in the endoplasmic reticulum. A growing number of studies confirm that ERS plays an important role in the pathogenesis of osteoarthritis,"but the exact mechanism remains unclear. This article reviews the association between ERS and OA and its research progress,"with a view to providing a research basis for the treatment of OA.
Key words ":""Endoplasmic reticulum stress;"Osteoarthritis;"Apoptosis;"Signaling pathway;"Chondrocyte
骨關(guān)節(jié)炎(Osteoarthritis,OA)作為一種以關(guān)節(jié)軟骨變性、破壞為特征的慢性退行性關(guān)節(jié)疾病,已成為困擾全球的公共衛(wèi)生問題。OA的臨床表現(xiàn)以關(guān)節(jié)腫痛和活動(dòng)功能障礙最為常見,有較高致殘率并顯著增加了心血管事件發(fā)生率和全因死亡率[1]。隨著人口老齡化的進(jìn)展,OA的發(fā)病率逐年升高。據(jù)報(bào)道,在我國高達(dá)5.1%~20.8%的成年人有OA的癥狀,而OA患者人數(shù)預(yù)計(jì)超過1億,給個(gè)人帶來了沉重的精神、經(jīng)濟(jì)壓力,也給社會(huì)帶來了沉重的經(jīng)濟(jì)負(fù)擔(dān)[2]。越來越多的研究表明,內(nèi)質(zhì)網(wǎng)應(yīng)激(Endoplasmic reticulum stress,ERS)與OA發(fā)病機(jī)制關(guān)系密切[3]。本文主要就ERS構(gòu)成特征、ERS與OA的聯(lián)系以及ERS在OA發(fā)病機(jī)制中發(fā)揮的作用等方面的研究進(jìn)展進(jìn)行綜述。
1""骨關(guān)節(jié)炎及其病理機(jī)制
OA也稱為退行性關(guān)節(jié)炎,其主要病理特征包括軟骨退化損傷、軟骨下骨反應(yīng)性增生、滑膜肥厚等。軟骨細(xì)胞是關(guān)節(jié)軟骨組織中唯一的細(xì)胞類型,其病理生理學(xué)的變化將嚴(yán)重影響軟骨組織以及關(guān)節(jié)的功能。軟骨細(xì)胞負(fù)責(zé)合成細(xì)胞外基質(zhì)(Extracellular matrix,ECM)中的膠原蛋白和蛋白聚糖,以維持關(guān)節(jié)軟骨的穩(wěn)定性和完整性。作為一種多源性疾病,OA的發(fā)病機(jī)制極其復(fù)雜。遺傳、創(chuàng)傷、炎癥、衰老、肥胖和過度的機(jī)械壓力等因素都誘發(fā)或加速OA的病程進(jìn)展。目前大部分學(xué)者認(rèn)為,OA是在生化和力學(xué)因素的共同干預(yù)下,導(dǎo)致軟骨細(xì)胞、細(xì)胞外基質(zhì)及軟骨下骨三者的動(dòng)態(tài)降解和合成失衡所引起的,其中軟骨細(xì)胞的過度凋亡和ECM降解是OA的核心特征。
2""內(nèi)質(zhì)網(wǎng)與內(nèi)質(zhì)網(wǎng)應(yīng)激
內(nèi)質(zhì)網(wǎng)(Endoplasmic reticulum,ER)是由小管、小泡或扁平囊組成的三維管網(wǎng)結(jié)構(gòu)。作為真核細(xì)胞中最大的細(xì)胞器,內(nèi)質(zhì)網(wǎng)參與細(xì)胞中分泌蛋白的折疊及多種蛋白質(zhì)的翻譯后修飾,同時(shí)也是細(xì)胞內(nèi)鈣離子的貯存庫。內(nèi)膜系統(tǒng)上幾乎所有蛋白質(zhì)都在ER膜結(jié)合的核糖體中合成,然后在ER腔中進(jìn)行翻譯后折疊。根據(jù)代謝需求,細(xì)胞調(diào)節(jié)ER的功能,以確保蛋白質(zhì)折疊的準(zhǔn)確性。當(dāng)鈣穩(wěn)態(tài)、能量儲(chǔ)存、氧化還原狀態(tài)以及代謝和炎癥反應(yīng)等變化干擾了ER的穩(wěn)態(tài)后,細(xì)胞內(nèi)未折疊或錯(cuò)誤折疊蛋白質(zhì)發(fā)生積累,從而發(fā)生ERS。細(xì)胞通過減少蛋白質(zhì)合成、促進(jìn)蛋白質(zhì)降解和外排、誘導(dǎo)分子伴侶合成以增強(qiáng)蛋白質(zhì)折疊能力來緩解ERS,這種調(diào)節(jié)稱為未折疊蛋白反應(yīng)(Unfolded protein response,UPR)。如果UPR代償ERS的程度不足會(huì)導(dǎo)致相關(guān)信號(hào)通路得以激活,誘發(fā)ERS反應(yīng)途徑并促進(jìn)細(xì)胞凋亡。此外,ERS同樣會(huì)誘發(fā)軟骨細(xì)胞產(chǎn)生氧化應(yīng)激和炎癥相關(guān)的細(xì)胞外基質(zhì)代謝失衡。蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶(Protein kinase R (PKR)-like endoplasmic reticulum kinase,PERK)、肌醇需求蛋白-1α(Inositol requiring enzyme 1 ,IRE1α)和激活轉(zhuǎn)錄因子6(Activating transcription factor 6,ATF6)是UPR信號(hào)級(jí)聯(lián)反應(yīng)的3個(gè)分支,它們由ERS葡萄糖調(diào)節(jié)蛋白78(Glucose-regulated protein78,GRP78)與內(nèi)質(zhì)網(wǎng)膜蛋白解離所觸發(fā)。
PERK是一種ER駐留的Ser/Thr蛋白激酶,其催化結(jié)構(gòu)域與真核起始因子2α(eIF2α)家族中的激酶具有高度同源性。一旦ERS發(fā)生,PERK的激酶結(jié)構(gòu)域會(huì)被激活。活化的PERK磷酸化蛋白質(zhì)翻譯eIF2α,隨之上調(diào)激活轉(zhuǎn)錄因子4(ATF4)的表達(dá)。此外,ATF4可驅(qū)動(dòng)下游靶基因C/EBP同源蛋白(C/EBP homologous protein,CHOP)表達(dá)并控制細(xì)胞凋亡相關(guān)基因的編碼。
IRE1α是一種內(nèi)質(zhì)網(wǎng)跨膜傳感器,當(dāng)GRP78釋放時(shí),IRE1α形成二聚體并發(fā)生磷酸化,誘導(dǎo)構(gòu)象變化以激活核酸內(nèi)切酶結(jié)構(gòu)域。IRE1α通過mRNA的非常規(guī)剪接發(fā)揮作用。當(dāng)UPR發(fā)生時(shí),X盒結(jié)合蛋白1(X-box binding protein 1,XBP1)mRNA成為IRE1α核酸內(nèi)切酶作用的直接靶標(biāo)。剪接的XBP1可以促進(jìn)含有ERS響應(yīng)元件的UPR靶分子表達(dá),如GRP78。一旦ERS的強(qiáng)度達(dá)到一定程度,細(xì)胞就會(huì)啟動(dòng)線粒體依賴性凋亡發(fā)生。此外,活化的IRE1α還誘導(dǎo)c-Jun N端激酶的磷酸化,從而導(dǎo)致細(xì)胞凋亡。
與PERK、IRE1α不同的是,ATF6在與GRP78解離后開始了獨(dú)特的蛋白調(diào)節(jié)機(jī)制。當(dāng)未折疊的蛋白質(zhì)積累時(shí),GRP78與ATF6解離并失去對(duì)高爾基體定位信號(hào)的抑制作用,導(dǎo)致ATF6易位到高爾基體。ATF6的跨膜片段被高爾基體的蛋白酶切割。ATF6裂解激活的片段可以進(jìn)入細(xì)胞核,上調(diào)UPR分子的表達(dá),如GRP78和GRP94。同時(shí),活化的ATF6還可以促進(jìn)XBP1和CHOP的表達(dá)。
此外,研究表明,ERS相關(guān)蛋白CHOP、PERK及JNK等與軟骨細(xì)胞的衰老、細(xì)胞外基質(zhì)的降解及凋亡密切相關(guān),從而進(jìn)一步驗(yàn)證了ERS反應(yīng)通路對(duì)軟骨細(xì)胞功能調(diào)節(jié)的重要性[4]。
3""內(nèi)質(zhì)網(wǎng)應(yīng)激與骨關(guān)節(jié)炎發(fā)病機(jī)制的聯(lián)系
由于功能及結(jié)構(gòu)的需要,關(guān)節(jié)軟骨細(xì)胞可合成分泌多種膠原蛋白和基質(zhì)金屬蛋白酶,其內(nèi)的ER也隨之承受了巨大的蛋白質(zhì)合成和折疊壓力。OA在被某些病理因素誘發(fā)的過程中也伴隨著ERS的激活。據(jù)報(bào)道,ERS相關(guān)標(biāo)志物如GRP78、ATF4、CHOP等在人OA軟骨細(xì)胞中表達(dá)明顯增加[5],同時(shí),利用ERS抑制劑(4-PBA)干預(yù)人OA軟骨細(xì)胞可使其細(xì)胞活力增加。此外,包括在內(nèi)側(cè)半月板不穩(wěn)定和前交叉韌帶橫斷手術(shù)構(gòu)建的大鼠OA模型,以及膝關(guān)節(jié)腔內(nèi)注射碘乙酸鈉和膠原酶誘導(dǎo)的OA動(dòng)物模型中,都發(fā)現(xiàn)了ERS信號(hào)的激活[5-6]。同時(shí),抑制ERS信號(hào)轉(zhuǎn)導(dǎo)可以改善OA的病情進(jìn)展[7]。這些研究表明ERS可能在OA進(jìn)展中發(fā)揮了重要作用。
3.1 ERS在OA進(jìn)展中誘導(dǎo)軟骨細(xì)胞凋亡""軟骨細(xì)胞凋亡作為OA的重要病理特征已被眾多研究所證實(shí)。TAN L等[8]通過對(duì)關(guān)節(jié)置換術(shù)得到的人關(guān)節(jié)軟骨樣本研究后發(fā)現(xiàn),正常人軟骨細(xì)胞的凋亡率約為2%~5%,而人OA軟骨細(xì)胞的凋亡率則高達(dá)18%~21%。雖然也有研究[9]證實(shí)OA軟骨細(xì)胞凋亡率高低不一,但無疑都與正常軟骨細(xì)胞存在巨大的差異。在OA晚期,凋亡通常發(fā)生在軟骨鈣化層,并伴隨著軟骨基質(zhì)的降解。研究發(fā)現(xiàn),ERS與OA軟骨細(xì)胞凋亡關(guān)系密切[3]。ERS剛發(fā)生時(shí),可通過擴(kuò)張內(nèi)質(zhì)網(wǎng)腔緩和蛋白質(zhì)的折疊壓力。但當(dāng)ERS劇烈激活或持續(xù)過久時(shí),ER中過載的蛋白質(zhì)折疊壓力破壞ER穩(wěn)態(tài)導(dǎo)致UPR,并通過激活下游信號(hào)分子募集形成凋亡復(fù)合物[10]。研究證實(shí),在構(gòu)建的大鼠OA模型中,ERS水平和凋亡率明顯升高,且ERS促進(jìn)了軟骨細(xì)胞凋亡和OA的進(jìn)展[11]。此外,F(xiàn)ENG K等[12]發(fā)現(xiàn),通過SIRT1/AMPK信號(hào)軸介導(dǎo)抑制ERS不僅可以減弱氧化應(yīng)激誘導(dǎo)的軟骨細(xì)胞凋亡,還改善了大鼠OA的軟骨破壞。然而,CHOP是將ERS與細(xì)胞凋亡聯(lián)系起來的主要轉(zhuǎn)錄因子。研究表明,OA軟骨細(xì)胞中CHOP及其下游效應(yīng)物半胱天冬氨酸-3的表達(dá)顯著上調(diào)[13]。與此結(jié)論相同的是,衣霉素不僅在體外條件下提高了ERS及其下游分子CHOP的表達(dá)水平,還誘導(dǎo)了顯著的軟骨細(xì)胞凋亡[14]。此外,特異性抑制ERS后,軟骨細(xì)胞凋亡也隨之改善。輕度的ERS對(duì)細(xì)胞具有保護(hù)作用,而重度或持續(xù)的ERS通過調(diào)節(jié)軟骨細(xì)胞凋亡而參與OA的病理進(jìn)程。但ERS不同閾值的具體調(diào)節(jié)機(jī)制尚不清楚。
3.2 ERS影響OA進(jìn)展中的ECM代謝""軟骨細(xì)胞的ECM是由水、膠原蛋白、蛋白聚糖、彈性蛋白、糖胺聚糖和糖蛋白等各種成分交聯(lián)形成的網(wǎng)狀結(jié)構(gòu),并發(fā)揮代謝調(diào)節(jié)、緩沖減壓的功能。ECM通過儲(chǔ)存軟骨細(xì)胞ER分泌的多種蛋白和生長因子,從而調(diào)節(jié)軟骨組織的代謝。一旦發(fā)生OA,ECM中軟骨細(xì)胞的排列將發(fā)生紊亂、層狀膠原纖維的結(jié)構(gòu)被破壞及膠原纖維的含量減少。目前研究[15]表明,ERS介導(dǎo)的ECM代謝過程與OA的發(fā)展有關(guān),并可能是導(dǎo)致軟骨結(jié)構(gòu)和功能發(fā)生病理改變的重要原因。研究發(fā)現(xiàn),小分子化合物Salubrinal可以緩解ERS的應(yīng)激程度而降低軟骨細(xì)胞中基質(zhì)金屬蛋白酶的表達(dá)及活性[16]。二氮嗪可以抑制ATF6和CHOP等ERS標(biāo)志物的mRNA和蛋白質(zhì)表達(dá),并促進(jìn)ECM成分二型膠原的合成,這表明ERS與ECM代謝在OA中有潛在的關(guān)聯(lián)[6]。此外,ECM分解代謝的過度激活促進(jìn)ERS誘導(dǎo)的OA進(jìn)展[17]。有研究[18]證明,在OA軟骨組織中存在過度分解代謝蓄積的晚期糖基化終產(chǎn)物,并通過激活ERS誘導(dǎo)關(guān)節(jié)退變??傊?,軟骨細(xì)胞的ECM代謝及結(jié)構(gòu)成分的改變均受到ERS的負(fù)向調(diào)控,但具體的調(diào)節(jié)機(jī)制仍有待進(jìn)一步研究。
3.3 ERS與炎癥相互作用影響OA的進(jìn)展""炎癥反應(yīng)是OA的重要病理機(jī)制之一[3-4]。研究表明,OA軟骨細(xì)胞中腫瘤壞死因子α(Tumor necrosis factor alpha,TNF-α)和白細(xì)胞介素1β(Interleukin 1 beta,IL-1β)等炎癥因子的表達(dá)明顯高于正常的軟骨細(xì)胞[15]。IL-1β可通過增強(qiáng)基質(zhì)金屬蛋白酶生成促進(jìn)ECM降解,從而導(dǎo)致軟骨破壞[19]。在前交叉韌帶橫斷構(gòu)建的大鼠OA模型中發(fā)現(xiàn),誘導(dǎo)炎癥會(huì)加重OA關(guān)節(jié)軟骨退變和骨贅形成,而抑制炎癥可有效緩解軟骨損傷[20]。因此,靶向抑制炎癥對(duì)延緩OA病理進(jìn)展具有重要臨床價(jià)值。此外,降低IL-1β水平也曾被提議作為OA治療策略之一[21]。在TNF-α處理的人軟骨細(xì)胞中,觀察到Ⅱ型膠原蛋白表達(dá)的降低以及Caspase-3、ATF4和CHOP等蛋白表達(dá)的增加[22]。有研究[17]證實(shí),促炎細(xì)胞因子IL-1β和TNF-α可激活ERS信號(hào)傳導(dǎo)并加速OA的病程發(fā)展。因此,ERS可能與炎癥發(fā)揮協(xié)同作用,加劇OA進(jìn)展,但具體的機(jī)制尚不明確。
3.4 ERS與氧化應(yīng)激協(xié)調(diào)影響OA的病程""軟骨細(xì)胞發(fā)生氧化應(yīng)激是OA發(fā)展的另一個(gè)重要因素。軟骨細(xì)胞長期生活在低氧條件下,其自身活性氧(Reactive oxygen species,ROS)水平較低。炎癥反應(yīng)、機(jī)械負(fù)荷和衰老等病理因素可以激活軟骨細(xì)胞的氧化應(yīng)激系統(tǒng)并使其產(chǎn)生大量炎癥因子,通過加速ECM降解、促進(jìn)線粒體功能障礙及誘導(dǎo)細(xì)胞凋亡等方式,共同介導(dǎo)軟骨損傷。研究證實(shí),活性氧水平升高引發(fā)的氧化應(yīng)激在OA發(fā)病機(jī)制中至關(guān)重要[23]。此外,氧化應(yīng)激誘導(dǎo)線粒體損傷并激活ERS以觸發(fā)細(xì)胞凋亡的級(jí)聯(lián)反應(yīng)[24]。FENG K等[12]同樣發(fā)現(xiàn),氧化應(yīng)激誘導(dǎo)物叔丁基過氧化氫可通過激活ERS誘導(dǎo)軟骨細(xì)胞凋亡。YE W 等[25]證實(shí)了氧化蛋白產(chǎn)物通過活性氧介導(dǎo)的線粒體功能障礙和內(nèi)質(zhì)網(wǎng)應(yīng)激途徑誘導(dǎo)人軟骨細(xì)胞凋亡。鑒于OA發(fā)展中ERS相關(guān)氧化應(yīng)激的調(diào)節(jié)機(jī)制的潛在聯(lián)系,有研究[26-27]提出以下猜想:首先高水平的ROS增加ER膜上鈣通道的敏感性,從而為ERS提供反饋激活的動(dòng)力;其次,ROS的產(chǎn)生損害了泛素-蛋白酶體途徑,阻礙了未折疊蛋白質(zhì)的降解;最后,ROS還通過介導(dǎo)二硫鍵的形成和影響蛋白質(zhì)的折疊加強(qiáng)ERS。但具體結(jié)論仍需進(jìn)一步探究。
4""內(nèi)質(zhì)網(wǎng)應(yīng)激作為骨關(guān)節(jié)炎潛在治療靶點(diǎn)的潛力
由于對(duì)病理機(jī)制探究的局限性,至今仍無有效的臨床方案來治愈OA。近年來,ERS已被證明在OA發(fā)病中至關(guān)重要,并已成為具有潛力的治療靶點(diǎn)。據(jù)報(bào)道,4-苯基丁酸(4-PBA)是一種小分子脂肪酸,可減少大鼠OA模型中ERS水平及細(xì)胞凋亡率并改善軟骨損傷[28]。?;撬崛パ跄懰幔═UDCA)是一種親水性膽汁酸,已被證明可以降低ER應(yīng)激標(biāo)志物的水平,提高細(xì)胞增殖活力并增加Ⅱ型膠原蛋白的表達(dá)[29]。此外一些中藥單體表現(xiàn)出對(duì)ERS的抑制,使其具有治療OA的潛力,如人參皂苷化合物K是一種天然代謝產(chǎn)物,其通過抑制軟骨細(xì)胞內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的IRE1α-TXNIP-NLRP3軸和焦亡來改善骨關(guān)節(jié)炎[5];槲皮素是一種廣泛用于治療呼吸道和心血管疾病的生物類黃酮,已被證明可以通過激活SIRT1/AMPK信號(hào)通路而抑制ERS并減少OA的軟骨細(xì)胞凋亡[12];姜黃素可顯著減弱ERS相關(guān)的軟骨細(xì)胞凋亡并改善骨關(guān)節(jié)炎在體內(nèi)的進(jìn)展[30]。
5""小結(jié)與展望
OA的發(fā)病機(jī)制復(fù)雜多樣且臨床危害嚴(yán)重,研究OA的發(fā)病機(jī)制,探索有效的防治方法具有重要臨床意義。本文綜述了ERS的機(jī)制、ERS在OA發(fā)病機(jī)制中發(fā)揮的作用以及靶向ERS治療OA的潛在價(jià)值。也有許多研究證實(shí)ERS在OA的發(fā)病機(jī)制中起重要作用。然而,ERS相關(guān)的調(diào)節(jié)機(jī)制仍不清楚,該領(lǐng)域仍有許多問題亟待解決。如:ERS是如何激活的?ERS誘導(dǎo)細(xì)胞凋亡的應(yīng)激閾值是如何判定的?ERS下游的3個(gè)分支激活的順序和各自的作用是什么?ERS靶向抑制劑會(huì)對(duì)機(jī)體產(chǎn)生什么影響?這些都有待于進(jìn)一步研究。近年來,已有許多研究對(duì)ERS與OA之間的關(guān)系進(jìn)行了探討,但針對(duì)ERS治療OA仍具有挑戰(zhàn)性。
參考文獻(xiàn):
[1]""GLYN-JONES S,"PALMER A R,"AGRICOLA R,"et al. Osteoarthritis [J]. Lancet,"2015,386(9991):376-387.
[2]""MOTTA F,BARONE E,SICA A,et al. Inflammaging and osteoarthritis[J]. Clin Rev Allergy Immunol,"2023,64(2):222-238.
[3]""WEN Z,SUN Q,SHAN Y,et al. Endoplasmic reticulum stress in osteoarthritis:"a novel perspective on the pathogenesis and treatment [J]. Aging Dis,"2023,14(2):283-286.
[4]""LIU Y,"ZHU H,"YAN X,"et al. Endoplasmic reticulum stress participates in the progress of senescence and apoptosis of osteoarthritis chondrocytes [J]. Biochem Biophys Res Commun,"2017,491(2):368-373.
[5]""FU C,QIU Z,HUANG Y,et al. Achyranthes bidentata polysaccharides alleviate endoplasmic reticulum stress in osteoarthritis via lncRNA NEAT1/miR-377-3p pathway [J]. Biomed Pharmacother,2022,154:113551.
[6]""GU Y,CHEN J,MENG Z,et al. Diazoxide prevents H2O2-induced chondrocyte apoptosis and cartilage degeneration in a rat model of osteoarthritis by reducing endoplasmic reticulum stress [J]. Biomed Pharmacother,2017,95:1886-1894.
[7]""HU S,"WANG S,"HE J,"et al. Tetramethylpyrazine alleviates endoplasmic reticulum stress?activated apoptosis and related inflammation in chondrocytes [J]. Mol Med Rep,"2022,25(1):12.
[8]""TAN L,"REGISTER T C,"YAMMANI R R. Age-related decline in expression of molecular chaperones induces endoplasmic reticulum stress and chondrocyte apoptosis in articular cartilage[J].Aging Dis,"2020,11(5):1091-1102.
[9]""AIGNER T,HEMMEL M,NEUREITER D,et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage:"a study of proliferation,"programmed cell death (apoptosis),"and viability of chondrocytes in normal and osteoarthritic human knee cartilage [J]. Arthritis Rheum,"2001,44(6):1304-1312.
[10]""URANO F,"WANG X,"BERTOLOTTI A,"et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1 [J]. Science,"2000,287(5453):664-666.
[11]""XIE J J,"CHEN J,"GUO S K,"et al. Panax quinquefolium saponin inhibits endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and attenuates the progression of osteoarthritis in rat [J]. Biomed Pharmacother,"2018,97:886-894.
[12]""FENG K,"CHEN Z,"LIU P,"et al. Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model [J]. J Cell Physiol,"2019,234(10):18192-18205.
[13]""UEHARA Y,"HIROSE J,"YAMABE S,"et al. Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein [J]. Osteoarthritis Cartilage,"2014,22(7):1007-1017.
[14]""LIU D D,ZHANG B L,YANG J B,et al. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway [J]. J Pharm Pharmacol,"2020,72(6):826-835.
[15]""ZHANG Z,WU J,TENG C,et al. Safranal treatment induces Sirt1 expression and inhibits endoplasmic reticulum stress in mouse chondrocytes and alleviates osteoarthritis progression in a mouse model[J].J Agric Food Chem,"2022,70(31):9748-9759.
[16]""XU T,SHUAI J,GU Z,et al. Salubrinal alleviates cartilage degradation in a rabbit temporomandibular joint osteoarthritis model[J]. Oral Dis,"2024,30(4):2453-2462.
[17]""RELLMANN Y,"EIDHOF E,"DREIER R. Review:"ER stress-induced cell death in osteoarthritic cartilage[J]. Cell Signal,"2021,78:109880.
[18]""ZHU Z,"GAO S,"CHEN C,"et al. The natural product salicin alleviates osteoarthritis progression by binding to IRE1α and inhibiting endoplasmic reticulum stress through the IRE1α-IκBα-p65 signaling pathway[J]. Exp Mol Med,"2022,54(11):1927-1939.
[19]""KONG K,"CHANG Y,"QIAO H,"et al. Paxlovid accelerates cartilage degeneration and senescence through activating endoplasmic reticulum stress and interfering redox homeostasis[J]. J Transl Med,"2022,20(1):549.
[20]""WANG L J,"ZENG N,"YAN Z P,"et al. Post-traumatic osteoarthritis following ACL injury[J]. Arthritis Res Ther,"2020,22(1):57.
[21]""ZHOU P,"CHEN C,"YUE X,"et al. Strategy for osteoarthritis therapy:"Improved the delivery of triptolide using liposome-loaded dissolving microneedle arrays[J].Int J Pharm,"2021,609:121211.
[22]""DONG X,YANG C,LUO Y,et al. USP7 attenuates endoplasmic reticulum stress and NF-κB signaling to modulate chondrocyte proliferation,"apoptosis,"and inflammatory response under inflammation [J]. Oxid Med Cell Longev,"2022,2022:1835900.
[23]""LIU L,"ZHANG W,"LIU T,"et al. The physiological metabolite α-ketoglutarate ameliorates osteoarthritis by regulating mitophagy and oxidative stress[J]. Redox Biol,"2023,62:102663.
[24]""LEPETSOS P,"PAPAVASSILIOU A G. ROS/oxidative stress signaling in osteoarthritis [J]. Biochim Biophys Acta,"2016,1862(4):576-591.
[25]""YE W,"ZHU S,"LIAO C,"et al. Advanced oxidation protein products induce apoptosis of human chondrocyte through reactive oxygen species-mediated mitochondrial dysfunction and endoplasmic reticulum stress pathways [J]. Fundam Clin Pharmacol,"2017,31(1):64-74.
[26]""LI Z,HUANG Z,ZHANG H,et al. IRE1-mTOR-PERK axis coordinates autophagy and ER stress-apoptosis induced by P2X7-mediated Ca2+"influx in osteoarthritis[J]. Front Cell Dev Biol,"2021,9:695041.
[27]""WU J,YANG F,ZHANG X,et al. Hydrogen sulfide inhibits endoplasmic reticulum stress through the GRP78/mTOR pathway in rat chondrocytes subjected to oxidative stress[J]. Int J Mol Med,"2021,47(4):34.
[28]""TANG Y H,YUE Z S,ZHENG W J,et al. 4-Phenylbutyric acid presents therapeutic effect on osteoarthritis via inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress [J]. Biotechnol Appl Biochem,"2018,65(4):540-546.
[29]""ARAI Y,"CHOI B,"KIM B J,"et al. Tauroursodeoxycholic acid (TUDCA)"counters osteoarthritis by regulating intracellular cholesterol levels and membrane fluidity of degenerated chondrocytes [J]. Biomater Sci,"2019,7(8):3178-3189.
[30]""FENG K,"GE Y,"CHEN Z,"et al. Curcumin inhibits the PERK-EIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model [J]. Oxid Med Cell Longev,"2019,2019:8574386.
(收稿:2023 - 11 - 16)"(修回:2024 - 04 - 18)
(責(zé)任編輯:李萍)