• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      科學系

      • 五秩芳華,奮楫爭先 ——廈門大學控制學科創(chuàng)設五十周年暨建系四十周年
        分設成立計算機科學系,李文清教授為首任系主任.1987年,計算機科學系更名為計算機與系統(tǒng)科學系.隨著學科的逐步壯大,計算機與系統(tǒng)科學系分設為計算機科學系與系統(tǒng)科學系.1996年系統(tǒng)科學系改名為自動化系.時光荏苒,五秩芳華,距控制理論專業(yè)創(chuàng)辦至今已50載.今天的廈門大學控制學科是福建省重點學科,擁有控制科學與工程一級學科博士、碩士學位授權點,參與建設電子信息博士專業(yè)學位授權點,設有控制科學與工程一級學科博士后流動站.篳路藍縷,踔厲奮發(fā)自1972年控制理論專業(yè)

        廈門大學學報(自然科學版) 2022年6期2023-01-24

      • 北京協(xié)和醫(yī)院內科學系復合型精英醫(yī)學人才培養(yǎng)探索
        英人才。協(xié)和內科學系堅持以“住院醫(yī)師規(guī)范化培訓”為基礎,以培養(yǎng)“住院醫(yī)師核心勝任力”為目標,以“臨床培訓”為核心,創(chuàng)新性設置了“病房臨床醫(yī)學博士后小組”分層培養(yǎng)模式、階梯式培養(yǎng)評估反饋體系和360°評價體系,并采用先進的模擬教學方法和設備,在傳統(tǒng)病例巡診的基礎上,開設內科危重癥模擬培訓課程與考評。該培養(yǎng)模式已成為協(xié)和內科學系臨床醫(yī)學博士后項目的突出特色,可全面提升臨床醫(yī)學博士后的職業(yè)素養(yǎng)、知識技能、病人照護、溝通合作、教學能力和終生學習6項核心勝任力[1]

        協(xié)和醫(yī)學雜志 2022年1期2022-02-16

      • “乒乓奶奶”自信能活百歲
        安體育學院健康科學系教授)我叫王嬌妹,今年84歲,在61歲之前都是病秧子,現在我堅信自己能活過百歲。我沒有太多養(yǎng)生方法,打球算是一大法寶。61歲那年,我的老伴見我在家無聊,送我一副乒乓球拍當生日禮物。從那以后,他常陪我下樓打乒乓球。每次,我們都能打上1個多小時,一身大汗回家,沖完澡便神清氣爽。第二年,我在朋友的帶領下,去社區(qū)健身中心打羽毛球,堅持不到1個月,我的體重就下降了3公斤。早上起來監(jiān)測血壓,比之前更平穩(wěn)了。于是,這兩項球類運動,我一直堅持了23年,

        戀愛婚姻家庭 2018年21期2018-07-16

      • 臨床博士后精英教育項目的探索
        第1學年中,內科學系結合來自多維度的反饋意見,在該項目課程模塊的設置、帶教形式、評估和反饋等方面做出了諸多調整和改進,使該項目在北京協(xié)和醫(yī)院內科住院醫(yī)師規(guī)范化培訓項目的基礎上脫穎而出,成為一項可以螺旋上升的畢業(yè)后醫(yī)學精英繼續(xù)教育項目。該項目的過程和經驗,可以為其他教學醫(yī)院類似項目的執(zhí)行提供參考。臨床醫(yī)學博士后項目;課程模塊的調整;帶教形式;評估;反饋人才是醫(yī)學發(fā)展的創(chuàng)新驅動,培養(yǎng)精英醫(yī)學人才是北京協(xié)和醫(yī)院近百年來始終堅守的優(yōu)良傳統(tǒng)。北京協(xié)和醫(yī)院臨床醫(yī)學博士

        基礎醫(yī)學與臨床 2018年1期2018-02-13

      • 留數在有理分式拉普拉斯反演中的應用
        院 物理與電子科學系,貴州 六盤水 553004)留數在有理分式拉普拉斯反演中的應用王立威,祝 昆*,楊文韜(六盤水師范學院 物理與電子科學系,貴州 六盤水 553004)有理分式的拉普拉斯反演的教學難點就是分項分式的求解?;诮虒W中有理分式函數分解為幾個有理真分式函數之和時系數的確定,文中結合Cauchy定理和留數的概念,提出一種求待定系數的新方法——留數法。以教學實例,說明留數法較比較法和賦值法求待定系數簡單,也容易被學生理解和掌握。拉普拉斯反演;有理

        文山學院學報 2017年3期2017-08-08

      • 嘗嘗20多億年前的『水』,味道太詭異
        多倫多大學地球科學系,調查人員收集了迄今保存最完好的液態(tài)水,味道確實不敢恭維。根據科學家在《自然》期刊上所發(fā)布的論文,這些水比現在的海水更咸一些,還挺苦的。不僅有一定的粘稠度,而且味道一點兒也不好。這說明多倫多大學地球科學系的科學家還真的嘗過20多億年前的水,這讓筆者感到有些驚訝。不過味、嗅都是環(huán)境水質監(jiān)測中比較常規(guī)的項目。嗅一般都比較真實,就算是對臭水溝中的水質進行監(jiān)測,嗅一嗅其實也沒啥大不了的。但如果是味的話,那就有一定難度了。顯然多倫多大學地球科學系

        奧秘 2017年1期2017-07-05

      • 三伏天,走暑去
        學院健康與運動科學系博士 李慶雯三伏天,走暑去⊙天津體育學院健康與運動科學系博士 李慶雯夏季三伏最難熬,溫度高,但這個時候我們可以選擇去“走暑”,既運動健身,又能避暑養(yǎng)生。讓大家選擇“走暑”其實是有原因的。夏天外界陽氣最旺,這時多到戶外活動,可以吸收自然界陽氣精華,補充能量,調暢氣血,養(yǎng)護陽氣。然而三伏天熱,很多人都憋在家里不出門,其實這對身體是不好的。人的養(yǎng)生要適應大自然的規(guī)律,該出汗的時候得出汗,因為出汗既能排走體內毒素,又能調節(jié)體溫。但我們又不能因為

        家庭醫(yī)藥 2017年16期2017-03-25

      • 韋曉慧:我想和航母過一輩子
        于南京大學大氣科學系,畢業(yè)后,她成為了人人艷羨的高級白領。然而,她并沒有滿足于物質上的充實,她向往更高的精神追求。工作四年后,韋曉慧辭職選擇繼續(xù)深造,并以第一名的絕對優(yōu)勢跨專業(yè)考入中山大學地球科學系,成為碩博連讀研究生。從大氣科學系到地球科學系,韋慧曉完成了“上天入地”的跨越。地質學是一門實踐性非常強的學科,它的課堂在野外。為了能在世界地質研究的熱點——青藏高原進行地質學習,韋曉慧選擇在此進行志愿服務。自廣州往北從青海的格爾木走青藏公路進藏的路程是八千里路

        學苑創(chuàng)造·C版 2017年1期2017-01-19

      • LU分解的基本計算原理算法實現
        學院信息與計算科學系 劉 煜LU分解的基本計算原理算法實現南京林業(yè)大學理學院信息與計算科學系 劉 煜一、方法、算法與程序設計1.方法:首先將系數矩陣進行LU分解,若題目要求求解線性方程,則通過以下兩步驟來達到目的:(1)由LY=B解出Y;(2)由UX=Y解出X;解出以上兩個方程即可。2.算法:①LU分解步驟:步驟一:輸入系數矩陣A;步驟二:LU分解:②直接三角分解法算法:步驟一、步驟二同LU分解。步驟三:用向前消去法解下三角方程組LY=b3.程序設計:①L

        數學大世界 2016年5期2016-11-16

      • 例談高等數學學習方法——一道習題玩轉三重積分
        院 數學與系統(tǒng)科學系, 長沙 410022)例談高等數學學習方法——一道習題玩轉三重積分趙 俠, 楊路易(國防科技大學 理學院 數學與系統(tǒng)科學系, 長沙 410022)給出了一道三重積分計算題的七種不同的解答方法. 通過這一道題的練習, 使學生對三重積分的各種計算方法有一個全面的認識和掌握. 借此啟發(fā)學生學好高等數學并不需要搞題海戰(zhàn)術, 而是做一道題時要多層次、多角度地思考,邊做邊悟, 以達到“以一敵百”的效果.高等數學; 三重積分; 學習方法引言高等數學

        湖南理工學院學報(自然科學版) 2016年3期2016-11-05

      • 具有非線性阻尼項和源項的波動方程整體解的存在性*
        學院數學與信息科學系,杭州,310023)具有非線性阻尼項和源項的波動方程整體解的存在性*嚴永仙 葉耀軍(浙江科技學院數學與信息科學系,杭州,310023)在初始能量為負的條件下,基于Young不等式,本文證明了一類帶耗散項的非線性雙曲型方程初邊值問題解的blow-up.非線性雙曲型方程 初邊值問題 耗散項 Blow-up1 引言考慮下面的初值問題其中p≥2,α>0,β>0是常數,Ω是Rn中具有光滑邊界?Ω的有界區(qū)域,R+≡[0,+∞).2 主要結果及其證

        數學理論與應用 2016年2期2016-10-20

      • 方差分量的Minimax估計
        院 數學與系統(tǒng)科學系, 長沙 410073)方差分量的Minimax估計李 暢, 王正明(國防科學技術大學 理學院 數學與系統(tǒng)科學系, 長沙 410073)研究了具有p個方差分量的混合線性模型的Minimax估計問題. 從方差分量的Bayes不變二次無偏估計問題出發(fā), 得到了方差分量的Minimax不變無偏估計類.方差分量; Bayes不變二次估計; 非負估計; Minimax估計1 方差分量的Bayes估計近幾十年來, 國內外許多統(tǒng)計學者研究了方差分量的

        湖南理工學院學報(自然科學版) 2015年4期2015-06-01

      • 一類變系數分數階微分方程組的數值解法
        院 數學與信息科學系,河北 唐山 063000)數學與應用數學一類變系數分數階微分方程組的數值解法李寶鳳,王東華,宗 鵬(唐山師范學院 數學與信息科學系,河北 唐山 063000)給出了基于Haar小波求解變系數分數階微分方程組的數值方法。首先構造Haar小波得到分數階積分的算子矩陣,利用積分算子矩陣把分數階微分方程組轉換為代數方程組;其次解此代數方程組求得原方程組的數值解;最后舉例說明了所給出的方法的有效性和可行性。分數階微分方程;Haar小波;算子矩陣

        唐山師范學院學報 2015年2期2015-01-10

      • 應用Bernstein多項式求解一類分數階微分方程
        院 數學與信息科學系,河北 唐山 063000)數學與應用數學研究應用Bernstein多項式求解一類分數階微分方程李寶鳳(唐山師范學院 數學與信息科學系,河北 唐山 063000)給出了基于Bernstein多項式求解分數階微分方程的配置方法。首先,在Bernstein級數的截斷式中用tα(0<α<1)代替t得到分數階Bernstein級數截斷式,采用Caputo分數階導數構建分數階Bernstein級數截斷式的矩陣形式。其次,把方程中的每一項用分數階B

        唐山師范學院學報 2014年2期2014-02-05

      • 無窮乘積形式的遞推數列極限的一個注記
        院 數學與計算科學系/計算數學研究所,湖南 永州 425199)無窮乘積形式的遞推數列極限的一個注記鄧宇龍(湖南科技學院 數學與計算科學系/計算數學研究所,湖南 永州 425199)通過對無窮乘積形式的遞推數列的極限問題的探討,從無窮乘積的角度給出了這種類型的極限的求法。收斂;極限;遞推數列;無窮乘積近來,有同學問我當n→∞時數列[1]張筑生.數學分析[M].北京:北京大學出版社,1990.[2]費定暉,周學圣.吉米多維奇數學分析習題集題解[M].濟南:山

        湖南科技學院學報 2014年5期2014-01-24

      • 浙江省1973年引進家蠶品種名
        學特種經濟動物科學系,浙江杭州 310058)浙江省1973年引進家蠶品種名馮家新(浙江大學特種經濟動物科學系,浙江杭州 310058)引種是育種工作的組成部分,具有簡單易行快捷有效的特點。1973年12月,參加在鎮(zhèn)江召開的“全國蠶種座談會”之際,從江蘇省蠶業(yè)研究所(現中國農科院蠶業(yè)研究所)引進所謂“7”字號原蠶品種16個。1974年春期在杭州開始飼養(yǎng)對比及制雜交組合,并重新編號為杭1、杭2、……杭7、杭8、……杭15、杭16。這批引進種不僅對浙江(如杭1

        蠶桑通報 2014年4期2014-01-13

      • 上海交通大學外國語學院、明尼蘇達大學言語-語言-聽力科學系2013年神經語言學技術講習班啟事
        語-語言-聽力科學系定于2013年7月22日-25日聯(lián)合舉辦2013年神經語言學技術講習班。此次講習班側重EEG/ERP和眼動技術在語言、語音以及語言障礙研究中的應用,由明尼蘇達大學言語-語言-聽力科學系Jennifer Windsor教授、神經行為發(fā)展中心張揚教授以及天津師范大學心理與行為研究院閆國利教授等國內外知名專家進行系統(tǒng)授課。具體事宜如下:一、 講習主題1. Liberal Arts and Speech-Language Pathology i

        當代外語研究 2013年5期2013-12-04

      • 高階中立型偏微分系統(tǒng)的振動性分析
        院 數學與計算科學系,湖南 衡陽 421002)0 IntroductionThe oscillation study of partial functional differential equations(PFDE)are of both theoretical and practical interest.Some applicable examples in such fields as population kinetics,chemistry

        衡陽師范學院學報 2013年3期2013-10-10

      • 基于多量子比特Greenberger-Horne-Zeilinger糾纏態(tài)的受控遠程量子信息凝聚
        物理與電子信息科學系,湖南 衡陽 421002)0 IntroductionAn unknown quantum state cannot be perfectly copied is a consequence of linearity of quantum theory.It has been shown by Bu?ek and Hillery[1]that it is possible to clone an unknown pure state

        衡陽師范學院學報 2013年3期2013-10-10

      • Positive Solution for Nonlinear Higher-Order Neutral Variable Delay Difference Equations with Continuous Arguments*
        學院理學與信息科學系,湖南邵陽 422004)研究了一類具有連續(xù)變量的高階非線性變時滯中立型差分方程,利用Banach空間的不動點原理和一些分析技巧,得到了這類方程存在最終正解的幾個新的充分條件,同時給出實例驗證其有效性.最終正解;連續(xù)變量;非線性;中立型時滯差分方程;不動點原理O175.7AO175.7A10.3969/j.issn.1007-2985.2013.03.0011007-2985(2013)03-0001-06*Received date:

        吉首大學學報(自然科學版) 2013年3期2013-09-11

      • 二階非線性脈沖時滯微分方程的漸近性
        院 數學與計算科學系,安徽 淮南 232038)二階非線性脈沖時滯微分方程的漸近性杜珺(淮南師范學院 數學與計算科學系,安徽 淮南 232038)利用數學分析的技巧得出了兩個引理,利用引理研究了二階非線性脈沖時滯微分方程解的漸近形態(tài),得到了當t→+∞時,方程的所有非振動解都趨于零的條件。脈沖;時滯;漸近性;非振動解1 引言本文研究了一類二階非線性脈沖時滯微分方程解的漸近性態(tài),得到了關于解的漸近性態(tài)的幾個充分條件。文[1]研究了一類具有脈沖的非線性時滯微分方

        淮南師范學院學報 2012年3期2012-12-28

      • 一類帶有時滯非線性系統(tǒng)的穩(wěn)定性開關分析
        院 數學與計算科學系,安徽 淮南 232038)一類帶有時滯非線性系統(tǒng)的穩(wěn)定性開關分析左宏坤(淮南師范學院 數學與計算科學系,安徽 淮南 232038)針對一類帶有時滯的非線性系統(tǒng),通過對其平衡點處特征方程的分析,構造相應的李雅普諾夫函數,獲得了平衡點處的穩(wěn)定性開關變化的判別準則,并對開關值獲取的算法進行了討論和分析。穩(wěn)定性開關;平衡點;李雅普諾夫函數;數值解1 引言對于一般的非線性動力系統(tǒng),我們通常是通過構造李雅普諾夫函數,來分析平衡點處的穩(wěn)定性。但由于

        淮南師范學院學報 2012年3期2012-12-28

      • 七種植物籽油中脂肪酸成分的比較分析
        生物工程與環(huán)境科學系,長沙410003;2中南大學化學化工學院,長沙410083IntroductionChina is a large country in vegetable oil consumption.Soybean,rapeseed,peanut,sesame seed,and cottonseed are main resources of edible vegetable oil in China.But at present,nearly

        天然產物研究與開發(fā) 2012年1期2012-12-22

      • 金屬鈮聲子發(fā)散譜、電聲耦合和超導轉變溫度的研究
        物理與電子信息科學系,湖南 衡陽 421008)0 IntroductionThe solving of many-particle schr?dinger equation is a key problem of quantum mechanics.Density functional theory (DFT)[1-2]is a suitable method aiming to this topic.The main idea of DFT is to

        衡陽師范學院學報 2012年6期2012-10-10

      • γ射線損傷腦神經系統(tǒng)的物理機理
        物理與電子信息科學系,湖南 衡陽 421008;2.南華大學 科學技術學院,湖南 衡陽 421001)0 IntroductionIn 1896,A.H.Becguerel discovered the phenomenon of radioactivity,was soon applied to production and practices,whether natural radioactive,or artificial radioactive A

        衡陽師范學院學報 2012年6期2012-10-10

      • 含參量廣義積分分析性質的證明
        院 數學與信息科學系,河北 唐山 063000)含參量廣義積分分析性質的證明劉慶輝,宋澤成(唐山師范學院 數學與信息科學系,河北 唐山 063000)通過2個引理給出了含參量廣義積分分析性質的另外一種證明方法,即直接計算法,這有助于深刻理解含參量廣義積分的分析性質。含參量廣義積分;分析性質引理1 設f(x,y )在x→+∞時關于y在I上一致收斂于φ(y),且?x∈[a,+∞),f(x,y )關于y在I上連續(xù),則?y∈y0,有證明 由已知可得:則只需證明即可

        唐山師范學院學報 2012年5期2012-06-01

      • 沸石填料BAF和組合填料BAF啟動掛膜對比試驗
        北林業(yè)大學環(huán)境科學系,哈爾濱150040;2.哈爾濱工業(yè)大學市政環(huán)境工程學院,哈爾濱150090)Biological Aerated Filter integrated various purification functions such as filtration,adsorption and biological metabolism,which has many advantages for instance small floor area,b

        哈爾濱商業(yè)大學學報(自然科學版) 2012年2期2012-03-12

      • Quantum Information Process in the Brain
        物理與電子信息科學系,湖南 衡陽 421008)根據細胞微管骨架的α-構型和β-構型,并利用Lloyd關于微管壁上量子信息過程的構想,討論了大腦神經系統(tǒng)中的量子信息過程。研究表明,在微管蛋白中肯定存在量子信息過程,我們利用贗自旋原子模型討論了系統(tǒng)的哈密頓量。量子信息;大腦;微管;哈密頓量CLC nunber:Q684AArtical ID:1673-0313(2012)03-0036-04date:2011-12-30Biography:Gao Feng(

        衡陽師范學院學報 2012年3期2012-01-15

      • 中立型多延遲微分方程Runge-Kutta方法的散逸性
        院 數學與計算科學系,安徽 淮南 232038)中立型多延遲微分方程Runge-Kutta方法的散逸性王素霞,平靜水(淮南師范學院 數學與計算科學系,安徽 淮南 232038)研究了中立型多延遲微分方程Runge-Kutta方法的散逸性,給出了Runge-Kutta方法的數值散逸性結果,此結果表明所考慮的數值方法繼承了方程本身的散逸性。中立型多延遲微分方程;Runge-Kutta方法;散逸性引言微分方程具有散逸性是指,該系統(tǒng)具有一有界吸引集,從任意初始條件

        淮南師范學院學報 2011年5期2011-12-28

      • 關于一類非零整系數互反多項式的Chebyshev變換
        學院數學與計算科學系,陜西商洛 726000)關于一類非零整系數互反多項式的Chebyshev變換王念良,孔 亮(商洛學院數學與計算科學系,陜西商洛 726000)利用第1類、第2類Chebyshev多項式的性質,研究了形如P(n,n)(z)=z2n+1,Q(n,n)(z)=z2n+z2n-2+… +z2+1 的非零整系數互反多項式的 Chebyshev變換,給出了多項式P(mn,mn)(z),Q(mn-1,mn-1)(z)的 Chebyshev變換公式及

        海南大學學報(自然科學版) 2011年1期2011-12-23

      • 英國諾??丝?蓋伍德流域生態(tài)系統(tǒng)服務的估價
        英吉利大學環(huán)境科學系,諾里奇,英國,NR4 7TJ)英國諾??丝?蓋伍德流域生態(tài)系統(tǒng)服務的估價謝 韻*(東英吉利大學環(huán)境科學系,諾里奇,英國,NR4 7TJ)蓋伍德河是一條稍長于13 km的河,起始于諾福克的鄉(xiāng)村,從金斯林流向北海的港口流出.為評價蓋伍德河流域內池塘生態(tài)系統(tǒng)服務價值的變化情況,采用地理資訊系統(tǒng)比較了該流域內歷史的和現在的地圖以找出過去50年內的變化,然后通過實地考察來驗證地理資訊系統(tǒng)的結果;在文章末尾說明了本研究中所面臨的一些困難.分析結果

        湖南師范大學自然科學學報 2011年1期2011-12-08

      • 一道碩士研究生入學試題和三個例題的統(tǒng)一改進
        學院數學與計算科學系,廣州 510320)一道碩士研究生入學試題和三個例題的統(tǒng)一改進劉玉記(廣東商學院數學與計算科學系,廣州 510320)統(tǒng)一改進一道研究生入學考試《數學分析》試題和三道例題.數學分析;研究生入學考試試題;改進結果文獻[3]有下面的三道例題:例77 設f(x)在(-∞,+∞)二次可微,且對任意x∈(-∞,+∞),有證明:對任意x∈(-∞,+∞),有|f′(x)|≤2M1M2.例78 設f(x)在(a,+∞)二次可微,且在(a,+∞)上分別

        大學數學 2011年3期2011-11-22

      • 正項級數拉阿伯判別法等價形式及其應用
        業(yè)工程學院計算科學系,廣州 510225)正項級數拉阿伯判別法等價形式及其應用李亞蘭(仲愷農業(yè)工程學院計算科學系,廣州 510225)利用Stolz定理得出了與拉阿伯(Rabbe)判別法等價的幾個判別法中p的意義,即p為正項級數中通項un單調減少的階,并利用它來判別正項級數的斂散性.正項級數;斂散性;Stolz定理;無窮小的階1 引 言在文[1]中,證明了如下新比值判別法:它們都是利用p-級數作為比較標準而建立的,那么,其中的極限p與p-級數中的p有何聯(lián)系

        大學數學 2011年4期2011-11-22

      • 一個包含特殊函數的方程的解
        學院數學與信息科學系,陜西渭南714000)一個包含特殊函數的方程的解趙教練(渭南師范學院數學與信息科學系,陜西渭南714000)對任意正整數n,Smarandache LCM函數是滿足的最小的正整數,其中 [1,2,…,k]代表1,2,…,k的最小公倍數;偽Smarandache函數Z(n)定義為最小的正整數m,使得.文章用分類討論和初等方法完全解決方程SL(n)=Z(n)的可解性,給出其所有解.偽Smarandache函數;Smarandache LC

        渭南師范學院學報 2011年2期2011-10-13

      • 兩類調和函數的基本積分公式
        黃淮學院 數學科學系,河南 駐馬店 463000)兩類調和函數的基本積分公式陳 瑩(黃淮學院 數學科學系,河南 駐馬店 463000)主要研究了二維和三維調和函數的基本積分公式,給出了兩類調和函數基本積分公式的證明,得出了M0在區(qū)域?內、區(qū)域?外及邊界Γ上3種情況下基本積分公式的相應結果.調和函數;格林公式;基本解;積分公式1 相關理論知識1.1 格林公式設?是以足夠光滑的曲面Γ為邊界的有界區(qū)域,u = u (x,y,z )和 v = v (x ,y,z)

        天中學刊 2011年2期2011-01-13

      • 一類積分微分方程周期解的穩(wěn)定性
        院 數學與計算科學系,安徽 淮南 232001)一類積分微分方程周期解的穩(wěn)定性崔冬玲(淮南師范學院 數學與計算科學系,安徽 淮南 232001)利用泛函分析的技巧討論了一類對具有連續(xù)時滯非線性積分微分方程周期解的穩(wěn)定性。非線性積分微分方程;周期解;穩(wěn)定性1 引理及假設考慮如下微分方程引理 設 X(t)是(1)的基本解方陣,則有解的右上導數,可得兩邊同時取從s到t的積分有即(2)式成立,引理證畢。定義:方程(3)的零解是一致穩(wěn)定的,如果對于每一個 ε>0和任

        淮南師范學院學報 2011年4期2011-01-03

      • 關于 Gegenbauer多項式與三角函數的一些恒等式
        學院數學與計算科學系,陜西商洛 726000)關于 Gegenbauer多項式與三角函數的一些恒等式楊 全(商洛學院數學與計算科學系,陜西商洛 726000)用初等方法研究了 Gegenbauer多項式與三角函數的計算公式,得到了關于正弦函數與余弦函數的一些恒等式.此方法將被用于正弦函數與余弦函數的其他計算公式的研究,并為研究其他三角函數提供思路.Gegenbauer多項式;初等方法;恒等式1 問題與結論定理 1 對于由 (1)式定義的λ及任意非負整數n和

        海南大學學報(自然科學版) 2010年4期2010-12-23

      • 首都醫(yī)科大學兒科學系
        簡稱首醫(yī)大)兒科學系于 2003年正式掛牌成立。學系以首醫(yī)大附屬北京兒童醫(yī)院為依托、涵蓋首醫(yī)大宣武醫(yī)院以及附屬北京友誼醫(yī)院、附屬北京朝陽醫(yī)院、附屬北京同仁醫(yī)院、附屬北京天壇醫(yī)院、附屬北京安貞醫(yī)院、附屬北京婦產醫(yī)院、附屬北京中醫(yī)醫(yī)院等各附屬醫(yī)院,是集臨床、教學和科研為一體的綜合性兒科學基地。1987年,經國務院學位辦批準,以兒科學系為主要學科力量的首醫(yī)大兒科學學科成為博士學位授權學科;1992年成立博士后流動站。目前擁有兒內科學、兒外科學、病原微生物學 3個

        首都醫(yī)科大學學報 2010年2期2010-04-24

      • 關于勒讓德多項式與契貝謝夫多項式間的關系
        學院數學與信息科學系,陜西渭南 714000)關于勒讓德多項式與契貝謝夫多項式間的關系楊倩麗,劉欣宇(渭南師范學院數學與信息科學系,陜西渭南 714000)主要研究勒讓德多項式與契貝謝夫多項式之間的關系的性質,利用生成函數和函數級數展開的方法,得出了勒讓德多項式與契貝謝夫多項式之間的一個重要關系,這對勒讓德多項式與契貝謝夫多項式的研究有一定的推動作用.勒讓德多項式;恒等式;契貝謝夫多項式1 引言及主要結論的系數定義的,它們在函數的正交性理論研究中占有十分重

        純粹數學與應用數學 2009年3期2009-07-05

      • 一類圖的哈密頓分類
        校數學與計算機科學系,廣西桂林 541001; 2.煙臺大學數學與信息科學系,山東煙臺 264005)一類圖的哈密頓分類唐干武1,王敏2(1.桂林師范高等??茖W校數學與計算機科學系,廣西桂林 541001; 2.煙臺大學數學與信息科學系,山東煙臺 264005)通過研究圖G與CP的包裝問題,對邊數q≥C2p?1?3的簡單圖進行分類,得到了滿足此條件的全部非哈密頓圖,由此推廣了Ore和Bondy提出的關于此類問題的結果.哈密頓圖;包裝;Rs,n圖1 引言及基

        純粹數學與應用數學 2009年4期2009-07-05

      西乡县| 太仆寺旗| 曲阳县| 梁平县| 行唐县| 连山| 栾川县| 探索| 肥西县| 鄂托克旗| 稻城县| 包头市| 克拉玛依市| 石屏县| 杭锦旗| 昌宁县| 馆陶县| 乡城县| 津南区| 武夷山市| 鄂尔多斯市| 洛隆县| 左云县| 错那县| 潜江市| 二连浩特市| 修文县| 垣曲县| 石河子市| 彭水| 沅陵县| 寿宁县| 越西县| 磴口县| 长武县| 甘肃省| 南木林县| 奉新县| 烟台市| 泗洪县| 鹤峰县|