摘要:腫瘤壞死因子α(TNF-α)通過TNF受體介導(dǎo)的信號通路,參與調(diào)節(jié)肝細胞癌(HCC)細胞的增殖、侵襲、遷移乃至化療耐藥等多個生物學(xué)過程。同時,TNF-α還可發(fā)揮誘導(dǎo)HCC細胞凋亡的作用。部分TNF-α抑制劑已被證實可抑制HCC進展,延長生存時間。目前,TNF-α在HCC中的潛在作用機制尚未完全闡明,探究TNF-α與HCC的相互作用有益于更好地確定HCC的潛在治療靶點。本文總結(jié)TNF-α在HCC中作用機制的最新研究進展,并介紹以TNF-α為靶點治療HCC的可能性,以期為HCC的防治和藥物研發(fā)提供理論依據(jù)及參考。
關(guān)鍵詞:癌,肝細胞;腫瘤壞死因子α;信號傳導(dǎo);分子靶向治療
基金項目:中央高校優(yōu)秀青年團隊培育項目(31920220065);甘肅省衛(wèi)生健康行業(yè)科研計劃項目(GSWSKY2022-76);甘肅省科技計劃項目(23JRRA1673)
The role of tumor necrosis factor-αin the development and progression of hepatocellular carcinoma
ZHU Lingling1,2,ZHANG Yani1,2,SHI Tingting1,2,WU Yang1,2,GAO Chun1,YU Xiaohui1,HE Yujing1,ZHANG Jiucong1.(1.Department of Gastroenterology,The 940 Hospital of Joint Logistic Support Force of PLA,Lanzhou 730050,China;2.The First Clinical Medical College of Gansu University of Chinese Medicine,Lanzhou 730000,China)
Corresponding authors:ZHANG Jiucong,zhangjiucong@163.com(ORCID:0000-0003-4006-3033);HE Yujing,heyujing2019@163.com(ORCID:0009-0000-5577-6867)
Abstract:Tumor necrosis factor-α(TNF-α)is involved in the regulation of multiple biological processes such as the proliferation,invasion,migration,and chemotherapy resistance of hepatocellular carcinoma(HCC)cells through TNF receptor-mediated signaling pathways.At the same time,TNF-αalso plays a role in inducing the apoptosis of HCC cells.Some TNF-αinhibitors have been shown to inhibit the progression of HCC and prolong survival time.At present,the potential mechanism of action of TNF-αin HCC remains unclear,and exploration of the interaction between TNF-αand HCC can help to determine the potential therapeutic targets for HCC.This article summarizes the latest research advances in the mechanism of action of TNF-αin HCC and introduces the possibility of targeting TNF-αas a treatment method for HCC,in order to provide a theoretical basis for the prevention and treatment of liver cancer and drug research and development.
Key words:Carcinoma,Hepatocellular;Tumor Necrosis Factor-alpha;Signal Transduction;Molecular Targeted Therapy
Research funding:Central University Excellent Youth Team Cultivation Project(31920220065);Gansu Province Health Industry Scientific Research Plan Project Contract(GSWSKY2022-76);Gansu Planning Project on Science and Technology(23JRRA1673)
肝細胞癌(HCC)是原發(fā)性肝癌最常見的亞型。腫瘤壞死因子α(TNF-α)是調(diào)節(jié)炎癥、細胞增殖及死亡、免疫等的關(guān)鍵介質(zhì)。TNF-α首次發(fā)現(xiàn)時被認(rèn)為具有抗腫瘤活性,但進一步研究發(fā)現(xiàn),TNF-α參與建立促炎性腫瘤微環(huán)境、促進腫瘤遷移、誘導(dǎo)血管生成和免疫抑制[1]。TNF-α在HCC的進展中發(fā)揮著獨特作用。一方面,TNF-α可通過誘導(dǎo)肝細胞凋亡、HCC細胞增殖,間接導(dǎo)致酒精性及非酒精性脂肪性肝病、慢性病毒性肝炎相關(guān)肝癌的發(fā)生及促進HCC的進展;另一方面,TNF-α通過增加腫瘤中的血管通透性等顯示出抗腫瘤作用[2]。
1 TNF-α的結(jié)構(gòu)及生物學(xué)功能
TNF-α是一種多功能細胞因子,可被TNF-α轉(zhuǎn)換酶水解,參與多種病理、生理過程,還具有從細胞增殖到細胞死亡的矛盾作用。迄今為止,共鑒定出了2種不同形式的TNF-α:可溶性TNF-α(sTNF-α)和跨膜TNF-α(mTNF-α)。二者均具有生物活性,并通過激活TNF受體(TNFR)誘導(dǎo)不同的信號通路[c-Jun氨基末端激酶、核因子κB(NF-κB)、激活蛋白-1(AP-1)和絲裂原活化蛋白激酶(MAPK)通路]發(fā)揮多種生物學(xué)作用[3](圖1)。
TNFR1普遍表達并含有死亡結(jié)構(gòu)域,可被2種形式的TNF-α激活,主要作用是啟動細胞凋亡、誘導(dǎo)炎癥及細胞增殖、組織再生等。而TNFR2只能被mTNF-α完全激活,雖不包含死亡結(jié)構(gòu)域,但其激活有助于調(diào)節(jié)免疫及炎癥反應(yīng),從而促進腫瘤進展[4-5]。TNFR2的親和力遠大于TNFR1,但TNF-α的生物活性主要由TNFR1介導(dǎo)。
TNF-α在機體的炎癥反應(yīng)及免疫防御等過程中發(fā)揮著重要作用,且現(xiàn)已被確定為多種人類癌癥(包括結(jié)直腸癌、食管癌、肝癌等)發(fā)生發(fā)展的重要參與者[6]。慢性炎癥可促進腫瘤進展,TNF-α可作為內(nèi)源性腫瘤啟動子來橋接炎癥和致癌作用[7]。TNF-α在癌癥的進展中,一方面可通過誘導(dǎo)腫瘤細胞死亡發(fā)揮抑癌作用,另一方面可通過直接激活腫瘤細胞中的NF-κB等信號通路或間接誘導(dǎo)促腫瘤細胞因子的產(chǎn)生來促進腫瘤進展,還可通過促進上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)來促進腫瘤轉(zhuǎn)移[8]。且有研究[9]表明,TNF信號傳導(dǎo)可通過增加程序性死亡配體1(programmed death ligand 1,PD-L1)的表面表達,幫助癌細胞逃避T淋巴細胞的免疫監(jiān)視。TNF-α在癌癥中獨特的作用多取決于TNF-α的局部濃度、亞型及接頭蛋白的不同等因素。例如在高濃度下,TNF-α可通過將中性粒細胞引導(dǎo)至腫瘤部位及誘導(dǎo)腫瘤脈管系統(tǒng)的破壞等途徑來提供抗腫瘤作用;而長期低濃度的TNF-α表達可能誘導(dǎo)血管生成,具有一定的促腫瘤活性[10]。
2 TNF-α在HCC發(fā)生發(fā)展中的作用及機制
2.1 TNF-α調(diào)控HCC的發(fā)生及HCC細胞增殖TNF-α是促腫瘤細胞因子之一,參與腫瘤發(fā)生發(fā)展的不同過程,包括細胞增殖、遷移、EMT、血管生成等[10]。肝祖細胞(hepatic progenitor cell,HPC)可發(fā)生惡性轉(zhuǎn)化以驅(qū)動肝腫瘤的發(fā)生,且HPC是HCC的來源之一。Jing等[11]研究發(fā)現(xiàn),TNF-α敲低可通過TNFR2/信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(STAT3)信號通路抑制HPC的激活和增殖,進而促進HCC的進展。制瘤素M(oncostatin M,OSM)是一種腫瘤相關(guān)細胞因子,在HCC患者中高表達。Yang等[12]研究發(fā)現(xiàn),OSM過表達可調(diào)節(jié)巨噬細胞的積累,導(dǎo)致TNF-α的分泌增加,從而重塑炎癥微環(huán)境,進一步促進體內(nèi)HPC的激活,參與HCC的發(fā)生過程。TNF-α亦可通過激活TNF-α/活性氧(ROS)/缺氧誘導(dǎo)因子-1α(HIF-1α)途徑誘導(dǎo)叉頭轉(zhuǎn)錄因子M1(forkhead box protein M1,F(xiàn)oxM1)表達,促進HCC細胞的增殖和存活[13]。Xu等[14-15]先后在2種HCC細胞中進行實驗,發(fā)現(xiàn)TNF-α可通過抑制G蛋白偶聯(lián)受體激酶2(G protein-coupled receptor kinase 2,GRK2)表達,增強HCC細胞的增殖。鳥嘌呤核苷酸交換因子PSD4(含普列克底物蛋白和sec7結(jié)構(gòu)域蛋白4)是酒精相關(guān)HCC中的一種高甲基化抑制基因,TNF-α/NF-κB信號轉(zhuǎn)導(dǎo)表觀遺傳可抑制PSD4轉(zhuǎn)錄,促進酒精相關(guān)HCC進展[16]。Zhang等[17]確定了組織蛋白酶C(cathepsin C,CTSC)與TNF-α/MAPK(p38)通路之間的正反饋回路,發(fā)現(xiàn)TNF-α以濃度依賴性方式上調(diào)CTSC表達,而CTSC通過激活的TNF-α/MAPK(p38)信號轉(zhuǎn)導(dǎo)促進HCC細胞的增殖和轉(zhuǎn)移潛力。Zong等[18]鑒定了一個炎癥相關(guān)間充質(zhì)干細胞(mesenchymal stemcell,MSC)亞群,即同種異體移植炎癥因子1(AIF1)+集落刺激因子1受體(CSF1R)+MSC,發(fā)現(xiàn)TNF-α通過TNFR1作用于該MSC,上調(diào)MSC中的沉默信息調(diào)節(jié)因子1的表達,進而通過AKT/HIF-1α信號通路上調(diào)MSC中趨化因子(CC基序)配體5的表達,促進HCC進展。
Yes相關(guān)蛋白(Yes-associated protein,YAP)是Hippo通路的主要下游轉(zhuǎn)錄共激活因子。TNF-α/TNFR2信號傳導(dǎo)通過p38途徑激活HPC中異質(zhì)性胞核核糖核蛋白K(hnRNPK),hnRNPK與YAP結(jié)合,連接TNF-α/TNFR2信號轉(zhuǎn)導(dǎo)與YAP,TNF-α/TNFR2/hnRNPK/YAP信號軸的過度激活與HPC過度激活介導(dǎo)HCC的發(fā)病機制存在密切關(guān)聯(lián)[19]。Qi等[20]研究表明,TNF-α可作為ETS易位變體4(ETS translocation variant 4,ETV4)的直接作用靶點參與促進HCC的發(fā)生,且高水平的ETV4+TNF-α預(yù)示著HCC患者的生存率較低,是HCC患者的潛在預(yù)后標(biāo)志物(圖2)。
2.2 TNF-α促進HCC細胞的侵襲和遷移纖連蛋白(fibronectin,F(xiàn)N)已被證實參與調(diào)節(jié)血管形成和腫瘤生長,誘導(dǎo)EMT,促進細胞遷移以及誘導(dǎo)耐藥性。Liu等[21]研究證實,TNF-α在臨床HCC樣本中過表達,且較高水平的TNF-α與高級別腫瘤呈正相關(guān);此外,TNF-α增加NF-κB/p65的核轉(zhuǎn)位和磷酸化,從而增加FN啟動子的活性,促進HCC細胞的遷移和侵襲。肝細胞中TNF-α誘導(dǎo)的ROS主要由線粒體產(chǎn)生。研究[22]發(fā)現(xiàn),TNF-α可介導(dǎo)線粒體解偶聯(lián),并通過肝細胞中的NF-κB激活促生存信號,增強ROS依賴性細胞遷移,肝細胞中TNF-α誘導(dǎo)的ROS信號傳導(dǎo)可能成為HCC的治療靶點。有研究[23]表明,TNF-α可改變熱休克蛋白70等蛋白質(zhì)表達,觸發(fā)特定的信號級聯(lián)反應(yīng),從而促進HCC細胞的遷移。此外,TNF-α還可通過MAPK信號轉(zhuǎn)導(dǎo)、抑制GRK2表達等途徑,增強HCC細胞侵襲、轉(zhuǎn)移潛力[14,17](圖2)。
2.3 TNF-α誘導(dǎo)HCC細胞EMT、調(diào)節(jié)化療耐藥EMT是一個復(fù)雜的細胞過程,可賦予HCC細胞逃避免疫系統(tǒng)的能力及獲得耐藥性并增加其進展?jié)摿?。Chen等[1]研究發(fā)現(xiàn),源自M2腫瘤相關(guān)巨噬細胞的TNF-α可通過Wnt/β-catenin途徑促進HCC細胞的EMT,在體外HCC模型中,M2 TNF-α分泌已被證明可促進EMT并誘導(dǎo)“干性”。Zhu等[24]研究發(fā)現(xiàn),利用TNF-α刺激HCC細胞可促進蛋白激酶D2(protein kinase D2,PKD2)/磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)復(fù)合物的組成型結(jié)合,正向調(diào)控AKT/糖原合成酶激酶-3β(Glycogen synthase kinase-3β,GSK-3β)/β-catenin通路的活性,促進HCC細胞EMT和侵襲性。此外,TNF-α還可通過在人HCC細胞中誘導(dǎo)EMT的發(fā)生,上調(diào)免疫檢查點分子PD-L1、PD-L2、CD73和B7-H3的表達,從而促進腫瘤免疫逃逸[25]。然而,有研究[26]發(fā)現(xiàn)TNF-α可通過靶向自噬信號轉(zhuǎn)導(dǎo),增加ROS水平,拮抗HCC細胞中TGF-β2誘導(dǎo)的EMT。
在HCC細胞中,TNF-α可通過誘導(dǎo)EMT來促進索拉非尼耐藥性,且尿蛋白酶抑制劑烏司他丁可增強索拉非尼在TNF-α高表達HCC中的抗腫瘤作用,其機制可能與TNF-α/NF-κB/EMT信號通路的抑制有關(guān)[27]。此外,有研究[28]對樂伐替尼加抗PD1抗體耐藥的HCC患者的樣本進行單細胞測序,發(fā)現(xiàn)黏膜相關(guān)恒定T淋巴細胞可分泌TNF-α,激活調(diào)節(jié)性T淋巴細胞上的TNFR2,通過TNF/TNFR2途徑使HCC患者對侖伐替尼和抗PD1抗體產(chǎn)生耐藥性。上述研究為HCC化療耐藥的新靶點奠定了一定基礎(chǔ)。
2.4 TNF-α參與調(diào)節(jié)免疫反應(yīng)TNF-α在調(diào)節(jié)先天性和適應(yīng)性免疫反應(yīng)方面發(fā)揮核心作用。IFN-γ誘導(dǎo)B7-H1表達是HCC適應(yīng)性免疫抵抗的基礎(chǔ)。Li等[29]研究表明,B7-H1在HCC細胞中表達上調(diào),IFN-γ通過Janus激酶(JAK)/STAT1通路刺激B7-H1的表達,TNF-α通過NF-кB途徑上調(diào)IFN-γ受體1/2的表達,從而增強HCC細胞中由IFN-γ誘導(dǎo)的B7-H1介導(dǎo)的適應(yīng)性免疫抵抗,以促進HCC的進展。且高水平的TNF-α可能會阻礙HBV特異性CD8+T淋巴細胞的細胞毒性反應(yīng),在HCC中發(fā)揮促進作用[30]。Zheng等[31]研究發(fā)現(xiàn),PD-L1亞型Iso2可通過提高TNF-α水平來增加腫瘤微環(huán)境中T淋巴細胞的數(shù)量,以協(xié)同Iso1的腫瘤抑制作用。
2.5 TNF-α調(diào)節(jié)HCC細胞凋亡TNF-α介導(dǎo)的細胞凋亡已受到研究關(guān)注。Tokay等[32]研究證實,TNF-α可誘導(dǎo)HCC細胞中URG-4-URGCP基因(上調(diào)基因-4)表達,從而以血清依賴性方式誘導(dǎo)細胞死亡。但另有研究[33]發(fā)現(xiàn),高劑量的TNF-α(100或1 000 ng/mL)可增強血清饑餓誘導(dǎo)的HCC細胞凋亡;而低劑量的TNF-α(0.1、1和10 ng/mL)可通過誘導(dǎo)NF-κB的反式激活,瞬時上調(diào)HCC細胞中抗凋亡鐵蛋白重鏈,減弱血清饑餓介導(dǎo)的HCC細胞凋亡。Sun等[34]研究發(fā)現(xiàn),在HCC中TNF-α對新型腫瘤抑制因子lncRNA00607的調(diào)控作用,TNF-α可上調(diào)lncRNA00607的表達,lncRNA00607可抑制p65轉(zhuǎn)錄,使HCC中p53水平增加,引發(fā)HCC的一系列表型變化,包括細胞增殖減少、G1-S細胞周期停滯增強和細胞凋亡增加,還可增加HCC化療敏感性。TNF-α還可介導(dǎo)HCC中有絲分裂缺陷誘導(dǎo)的衰老和細胞凋亡致敏之間的協(xié)同致死作用,進而抑制HCC[35]。此外,有研究[36]發(fā)現(xiàn),TNF-α激活的caspase-8可在缺氧激活的gasdermin C(GSDMC)和核PD-L1存在下,將細胞凋亡轉(zhuǎn)變?yōu)榧毎雇?,?dǎo)致缺氧區(qū)域的腫瘤發(fā)生壞死,而腫瘤細胞焦亡誘導(dǎo)的慢性腫瘤壞死可抑制抗腫瘤免疫反應(yīng)。
3 TNF-α在預(yù)測HCC患者預(yù)后及復(fù)發(fā)中的作用
一項薈萃分析[37]評估了TNF-αG-308A多態(tài)性與HCC之間的相關(guān)性,研究發(fā)現(xiàn),在亞洲人群中TNF-αG-308A多態(tài)性與HCC風(fēng)險之間顯著相關(guān)。有研究[38]證實,HCC患者微環(huán)境中TNF-α的高表達是影響術(shù)后生存和復(fù)發(fā)率的獨立預(yù)后因素,其原因可能是TNF-α的高表達與某些抗腫瘤通路的激活有關(guān)。一項前瞻性隊列研究[39]發(fā)現(xiàn),HCC患者熱消融4周后,TNF-α等細胞因子水平與腫瘤復(fù)發(fā)相關(guān),可作為預(yù)測消融后預(yù)后的無創(chuàng)生物標(biāo)志物。TNF-α的變化還可預(yù)測慢性丙型肝炎患者根除病毒后發(fā)生HCC的風(fēng)險[40]。Zhang等[41]確定了TNF-α與HCC臨床特征及預(yù)后的關(guān)聯(lián),高TNF-α表達是總生存期和無病生存期的獨立預(yù)測因素。此外,Iida-Ueno等[42]研究確定了血漿TNF-α水平的早期變化可作為生物標(biāo)志物預(yù)測HCC患者對索拉非尼的反應(yīng),且推測TNF-α的增加可作為索拉非尼抑制血管生成的補償。
4靶向TNF-α信號轉(zhuǎn)導(dǎo)的治療策略
結(jié)合TNF-α或TNFR阻斷TNF信號傳導(dǎo)的生物制劑目前已廣泛應(yīng)用于臨床,是多種自身免疫和炎癥性疾病有效的治療方法之一,迄今共有5種TNF-TNFR信號傳導(dǎo)抑制劑獲批,包括英夫利昔單抗、依那西普、阿達木單抗、戈利木單抗和聚乙二醇賽妥珠單抗[43]。
據(jù)報道[44],英夫利昔單抗及依那西普可通過補體依賴性細胞毒性和抗體依賴性細胞毒性作用以降低HCC細胞活力、誘導(dǎo)細胞死亡等方式發(fā)揮抗HCC效應(yīng)。X連鎖凋亡抑制蛋白相關(guān)因子1(XIAP-associated factor 1,XAF-1)是一種腫瘤抑制因子。Li等[45]首次構(gòu)建了一種共表達XAF-1和TNF-α的重組腺病毒Ad-XAF-1amp;TNF-α,且研究證實,Ad-XAF-1amp;TNF-α可有效地誘導(dǎo)細胞凋亡,抑制HCC細胞的增殖和集落形成能力。
Wang等[46]檢測了抗TNF-α治療效果及其與經(jīng)典化療藥物5-氟尿嘧啶(5-FU)的協(xié)同作用,證實英夫利昔單抗可與5-FU協(xié)同作用,促進HCC腫瘤細胞凋亡、延長總生存時間。同時,HCC靶向藥物索拉非尼在與TNF-α抑制劑聯(lián)合應(yīng)用時可對HCC產(chǎn)生更有效的治療效果[27,47]。另有研究[9]發(fā)現(xiàn),短期TNF-α抑制劑可安全地用于治療免疫檢查點抑制劑(immune checkpoint inhibitor,ICI)相關(guān)的免疫相關(guān)不良事件,且TNF-α抑制劑可通過促進細胞毒性T淋巴細胞活性,增強ICI的抗腫瘤活性。
目前,也有一些新型TNF-α抑制劑正在研發(fā)中,盡管已取得進展,但其在HCC中的作用仍有待驗證[48]。此外,抗TNF-α藥物在治療過程中被發(fā)現(xiàn)有不同的毒副作用,包括肝毒性[49-50]。因此,一種低毒副作用的抗TNF-α藥物將可能使TNF-α高表達的HCC患者受益。
5結(jié)語與展望
炎癥因子TNF-α具有多效性生物學(xué)功能,在腫瘤中的作用頗具爭議性。前文所述研究為TNF-α對HCC的調(diào)節(jié)及HCC預(yù)防和治療的潛在靶點提供了理論依據(jù),仍存在矛盾或未闡明的方面,需進一步探索。靶向TNF-α或選擇性中和TNFR是克服HCC耐藥性和防治HCC的有效策略,尤其是更好地與HCC的系統(tǒng)療法聯(lián)合使用,例如索拉非尼、ICI。但由于TNF-α信號通路復(fù)雜、作用機制多變等因素,阻礙了其作為抗癌藥物的使用,因此亟需進行深入且高質(zhì)量的研究和臨床試驗,探索TNF-α調(diào)節(jié)HCC進展的分子機制,以及靶向TNF-α或TNFR的藥物或分子制劑,評估其在HCC治療中的作用,積極實現(xiàn)相關(guān)臨床應(yīng)用的轉(zhuǎn)化。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:朱玲玲負(fù)責(zé)檢索文獻,撰寫論文;張亞妮、何昱靜、史婷婷、伍楊、高春參與修改論文;于曉輝、張久聰負(fù)責(zé)指導(dǎo)撰寫文章并最后定稿。
參考文獻:
[1]CHEN YX,WEN HH,ZHOU C,et al.TNF-αderived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transi?tion and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells[J].Exp Cell Res,2019,378(1):41-50.DOI:10.1016/j.yexcr.2019.03.005.
[2]JANG MK,KIM HS,CHUNG YH.Clinical aspects of tumor necrosis factor-αsignaling in hepatocellular carcinoma[J].Curr Pharm Des,2014,20(17):2799-2808.DOI:10.2174/13816128113199990587.
[3]TIEGS G,HORST AK.TNF in the liver:Targeting a central player in inflammation[J].Semin Immunopathol,2022,44(4):445-459.DOI:10.1007/s00281-022-00910-2.
[4]TSENG WC,LAI HC,HUANG YH,et al.Tumor necrosis factor alpha:Implications of anesthesia on cancers[J].Cancers,2023,15(3):739.DOI:10.3390/cancers15030739.
[5]LAHA D,GRANT R,MISHRA P,et al.The role of tumor necrosis fac?tor in manipulating the immunological response of tumor microenvi?ronment[J].Front Immunol,2021,12:656908.DOI:10.3389/fimmu.2021.656908.
[6]COUSSENS LM,WERB Z.Inflammation and cancer[J].Nature,2002,420(6917):860-867.DOI:10.1038/nature01322.
[7]WANG X,LIN Y.Tumor necrosis factor and cancer,buddies or foes?[J].Acta Pharmacol Sin,2008,29(11):1275-1288.DOI:10.1111/j.1745-7254.2008.00889.x.
[8]KALLIOLIAS GD,IVASHKIV LB.TNF biology,pathogenic mecha?nisms and emerging therapeutic strategies[J].Nat Rev Rheumatol,2016,12(1):49-62.DOI:10.1038/nrrheum.2015.169.
[9]CHEN AY,WOLCHOK JD,BASS AR.TNF in the era of immune checkpoint inhibitors:Friend or foe?[J].Nat Rev Rheumatol,2021,17(4):213-223.DOI:10.1038/s41584-021-00584-4.
[10]MERCOGLIANO MF,BRUNI S,MAURO F,et al.Harnessing tumor necrosis factor alpha to achieve effective cancer immunotherapy[J].Cancers,2021,13(3):564.DOI:10.3390/cancers13030564.
[11]JING YY,SUN K,LIU WT,et al.Tumor necrosis factor-αpromotes hepatocellular carcinogenesis through the activation of hepatic pro?genitor cells[J].Cancer Lett,2018,434:22-32.DOI:10.1016/j.can?let.2018.07.001.
[12]YANG X,SHAO CC,DUAN LX,et al.Oncostatin M promotes hepaticprogenitor cell activation and hepatocarcinogenesis via macrophage-derived tumor necrosis factor-α[J].Cancer Lett,2021,517:46-54.DOI:10.1016/j.canlet.2021.05.039.
[13]XIA LM,MO P,HUANG WJ,et al.The TNF-α/ROS/HIF-1-induced up?regulation of FoxMI expression promotes HCC proliferation and resis?tance to apoptosis[J].Carcinogenesis,2012,33(11):2250-2259.DOI:10.1093/carcin/bgs249.
[14]XU ZW,YAN SX,WU HX,et al.The influence of TNF-αand Ang II on the proliferation,migration and invasion of HepG2 cells by regulat?ing the expression of GRK2[J].Cancer Chemother Pharmacol,2017,79(4):747-758.DOI:10.1007/s00280-017-3267-z.
[15]XU ZW,YAN SX,WU HX,et al.Angiotensin II and tumor necrosisfactor-αstimulate the growth,migration and invasion of BEL-7402 cells via down-regulation of GRK2 expression[J].Dig Liver Dis,2019,51(2):263-274.DOI:10.1016/j.dld.2018.06.007.
[16]SHI JN,SONG SP,LI SX,et al.TNF-α/NF-κB signaling epigeneti?cally represses PSD4 transcription to promote alcohol-related hepa?tocellular carcinoma progression[J].Cancer Med,2021,10(10):3346-3357.DOI:10.1002/cam4.3832.
[17]ZHANG GP,YUE X,LI SQ.Cathepsin C interacts with TNF-α/p38 MAPK signaling pathway to promote proliferation and metastasis in hepatocellular carcinoma[J].Cancer Res Treat,2020,52(1):10-23.DOI:10.4143/crt.2019.145.
[18]ZONG C,MENG Y,YE F,et al.AIF1+CSF1R+MSCs,induced by TNF-α,act to generate an inflammatory microenvironment and pro?mote hepatocarcinogenesis[J].Hepatology,2023,78(2):434-451.DOI:10.1002/hep.32738.
[19]MENG Y,ZHAO QD,AN LW,et al.A TNFR2-hnRNPK axis promotes primary liver cancer development via activation of YAP signaling in hepatic progenitor cells[J].Cancer Res,2021,81(11):3036-3050.DOI:10.1158/0008-5472.CAN-20-3175.
[20]QI DD,LU M,XU PF,et al.Transcription factor ETV4 promotes the development of hepatocellular carcinoma by driving hepatic TNF-αsignaling[J].Cancer Commun,2023,43(12):1354-1372.DOI:10.1002/cac2.12482.
[21]LIU ZC,NING F,WANG HF,et al.Epidermal growth factor and tu?mor necrosis factorαcooperatively promote the motility of hepato?cellular carcinoma cell lines via synergistic induction of fibronectin by NF-κB/p65[J].Biochim Biophys Acta Gen Subj,2017,1861(11 Pt A):2568-2582.DOI:10.1016/j.bbagen.2017.08.010.
[22]KASTL L,SAUER SW,RUPPERT T,et al.TNF-αmediates mitochon?drial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells[J].FEBS Lett,2014,588(1):175-183.DOI:10.1016/j.febslet.2013.11.033.
[23]HUANG BP,LIN CS,WANG CJ,et al.Upregulation of heat shock protein 70 and the differential protein expression induced by tumor necrosis factor-alpha enhances migration and inhibits apoptosis of hepatocellular carcinoma cell HepG2[J].Int J Med Sci,2017,14(3):284-293.DOI:10.7150/ijms.17861.
[24]ZHU Y,CHENG Y,GUO YB,et al.Protein kinase D2 contributes to TNF-α-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3β/β-catenin pathway in hepatocellular carcinoma[J].Oncotarget,2016,7(5):5327-5341.DOI:10.18632/oncotarget.6633.
[25]SHRESTHA R,BRIDLE KR,CRAWFORD DHG,et al.TNF-α-medi?ated epithelial-to-mesenchymal transition regulates expression of im?mune checkpoint molecules in hepatocellular carcinoma[J].Mol Med Rep,2020,21(4):1849-1860.DOI:10.3892/mmr.2020.10991.
[26]DASH S,SARASHETTI PM,RAJASHEKAR B,et al.TGF-β2-induced EMT is dampened by inhibition of autophagy and TNF-αtreatment[J].Oncotarget,2018,9(5):6433-6449.DOI:10.18632/oncotarget.23942.
[27]TAN WL,LUO X,LI WD,et al.TNF-αis a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma[J].EBioMedicine,2019,40:446-456.DOI:10.1016/j.ebiom.2018.12.047.
[28]ZHOU C,SUN BY,ZHOU PY,et al.MAIT cells confer resistance toLenvatinib plus anti-PD1 antibodies in hepatocellular carcinoma through TNF-TNFRSF1B pathway[J].Clin Immunol,2023,256:109770.DOI:10.1016/j.clim.2023.109770.
[29]LI N,WANG JN,ZHANG N,et al.Cross-talk between TNF-αand IFN-γsignaling in induction of B7-H1 expression in hepatocellular carcinoma cells[J].Cancer Immunol Immunother,2018,67(2):271-283.DOI:10.1007/s00262-017-2086-8.
[30]ZHAO L,JIN Y,YANG C,et al.HBV-specific CD8 T cells present higher TNF-αexpression but lower cytotoxicity in hepatocellular car?cinoma[J].Clin Exp Immunol,2020,201(3):289-296.DOI:10.1111/cei.13470.
[31]ZHENG XX,CHEN XD,WU WC.The regulatory axis of PD-L1 iso?form 2/TNF/T cell proliferation is required for the canonical immune-suppressive effects of PD-L1 isoform 1 in liver cancer[J].Int J Mol Sci,2023,24(7):6314.DOI:10.3390/ijms24076314.
[32]TOKAY E,SAGKAN RI,KOCKAR F.TNF-αinduces URG-4/URGCP gene expression inHepatoma cells through starvation dependent manner[J].Biochem Genet,2021,59(1):300-314.DOI:10.1007/s10528-020-09972-z.
[33]KOU XR,JING YY,DENG WJ,et al.Tumor necrosis factor-αattenu?ates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells[J].BMC Cancer,2013,13:438.DOI:10.1186/1471-2407-13-438.
[34]SUN QM,HU B,F(xiàn)U PY,et al.Long non-coding RNA 00607 as a tu?mor suppressor by modulating NF-κB p65/p53 signaling axis in hepa?tocellular carcinoma[J].Carcinogenesis,2018,39(12):1438-1446.DOI:10.1093/carcin/bgy113.
[35]LI D,F(xiàn)U J,DU M,et al.Hepatocellular carcinoma repression by TNFα-mediated synergistic lethal effect of mitosis defect-induced senescence and cell death sensitization[J].Hepatology,2016,64(4):1105-1120.DOI:10.1002/hep.28637.
[36]HOU JW,ZHAO RC,XIA WY,et al.PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and fa?cilitates tumour necrosis[J].Nat Cell Biol,2020,22(10):1264-1275.DOI:10.1038/s41556-020-0575-z.
[37]VERMA HK,MERCHANT N,BHASKAR LVKS.Tumor necrosis factor-alpha gene promoter(TNF-αG-308A)polymorphisms increase the risk of hepatocellular carcinoma in asians:A meta-analysis[J].Crit Rev Oncog,2020,25(1):11-20.DOI:10.1615/CritRevOncog.2020034846.
[38]LI HR,WANG YH,ZHANG M,et al.The high expression of TNF-αand NF-κB in tumor microenvironment predicts good prognosis of patients with BCLC-0-B hepatocellular carcinoma[J].Transl Can?cer Res,2019,8(2):532-541.DOI:10.21037/tcr.2019.03.09.
[39]GUO DD,QIN L,SUN JP,et al.Dynamic changes of cytokine pro?files and their correlation with tumor recurrence following thermal ab?lation in hepatocellular carcinoma[J].Technol Cancer Res Treat,2023,22:15330338231190644.DOI:10.1177/15330338231190644.
[40]LU MY,YEH ML,HUANG CI,et al.Dynamics of cytokines predicts risk of hepatocellular carcinoma among chronic hepatitis C patients after viral eradication[J].World J Gastroenterol,2022,28(1):140-153.DOI:10.3748/wjg.v28.i1.140.
[41]ZHANG M,HU J,LI HR,et al.High TNF-αand/or p38MAPK expres?sion predicts a favourable prognosis in patients with T1N0M0 hepato?cellular carcinoma:An immunohistochemical study[J].Oncol Lett,2019,17(6):4948-4956.DOI:10.3892/ol.2019.10193.
[42]IIDA-UENO A,ENOMOTO M,UCHIDA-KOBAYASHI S,et al.Changes in plasma interleukin-8 and tumor necrosis factor-αlevels during the early treatment period as a predictor of the response to sorafenib in patients with unresectable hepatocellular carcinoma[J].Cancer Che?mother Pharmacol,2018,82(5):857-864.DOI:10.1007/s00280-018-3681-x.
[43]BRENNER D,BLASER H,MAK TW.Regulation of tumour necrosis factor signalling:Live or let die[J].Nat Rev Immunol,2015,15(6):362-374.DOI:10.1038/nri3834.
[44]LI W,JIAN YB.Antitumor necrosis factor-αantibodies as a novelthe?rapy for hepatocellular carcinoma[J].Exp Ther Med,2018,16(2):529-536.DOI:10.3892/etm.2018.6235.
[45]LI K,LI XH,WU ZJ,et al.Adenovirus encoding XAF-1 and TNF-αin the same open reading frame efficiently inhibits hepatocellular can?cer cells[J].Mol Med Rep,2016,13(6):5169-5176.DOI:10.3892/mmr.2016.5193.
[46]WANG HM,LIU JM,HU XM,et al.Prognostic and therapeutic val?ues of tumor necrosis factor-alpha in hepatocellular carcinoma[J].Med Sci Monit,2016,22:3694-3704.DOI:10.12659/msm.899773.
[47]WANG MD,WU MC,YANG T.The synergistic effect of sorafenib and TNF-αinhibitor on hepatocellular carcinoma[J].EBioMedicine,2019,40:11-12.DOI:10.1016/j.ebiom.2019.01.007.
[48]LEONE GM,MANGANO K,PETRALIA MC,et al.Past,present and(foreseeable)future of biological anti-TNF alpha therapy[J].J Clin Med,2023,12(4):1630.DOI:10.3390/jcm12041630.
[49]BAI L,WANG K.Research progress of immune-related adverse re?actions caused by immune checkpoint inhibitors[J].J Changchun Univ Chin Med,2023,39(2):229-236.DOI:10.13463/j.cnki.cczyy.2023.02.025.
白黎,王珂.免疫檢查點抑制劑導(dǎo)致免疫相關(guān)不良反應(yīng)的研究進展[J].長春中醫(yī)藥大學(xué)學(xué)報,2023,39(2):229-236.DOI:10.13463/j.cnki.cczyy.2023.02.025.
[50]FISCHER R,KONTERMANN RE,PFIZENMAIER K.Selective target?ing of TNF receptors as a novel therapeutic approach[J].Front Cell Dev Biol,2020,8:401.DOI:10.3389/fcell.2020.00401.
收稿日期:2024-01-27;錄用日期:2024-03-15
本文編輯:邢翔宇