摘要:目的探討肝星狀細(xì)胞活化過(guò)程中白細(xì)胞介素(IL)22發(fā)揮的作用及影響機(jī)制。方法選取人肝星狀細(xì)胞系LX-2細(xì)胞為研究對(duì)象,以轉(zhuǎn)化生長(zhǎng)因子(TGF)β1誘導(dǎo)LX-2細(xì)胞構(gòu)建肝星狀細(xì)胞活化模型,以梯度濃度的IL-22處理LX-2細(xì)胞,通過(guò)Western Blot、qRT-PCR檢測(cè)活化標(biāo)志物Ⅰ型膠原蛋白(COL1A1)、α-平滑肌肌動(dòng)蛋白(α-SMA)表達(dá)水平以確定適宜的藥物工作濃度、時(shí)間;通過(guò)Western Blot、qRT-PCR及免疫熒光方法檢測(cè)經(jīng)IL-22處理的活化肝星狀細(xì)胞中成纖維細(xì)胞因子誘導(dǎo)早期反應(yīng)蛋白14(Fn14)、內(nèi)質(zhì)網(wǎng)應(yīng)激(ERS)及其活化標(biāo)志物水平;以衣霉素(TM)誘導(dǎo)LX-2細(xì)胞ERS,通過(guò)Western Blot、qRT-PCR檢測(cè)經(jīng)IL-22處理后LX-2細(xì)胞ERS及其活化標(biāo)志物水平;使用腫瘤壞死因子樣細(xì)胞凋亡弱誘導(dǎo)劑(TWEAK)、小干擾RNA分別上/下調(diào)Fn14,再檢測(cè)磷酸化肌醇需求蛋白1α(p-IRE1α)、肌醇需求蛋白1α(IRE1α)、轉(zhuǎn)錄因子剪接型X-盒結(jié)合蛋白1(XBP1s)、COL1A1和α-SMA基因及蛋白水平;在IL-22處理TGF-β1誘導(dǎo)的LX-2細(xì)胞的基礎(chǔ)上加用TWEAK上調(diào)Fn14,通過(guò)Western Blot、免疫熒光方法檢測(cè)Fn14、ERS及其活化標(biāo)志物水平。計(jì)量資料兩組間比較采用成組t檢驗(yàn);多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用Sidak’s多重比較檢驗(yàn)。結(jié)果與TGF-β1組相比,TGFβ1+IL-22組COL1A1、α-SMA的蛋白和mRNA表達(dá)水平均下降,且在IL-22濃度為10 ng/mL以上作用24小時(shí)時(shí)效果更加顯著(P值均lt;0.01);與TGF-β1組相比,TGF-β1+IL-22組Fn14、p-IRE1α、XBP1s表達(dá)水平均下降(P值均lt;0.05);與TM組相比,TM+IL-22組p-IRE1α、XBP1s、COL1A1和α-SMA表達(dá)水平均下降(P值均lt;0.05);與沉默對(duì)照(NC)組相比,F(xiàn)n14 siRNA組p-IRE1α、XBP1s、COL1A1和α-SMA表達(dá)水平均下降(P值均lt;0.05);與正常對(duì)照組相比,TWEAK組Fn14、p-IRE1α、XBP1s、COL1A1和α-SMA表達(dá)水平均上升(P值均lt;0.01);與TGF-β1+IL-22組相比,TGF-β1+IL-22+TWEAK組Fn14、p-IRE1α、XBP1s、COL1A1和α-SMA表達(dá)水平均上升(P值均lt;0.05)。結(jié)論IL-22通過(guò)抑制Fn14負(fù)調(diào)控肝星狀細(xì)胞ERS進(jìn)而抑制其活化增殖。
關(guān)鍵詞:肝纖維化;白細(xì)胞介素22;肝星狀細(xì)胞;內(nèi)質(zhì)網(wǎng)應(yīng)激
基金項(xiàng)目:國(guó)家自然科學(xué)基金(81900552);南京市衛(wèi)生科技發(fā)展專(zhuān)項(xiàng)資金項(xiàng)目-杰出青年基金項(xiàng)目(JQX20005)
Effect of interleukin-22 on hepatic stellate cell activation and its mechanism
GAO Jun,CHEN Huan,LIU Yan,ZHANG Feng,ZHUGE Yuzheng.(Department of Gastroenterology,Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University,Nanjing 210008,China)
Corresponding author:ZHUGE Yuzheng,yuzheng9111963@aliyun.com(ORCID:0000-0002-3829-5831)
Abstract:Objective To investigate the effect of interleukin-22(IL-22)on the activation of hepatic stellate cells(HSCs)and its mechanism.Methods The human HSC LX-2 cells were selected for the study,and the LX-2 cells induced by TGF-β1 were used to establish a model of HSC activation.LX-2 cells were treated with IL-22 at gradient concentrations,and Western blot and qRT-PCR were used to measure the expression levels of the activation markers COL1A1 andα-SMA and determine the appropriate working concentration and time of the drug.Western blot,qRT-PCR,and immunofluorescence assay were used to determine the levels of Fn14 and the markers for endoplasmic reticulum stress(ERS)and activation in activated HSCs treated by IL-22.ERS in LX-2 cells was induced by tunicamycin(TM),and Western blot and qRT-PCR were used to measure the levels of markers for ERS and activation in LX-2 cells treated by IL-22.TNF-like weak inducer of apoptosis(TWEAK)and small interfering RNA were used to upregulate and downregulate Fn14,and then the mRNA and protein expression levels of p-IRE1α,IRE1α,XBP1s,COL1A1,andα-SMA were measured.After LX-2 cells induced by TGF-β1 were treated by IL-22,TWEAK was used to upregulate Fn14,and Western blot and immunofluorescence assay were used to measure the levels of Fn14 and the markers for ERS and activation.The independent-samples t-test was used for comparison of continuous data between two groups;a one-way analysis of variance was used for comparison between multiple groups,and the Sidak’s multiple comparison test was used for further comparison between two groups.Results Compared with the TGF-β1 group,the TGF-β1+IL-22 group had significant reductions in the protein and mRNA expression levels of COL1A1 andα-SMA,with a more significant effect after treatment with 10 ng/mL IL-22 for 24 hours(all Plt;0.01).Compared with the TGF-β1 group,the TGF-β1+IL-22 group had significant reductions in the expression levels of Fn14,p-IRE1α,and XBP1s(all Plt;0.05).Compared with the TM group,the TM+IL-22 group had significant reductions in the expression levels of p-IRE1α,XBP1s,COL1A1,andα-SMA(all Plt;0.05).Compared with the silenced control group,the Fn14 siRNA group had significant reductions in the expression levels of p-IRE1α,XBP1s,COL1A1,andα-SMA(all Plt;0.05).Compared with the normal control group,the TWEAK group had significant increases in the expression levels of Fn14,p-IRE1α,XBP1s,COL1A1,andα-SMA(all Plt;0.01).Compared with the TGFβ1+IL-22 group,the TGF-β1+IL-22+TWEAK group had significant increases in the expression levels of Fn14,p-IRE1α,XBP1s,COL1A1,andα-SMA(all Plt;0.05).Conclusion IL-22 negatively regulates ERS in HSCs by inhibiting Fn14,thereby inhibiting the activation of HSCs.
Key words:Hepatic Fibrosis;Interleukin-22;Hepatic Stellate Cells;Endoplasmic Reticulum Stress
Research funding:National Natural Science Foundation of China(81900552);Nanjing Health Science and Technology Development Special Fund Project-Outstanding Youth Fund(JQX20005)
肝纖維化是肝硬化的必經(jīng)階段,目前尚缺乏有效的治療方法[1-2]。肝纖維化發(fā)生的核心機(jī)制是肝星狀細(xì)胞活化導(dǎo)致細(xì)胞外基質(zhì)過(guò)度沉積[3]。因此,以活化的肝星狀細(xì)胞為治療靶點(diǎn),進(jìn)一步探索纖維化發(fā)展和逆轉(zhuǎn)的新機(jī)制具有重要意義。
成纖維細(xì)胞生長(zhǎng)因子誘導(dǎo)早期反應(yīng)蛋白14(fibroblast growth factor-inducible 14,F(xiàn)n14)是腫瘤壞死因子樣凋亡微弱誘導(dǎo)劑(TWEAK)的主要受體,TWEAK啟動(dòng)細(xì)胞內(nèi)信號(hào)通路,如NF-κB和MAPK[4]。Fn14具有重要的病理生理作用,參與組織損傷修復(fù)、血管生成、炎癥反應(yīng)、細(xì)胞存活和死亡等[5]。本課題組先前研究以Fn14為中心,相繼發(fā)現(xiàn)Fn14的上調(diào)通過(guò)激活經(jīng)典的NF-κB/MMP9信號(hào)通路促進(jìn)細(xì)胞遷移[6];Fn14還能抑制活化肝星狀細(xì)胞的凋亡并促進(jìn)炎癥因子的分泌,下調(diào)Fn14則會(huì)增加細(xì)胞凋亡[7]。本研究繼續(xù)以Fn14為靶標(biāo),進(jìn)一步探討其促進(jìn)纖維化的機(jī)制及可能逆轉(zhuǎn)的新方法。
研究[8-10]表明,白細(xì)胞介素(IL)22可促進(jìn)活化的肝星狀細(xì)胞衰老,還可通過(guò)抑制肝星狀細(xì)胞的活化和下調(diào)炎癥因子的表達(dá)來(lái)逆轉(zhuǎn)纖維化。相反,也有研究[11-12]表明,IL-22在HBV感染小鼠模型中具有促纖維化作用,IL-22的高表達(dá)與HCV感染患者的纖維化進(jìn)展相關(guān)。這表明IL-22可能在不同的肝病中發(fā)揮不同的作用。
內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)是細(xì)胞為應(yīng)對(duì)內(nèi)質(zhì)網(wǎng)腔內(nèi)錯(cuò)誤折疊與未折疊蛋白聚集,以及鈣離子平衡紊亂等狀況,而激活未折疊蛋白反應(yīng)等信號(hào)途徑的反應(yīng)過(guò)程[13]。ERS促進(jìn)肝星狀細(xì)胞活化在相關(guān)研究中被證實(shí):ERS引起的氧化應(yīng)激可促進(jìn)肝星狀細(xì)胞的活化[14];丹酚酸A通過(guò)SIRT1介導(dǎo)的HSF1脫乙?;瘻p輕ERS,從而緩解肝纖維化[15];在體外,用衣霉素(tunicamycin,TM)化學(xué)誘導(dǎo)未折疊蛋白反應(yīng)可促進(jìn)肝星狀細(xì)胞活化[16]。IL-22可以調(diào)節(jié)INS-1細(xì)胞中棕櫚酸酯誘導(dǎo)的ERS[17];IL-22可以逆轉(zhuǎn)高脂飲食誘導(dǎo)的結(jié)腸上皮細(xì)胞ERS的影響[18]。但目前未見(jiàn)有IL-22對(duì)肝星狀細(xì)胞ERS具有調(diào)控作用的研究報(bào)道。
目前的研究主要揭示Fn14促進(jìn)肝纖維化的現(xiàn)象,對(duì)機(jī)制的研究仍有欠缺。研究發(fā)現(xiàn),F(xiàn)n14能夠調(diào)控肝星狀細(xì)胞ERS相關(guān)分子表達(dá),同時(shí)IL-22能夠抑制活化肝星狀細(xì)胞Fn14的表達(dá)。本研究通過(guò)觀察IL-22對(duì)肝星狀細(xì)胞活化的影響,探討可能通過(guò)Fn14調(diào)控ERS的可能機(jī)制。為臨床治療肝纖維化提供新的理論和實(shí)驗(yàn)依據(jù)。
1材料方法
1.1細(xì)胞培養(yǎng)和處理人肝星狀細(xì)胞LX-2購(gòu)自中國(guó)武漢普諾賽生物公司,在混合有10%胎牛血清的1640培養(yǎng)基中培養(yǎng),溫度為37℃,培養(yǎng)條件為5%CO2加濕空氣。培養(yǎng)基定期更換,直至細(xì)胞生長(zhǎng)至覆蓋培養(yǎng)瓶底部的70%~80%。然后根據(jù)不同實(shí)驗(yàn)需求將細(xì)胞接種到6/12孔板中,貼壁12~24 h后,根據(jù)不同分組需要予以TGF-β1 5 ng/mL、IL-22 10 ng/mL、TM 2 ug/mL、TWEAK 100 ng/mL處理,24 h后收取細(xì)胞。
1.2試劑和抗體胎牛血清、RPMI 1640培養(yǎng)基、胰蛋白酶-EDTA溶液和磷酸鹽緩沖液(PBS)購(gòu)自南京森貝伽生物公司;IL-22(貨號(hào):HY-P7039)、TGF-β1(貨號(hào):HY-P)購(gòu)自美國(guó)MCE公司;TWEAK(貨號(hào):RP01446)購(gòu)自武漢愛(ài)博泰克生物公司;Tunicamycin(N-連接的糖基化抑制劑)(貨號(hào):SC0393)購(gòu)自碧云天公司;Fn14(貨號(hào):ab109365)、p-IRE1α(貨號(hào):ab124945)、XBP1s(貨號(hào):ab220783)、ATF6(貨號(hào):ab227830)、PERK(貨號(hào):ab229912)一抗購(gòu)自英國(guó)Abcam公司;IRE1α(貨號(hào):A21021)購(gòu)自武漢愛(ài)博泰克生物公司;α-SMA(貨號(hào):1E9A11)、COL1A1(貨號(hào):1E9A7)和β-actin(貨號(hào):4H1)購(gòu)自武漢三鷹生物公司。
1.3 Fn14小干擾RNA轉(zhuǎn)染Hs-Fn14-si1、Hs-Fn14-si2、Hs-Fn14-si3和陰性對(duì)照模擬物(NC組)由上海漢恒生物公司合成。細(xì)胞轉(zhuǎn)染采用Lipofectamine 2000試劑(上海賽默飛公司),按照供應(yīng)商提供的方案進(jìn)行。轉(zhuǎn)染后48 h收取細(xì)胞進(jìn)行下一步實(shí)驗(yàn)。
1.4 Western Blot檢測(cè)取經(jīng)藥物干預(yù)處理的LX-2細(xì)胞,用預(yù)冷的PBS沖洗6孔板中的LX-2細(xì)胞3次,用含有蛋白酶抑制劑混合物和磷酸酶抑制劑混合物的RIPA裂解緩沖液裂解30 min,提取細(xì)胞內(nèi)總蛋白,用BCA蛋白檢測(cè)試劑盒(碧云天)測(cè)定總蛋白濃度。將等濃度的總蛋白在10%SDS-PAGE凝膠上分離,然后轉(zhuǎn)移到Immobilon?-PSQ PVDF膜上,用甲醇激活,與Fn14(1∶5 000)、IRE1a(1∶1 000)、p-IRE1a(1∶5 000)、XBP1s(1∶1 000)、α-SMA(1∶1 000)、COL1A1(1∶1 000)的一抗在4℃冰箱中孵育過(guò)夜。然后用HRP結(jié)合的山羊抗兔免疫球蛋白G(IgG)或山羊抗鼠IgG二抗在室溫下孵育1 h,ECL顯影,曝光時(shí)間1~2 min,并使用Tanon 5200 Multi圖像分析系統(tǒng)收集和分析印跡產(chǎn)物的圖像。
1.5定量實(shí)時(shí)PCR取經(jīng)藥物干預(yù)處理的LX-2細(xì)胞,用預(yù)冷的PBS沖洗加藥的LX-2細(xì)胞,根據(jù)生產(chǎn)商的說(shuō)明使用TRIzol試劑從LX-2細(xì)胞中提取總RNA,并使用分光光度計(jì)進(jìn)行定量。使用HiScriptⅢRT SuperMix for qPCR將1μg RNA反轉(zhuǎn)錄為cDNA,然后使用qPCR Master Mix和相應(yīng)引物進(jìn)行實(shí)時(shí)定量聚合酶鏈反應(yīng)(qRT-PCR)。目標(biāo)mRNA的表達(dá)量與人β-肌動(dòng)蛋白mRNA的表達(dá)量進(jìn)行比較,并采用?ΔΔCt法對(duì)數(shù)據(jù)進(jìn)行量化,使用GraphPad Prism 8對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析做圖。所用引物序列見(jiàn)表1。
1.6免疫熒光檢測(cè)在帶有無(wú)菌載玻片的12孔板中培養(yǎng)LX-2細(xì)胞,每孔約4×104個(gè)。經(jīng)藥物處理后,用冷PBS沖洗載玻片上的LX-2細(xì)胞3次,室溫下用4%多聚甲醛固定20 min,室溫下用0.5%Triton-100通透20 min,室溫下用5%BSA封閉30 min,然后用稀釋為1∶100的一抗孵育過(guò)夜。最后,用PBST沖洗載玻片3次,并用稀釋為1∶100的FITC結(jié)合物山羊抗兔二抗在室溫下孵育1 h。滴加DAPI進(jìn)行再染色。然后使用Leica DMi8倒置熒光顯微鏡觀察玻片,并存取圖片。
1.7統(tǒng)計(jì)學(xué)方法采用GraphPad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)分析。計(jì)量資料兩組間比較采用成組t檢驗(yàn);多組間比較采用單因素方差分析,進(jìn)一步兩兩比較采用Sidak’s多重比較檢驗(yàn)。Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1 IL-22對(duì)肝星狀細(xì)胞活化的影響用TGF-β1(5 ng/mL)處理LX-2細(xì)胞24 h,同時(shí)予以不同濃度的IL-22(0、1、10、50和100 ng/mL)分組處理,Western Blot結(jié)果顯示,與TGF-β1組相比,隨著IL-22濃度升高,其抑制α-SMA和COL1A1表達(dá)的作用越強(qiáng)(圖1a、b)。同樣用TGF-β1(5 ng/mL)誘導(dǎo)LX-2細(xì)胞24 h,同時(shí)用不同濃度的IL-22(0.1、0.5、1、10、100 ng/mL)分組處理,qRT-PCR結(jié)果顯示,與TGF-β1組相比,IL-22處理的LX-2組中α-SMA和COL1A1的表達(dá)水平也呈劑量依賴(lài)性(圖1c)。用TGF-β1(5 ng/mL)誘導(dǎo)LX-2細(xì)胞24 h后分別用IL-22處理12 h和24 h,對(duì)α-SMA和COL1A1 mRNA的qRT-PCR檢測(cè)顯示,IL-22在處理12 h和24 h均表現(xiàn)出抑制效應(yīng),且TGF-β1在24 h時(shí)誘導(dǎo)活化效應(yīng)更顯著(圖1d)。
2.2 IL-22抑制肝星狀細(xì)胞中Fn14的表達(dá)和ERS按對(duì)照組、TGF-β1組、TGF-β1+IL-22組不同分組對(duì)應(yīng)藥物處理LX-2細(xì)胞24 h,Western Blot結(jié)果顯示,TGF-β1促進(jìn)Fn14及ERS相關(guān)蛋白磷酸化的IRE1α和XBP1s的表達(dá)。加入IL-22后上述蛋白表達(dá)受到抑制,而未折疊蛋白反應(yīng)另外兩個(gè)通路蛋白ATF6、PERK的表達(dá)不受影響(圖2a),后續(xù)試驗(yàn)將主要聚焦于IRE1α-XBP1s信號(hào)通路。Fn14和XBP1s的免疫熒光染色結(jié)果與Western Blot和qRT-PCR結(jié)果一致(圖2b~d)。為進(jìn)一步研究IL-22是否通過(guò)抑制LX-2的ERS發(fā)揮作用,加入ERS誘導(dǎo)劑TM激活LX-2,將細(xì)胞分為對(duì)照組、TM組、TM+IL-22組。Western Blot結(jié)果顯示,TM處理的LX-2中IRE1α和XBP1s的表達(dá)明顯增加。此外,TM還上調(diào)了α-SMA和COL1A1的表達(dá),IL-22處理可抑制這種現(xiàn)象(圖2e)。qRT-PCR結(jié)果顯示,XBP1、COL1A1和α-SMA的mRNA表達(dá)與Western Blot檢測(cè)結(jié)果一致(圖2f)。
2.3 Fn14調(diào)控IRE1α-XBP1s信號(hào)通路首先,使用小干擾RNA下調(diào)肝星狀細(xì)胞Fn14的表達(dá),并通過(guò)Western Blot和qRT-PCR驗(yàn)證其下調(diào)效率(圖3a~b)。成功下調(diào)Fn14表達(dá)后,檢測(cè)IRE1α-XBP1s通路的表達(dá)情況,隨著Fn14的下調(diào),XBP1s、α-SMA和COL1A1的mRNA表達(dá)均有所降低(P值均lt;0.01),蛋白表達(dá)的變化也一致,總的IRE1a蛋白變化不明顯,但磷酸化的IRE1a減少(圖3c、d),結(jié)果表明,F(xiàn)n14是通過(guò)IRE1α-XBP1s途徑激活肝星狀細(xì)胞。為了進(jìn)一步說(shuō)明兩者之間的關(guān)系,在先前研究的基礎(chǔ)上,使用TWEAK上調(diào)Fn14的表達(dá),然后檢測(cè)相關(guān)蛋白的表達(dá)。將細(xì)胞分為NC組和TWEAK組,使用TWEAK處理細(xì)胞24 h后,TWEAK組Western Blot結(jié)果顯示,F(xiàn)n14上調(diào)后,p-IRE1α、XBP1s、α-SMA和COL1A1的表達(dá)量增加(圖3e)。qRT-PCR結(jié)果顯示,與對(duì)照組相比,TWEAK處理的LX-2中Fn14、XBP1s和α-SMA的mRNA表達(dá)明顯增加(P值均lt;0.01)(圖3f)。Fn14和XBP1s的免疫熒光染色結(jié)果與Western Blot和qRT-PCR結(jié)果一致(圖3g)。
2.4 IL-22通過(guò)抑制Fn14/ERS信號(hào)通路抑制肝星狀細(xì)胞活化將細(xì)胞分為對(duì)照組、TGF-β1組、IL-22+TGF-β1組、IL-22+TGF-β1+TWEAK組,使用對(duì)應(yīng)藥物處理LX-2細(xì)胞24 h,前三組Western Blot結(jié)果與之前實(shí)驗(yàn)結(jié)果一致,IL-22抑制TGF-β1誘導(dǎo)的Fn14、p-IRE1α、XBP1s、α-SMA和COL1A1蛋白表達(dá)。不同的是,在此基礎(chǔ)上加入TWEAK上調(diào)Fn14后,這種抑制作用反被抵消,F(xiàn)n14和XBP1s的免疫熒光結(jié)果與Western Blot結(jié)果相一致(圖4)。
3討論
對(duì)于慢性肝病導(dǎo)致的肝纖維化,目前尚無(wú)有效的療法獲得批準(zhǔn)[19]。TGF-β1是機(jī)體常見(jiàn)的一種轉(zhuǎn)化生長(zhǎng)因子,是正常肝細(xì)胞向成纖維樣細(xì)胞轉(zhuǎn)變的一個(gè)重要促進(jìn)因子[20]。本研究用TGF-β1誘導(dǎo)肝星狀細(xì)胞活化,探索IL-22在肝纖維化發(fā)展過(guò)程中的保護(hù)作用。
IL-22是一種新發(fā)現(xiàn)的CD4+Th細(xì)胞因子,具有抑制或促進(jìn)多種疾病的雙重功能[21]。在血吸蟲(chóng)感染的小鼠肝纖維化模型中,IL-22可激活肝信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3,從而改善肝纖維化[22]。相反,在慢性病毒性肝炎患者中,IL-22水平顯著升高。IL-22在肝病中表現(xiàn)的雙重作用可能與疾病病因、疾病階段及機(jī)體免疫狀態(tài)相關(guān)[23]。在特異性皮炎相關(guān)研究[24]中發(fā)現(xiàn),TWEAK在誘導(dǎo)許多與特異性皮炎發(fā)病機(jī)制相關(guān)的基因方面具有很強(qiáng)的炎癥活性,并且該細(xì)胞因子具有與兩種已識(shí)別的特異性皮炎特征細(xì)胞因子IL-13或IL-22相當(dāng)?shù)幕钚?。因此可以推斷TWEAK-Fn14信號(hào)軸與IL-22之間存在一定的調(diào)控關(guān)系,本研究發(fā)現(xiàn)IL-22不僅能抑制TGF-β1誘導(dǎo)的肝星狀細(xì)胞活化,還首次發(fā)現(xiàn)IL-22能抑制TGF-β1誘導(dǎo)后的肝星狀細(xì)胞Fn14以及ERS相關(guān)蛋白XBP1s的表達(dá)。
在氧化應(yīng)激和炎癥等應(yīng)激條件下,內(nèi)質(zhì)網(wǎng)可能會(huì)不堪重負(fù),導(dǎo)致錯(cuò)誤折疊的蛋白質(zhì)積累以及隨之而來(lái)的ERS。輕度ERS有助于錯(cuò)誤折疊和未折疊蛋白正確折疊,并加強(qiáng)錯(cuò)誤折疊蛋白的降解,從而促進(jìn)細(xì)胞存活并維持細(xì)胞內(nèi)環(huán)境的平衡。然而,如果應(yīng)激因素持續(xù)存在,ERS將超過(guò)未折疊蛋白反應(yīng)閾值,將誘導(dǎo)細(xì)胞凋亡[25]。在內(nèi)質(zhì)網(wǎng)中存在3個(gè)傳感器,PERK、ATF6和IRE1傳感器檢測(cè)內(nèi)質(zhì)網(wǎng)中的蛋白質(zhì)錯(cuò)誤折疊并觸發(fā)未折疊蛋白反應(yīng),是一個(gè)維持體內(nèi)平衡的復(fù)雜系統(tǒng)[26]。在3條信號(hào)通路中,IRE1是最保守的,IRE1的N端區(qū)域與未折疊的蛋白質(zhì)結(jié)合,而細(xì)胞質(zhì)中的C端區(qū)域具有兩個(gè)激酶和RNase結(jié)構(gòu)域。激活未折疊蛋白反應(yīng)后,IRE1被自磷酸化,并將XBP1s mRNA與其Rnase結(jié)構(gòu)域剪接,剪接的XBP1通過(guò)充當(dāng)轉(zhuǎn)錄因子轉(zhuǎn)移到細(xì)胞核來(lái)參與調(diào)節(jié)蛋白質(zhì)折疊、蛋白質(zhì)分泌、內(nèi)質(zhì)網(wǎng)相關(guān)蛋白質(zhì)降解系統(tǒng)和脂質(zhì)代謝的基因表達(dá)[27]。在慢性肝病中很容易觀察到ERS,許多致病因素如感染、炎癥、活性氧、營(yíng)養(yǎng)剝奪和缺氧等都會(huì)激活未折疊蛋白反應(yīng)信號(hào)通路,而未折疊蛋白反應(yīng)的適應(yīng)性信號(hào)通路IRE1α-XBP1s可保護(hù)肝星狀細(xì)胞免受ERS誘導(dǎo)的凋亡[28]。研究[29]表明,IRE1α-XBP1s軸可在TGF-β處理后誘導(dǎo)TANGO1(一種參與膠原I分泌的蛋白質(zhì))上調(diào)。未折疊蛋白反應(yīng)激活誘導(dǎo)TANGO1上調(diào),從而促進(jìn)肝纖維化。這與本研究的實(shí)驗(yàn)結(jié)論Fn14通過(guò)調(diào)控IRE1α-XBP1s信號(hào)通路促進(jìn)肝星狀細(xì)胞活化不謀而合。
Fn14的促纖維化效應(yīng)已在之前的研究中得到證實(shí)[6-7]。本研究使用TWEAK上調(diào)Fn14,首次發(fā)現(xiàn)了Fn14的上調(diào)能夠影響IRE1α-XBP1s通路蛋白的表達(dá)。雙醋瑞因治療以劑量依賴(lài)的方式對(duì)膽管結(jié)扎誘導(dǎo)的肝纖維化具有保護(hù)作用,并且這種作用可能與調(diào)節(jié)HMGB1/RAGE/NF-κB/JNK和ERS信號(hào)通路有關(guān)[30]。而Fn14是否通過(guò)類(lèi)似于NF-κB胞內(nèi)信號(hào)通路影響IRE1α-XBP1s通路有待進(jìn)一步研究。
總之,本研究表明,IL-22能有效抑制肝星狀細(xì)胞的活化,并且這一作用機(jī)制可能是通過(guò)下調(diào)Fn14以及由其介導(dǎo)的ERS通路抑制有關(guān)。由此表明,IL-22可能是臨床治療肝纖維化的潛在選擇。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:高君負(fù)責(zé)實(shí)驗(yàn)設(shè)計(jì)與操作,起草論文;陳歡、劉燕負(fù)責(zé)實(shí)驗(yàn)操作;張峰、諸葛宇征提供課題思路,指導(dǎo)實(shí)驗(yàn)內(nèi)容,指導(dǎo)撰寫(xiě)文章并最后定稿。
參考文獻(xiàn):
[1]GINèS P,KRAG A,ABRALDES JG,et al.Liver cirrhosis[J].Lancet,2021,398(10308):1359-1376.DOI:10.1016/s0140-6736(21)01374-x.
[2]DEWIDAR B,MEYER C,DOOLEY S,et al.TGF-βin hepatic stellate cell activation and liver fibrogenesis-updated 2019[J].Cells,2019,8(11):1419.DOI:10.3390/cells8111419.
[3]KISSELEVA T,BRENNER D.Molecular and cellular mechanisms of liver fibrosis and its regression[J].Nat Rev Gastroenterol Hepatol,2021,18(3):151-166.DOI:10.1038/s41575-020-00372-7.
[4]CROFT M,SIEGEL RM.Beyond TNF:TNF superfamily cytokines as targets for the treatment of rheumatic diseases[J].Nat Rev Rheu?matol,2017,13(4):217-233.DOI:10.1038/nrrheum.2017.22.
[5]WANG M,XIE ZJ,XU J,et al.TWEAK/Fn14 axis in respiratory dis?eases[J].Clin Chim Acta,2020,509:139-148.DOI:10.1016/j.cca.2020.06.007.
[6]XU MC,ZHANG F,WANG AX,et al.Tumor necrosis factor-like weak inducer of apoptosis promotes hepatic stellate cells migration via canoni?cal NF-κB/MMP9 pathway[J].PLoS One,2016,11(12):e0167658.DOI:10.1371/journal.pone.0167658.
[7]WANG AX,ZHANG F,XU H,et al.TWEAK/Fn14 promotes pro-in?flammatory cytokine secretion in hepatic stellate cells via NF-κB/STAT3 pathways[J].Mol Immunol,2017,87:67-75.DOI:10.1016/j.molimm.2017.04.003.
[8]LIU YM,VERMA VK,MALHI H,et al.Lipopolysaccharide downregu?lates macrophage-derived IL-22 to modulate alcohol-induced hepato?cyte cell death[J].Am J Physiol Cell Physiol,2017,313(3):C305-C313.DOI:10.1152/ajpcell.00005.2017.
[9]KONG XN,F(xiàn)ENG DC,WANG H,et al.Interleukin-22 induces he?patic stellate cell senescence and restricts liver fibrosis in mice[J].Hepatology,2012,56(3):1150-1159.DOI:10.1002/hep.25744.
[10]LU DH,GUO XY,QIN SY,et al.Interleukin-22 ameliorates liver fibro?genesis by attenuating hepatic stellate cell activation and downregu?lating the levels of inflammatory cytokines[J].World J Gastroen?terol,2015,21(5):1531-1545.DOI:10.3748/wjg.v21.i5.1531.
[11]ZHAO JJ,ZHANG Z,LUAN Y,et al.Pathological functions of inter?leukin-22 in chronic liver inflammation and fibrosis with hepatitis B vi?rus infection by promoting T helper 17 cell recruitment[J].Hepatol?ogy,2014,59(4):1331-1342.DOI:10.1002/hep.26916.
[12]WU LY,LIU SH,LIU Y,et al.Up-regulation of interleukin-22 medi?ates liver fibrosis via activating hepatic stellate cells in patients with hepatitis C[J].Clin Immunol,2015,158(1):77-87.DOI:10.1016/j.clim.2015.03.003.
[13]YAP KN,YAMADA K,ZIKELI S,et al.Evaluating endoplasmic reticu?lum stress and unfolded protein response through the lens of ecol?ogy and evolution[J].Biol Rev Camb Philos Soc,2021,96(2):541-556.DOI:10.1111/brv.12667.
[14]JALAN R,CHIARA FD,BALASUBRAMANIYAN V,et al.Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension[J].J Hepatol,2016,64(4):823-833.DOI:10.1016/j.jhep.2015.11.019.
[15]ZHU J,WANG RW,XU T,et al.Salvianolic acid A attenuates endo?plasmic reticulum stress and protects against cholestasis-induced liver fibrosis via the SIRT1/HSF1 pathway[J].Front Pharmacol,2018,9:1277.DOI:10.3389/fphar.2018.01277.
[16]KIM RS,HASEGAWA D,GOOSSENS N,et al.The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stel?late cells through autophagy[J].Sci Rep,2016,6:39342.DOI:10.1038/srep39342.
[17]HU ML,YANG SL,YANG L,et al.Interleukin-22 alleviated palmitate-induced endoplasmic reticulum stress in INS-1 cells through activa?tion of autophagy[J].PLoS One,2016,11(1):e0146818.DOI:10.1371/journal.pone.0146818.
[18]GULHANE M,MURRAY L,LOURIE R,et al.High fat diets induce co?lonic epithelial cell stress and inflammation that is reversed by IL-22[J].Sci Rep,2016,6:28990.DOI:10.1038/srep28990.
[19]ROEHLEN N,CROUCHET E,BAUMERT TF.Liver fibrosis:Mechanis?tic concepts and therapeutic perspectives[J].Cells,2020,9(4):875.DOI:10.3390/cells9040875.
[20]ZHOU X,WANG Z,HE XR,et al.Research advances in signaling pathways associated with potential anti-liver fibrosis drugs and tar?gets[J].J Clin Hepatol,2023,39(12):2932-2941.DOI:10.3969/j.issn.1001-5256.2023.12.027.
周鑫,王智,何雪茹,等.潛在抗肝纖維化藥物與靶點(diǎn)相關(guān)信號(hào)通路研究進(jìn)展[J].臨床肝膽病雜志,2023,39(12):2932-2941.DOI:10.3969/j.issn.1001-5256.2023.12.027.
[21]WU Y,MIN J,GE C,et al.Interleukin 22 in liver injury,inflammation and cancer[J].Int J Biol Sci,2020,16(13):2405-2413.DOI:10.7150/ijbs.38925.
[22]EL-SHORBAGY AA,SHAFAA MW,SALAH ELBELTAGY R,et al.Li?posomal IL-22 ameliorates liver fibrosis through miR-let7a/STAT3 signaling in mice[J].Int Immunopharmacol,2023,124(Pt B):111015.DOI:10.1016/j.intimp.2023.111015.
[23]MENG YX,HUO LJ.Role of interleukin-22 in the development and progression of liver fibrosis[J].J Clin Hepatol,2021,37(12):2924-2927.DOI:10.3969/j.issn.1001-5256.2021.12.039.
孟昱希,霍麗娟.IL-22在肝纖維化發(fā)生發(fā)展中的作用[J].臨床肝膽病雜志,2021,37(12):2924-2927.DOI:10.3969/j.issn.1001-5256.2021.12.039.
[24]GUPTA RK,F(xiàn)UNG K,F(xiàn)IGUEROA DS,et al.Integrative keratinocyte responses to TWEAK with IL-13 and IL-22 reveal pathogenic tran?scriptomes associated with atopic dermatitis[J].J Invest Dermatol,2024,144(5):1071-1074.DOI:10.1016/j.jid.2023.11.009.
[25]NA M,YANG XB,DENG YK,et al.Endoplasmic reticulum stress in the pathogenesis of alcoholic liver disease[J].PeerJ,2023,11:e16398.DOI:10.7717/peerj.16398.
[26]NAGAR P,SHARMA P,DHAPOLA R,et al.Endoplasmic reticulum stress in Alzheimer’s disease:Molecular mechanisms and therapeu?tic prospects[J].Life Sci,2023,330:121983.DOI:10.1016/j.lfs.2023.121983.
[27]ZARAFSHANI M,MAHMOODZADEH H,SOLEIMANI V,et al.Expres?sion and clinical significance of IRE1-XBP1s,p62,and caspase-3 incolorectal cancer patients[J].Iran J Med Sci,2024,49(1):10-21.DOI:10.30476/IJMS.2023.96922.2856.
[28]LIU L,ZHAO ML,JIN X,et al.Adaptive endoplasmic reticulum stress signalling via IRE1α-XBP1 preserves self-renewal of haemato?poietic and pre-leukaemic stem cells[J].Nat Cell Biol,2019,21(3):328-337.DOI:10.1038/s41556-019-0285-6.
[29]MAIERS JL,KOSTALLARI E,MUSHREF M,et al.The unfolded pro?tein response mediates fibrogenesis and collagen I secretion through regulating TANGO1 in mice[J].Hepatology,2017,65(3):983-998.DOI:10.1002/hep.28921.
[30]ABDELFATTAH AM,MAHMOUD SS,EL-WAFAEY DI,et al.Dia?cerein ameliorates cholestasis-induced liver fibrosis in rat via modu?lating HMGB1/RAGE/NF-κB/JNK pathway and endoplasmic reticu?lum stress[J].Sci Rep,2023,13(1):11455.DOI:10.1038/s41598-023-38375-4.
收稿日期:2024-03-03;錄用日期:2024-05-17
本文編輯:林姣
引證本文:GAO J, CHEN H, LIU Y, et al. Effect of interleukin22 on hepatic stellate cell activation and its mechanism[J]. J Clin Hepatol, 2024, 40(11): 2229-2237.
高君, 陳歡, 劉燕, 等. 白細(xì)胞介素22對(duì)肝星狀細(xì)胞活化的影響及 其機(jī)制[J]. 臨床肝膽病雜志, 2024, 40(11): 2229-2237.