• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In、Sc摻雜對SrTiO3電子結(jié)構(gòu)和光學(xué)性質(zhì)的影響

    2010-03-06 04:44:34江妮張志勇
    物理化學(xué)學(xué)報 2010年3期
    關(guān)鍵詞:張志勇信息科學(xué)西北大學(xué)

    江妮 張志勇

    (西北大學(xué)信息科學(xué)與技術(shù)學(xué)院,西安 710127)

    Strontium titanate(SrTiO3),a typical perovskite material,has attracted much attention due to its potential applications in the field of oxide devices[1-9].It can be used as a substrate for the growth of high temperature superconductor thin films[1],as grain boundary barrier layer capacitors[2]and oxygen gas sensors[3-4], and as a high permittivity material with potential application in dynamic random access memory[5].In particular,its conductivity can be tuned by controlled doping with impurity atoms[6-9],which has important applications in fabricating devices with multilayer structures such as semiconductor/insulator/semiconductor (S/I/S)and metal/insulator/metal(M/I/M)junctions[10].

    The behavior of n-type doped SrTiO3has been widely studied in an attempt to understand the rich variations in physical properties arising from carrier doping[11-18].However,the achievement of p-type doped SrTiO3is rarely documented.Until now,only Sc-doped and In-doped SrTiO3are confirmed to be p-type doping[19-21].Higuchi et al.[19]reported the electronic structure of a ptype SrTiO3single crystal in which the acceptor ion Sc3+was introduced into the Ti4+site.Dai et al.[20]reported that SrTiO3exhibited p-type conductivity when doped by the substitution of In for Ti.Guo et al.[21]further explored the optical properties of ptype SrInxTi1-xO3(x=0.1 and 0.2)films prepared by laser molecular beam epitaxy under different oxygen pressures.In addition, many of the properties such as the structure stability,transport properties,and optical absorption spectra for p-type doped SrTiO3thin films are not known.

    In this paper,we perform the first-principles calculation based on the density functional theory(DFT)[22]to investigate the effect of In and Sc p-type doping on the electronic structure and optical properties of SrTiO3.

    1 Theoretical model and computational method

    1.1 Theoretical model

    SrTiO3has an ideal cubic perovskite-type structure at room temperature.It belongs to the space group Pm3m(Oh),with the Sr atom sitting at the origin point,Ti at the body centre,and three oxygen atoms at the three face centres,and its lattice constant is a=b=c=0.3905 nm.The unit cell contains one formula unit of SrTiO3.In order to study fractional substitution,it is necessary to consider a cell larger than the basic unit.Thus we construct a supercell of eight unit cells consisting of 40 atoms in the basis.Replacing any one of the Ti atoms by In(or Sc)atom in the supercell will correspond to the formula SrIn0.125Ti0.875O3(or SrSc0.125Ti0.875O3).

    1.2 Computational method

    In our computation,the interaction between nuclei and electrons is approximated with Vanderbilt ultra-soft pseudo-potential[23]treating 4s,4p,and 5s electrons of Sr,3s,3p,3d,and 4s electrons of Ti,2s and 2p electrons of O,4d,5s and 5p electrons of In,and 3s,3p,3d,and 4s electrons of Sc as the valence electrons.The Perdew and Wang 91 parametrization[24]is taken as the exchange-correlation potential in the generalized-gradient approximation(GGA).Plane wave basis with kinetic energy cutoff of 420 eV is used to represent wave functions.Brillouin zone integration is performed with a 6×6×6 Monkhorst-Pack[25]k-points mesh.Full relaxation is performed for the constructed supercells by using the Broyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm[26]to minimize energy respect to atomic position.Each calculation is considered converged when the maximum root-meansquare convergent tolerance is less than 5.0×10-6eV·atom-1,that is,the maximum ionic Hellmann-Feynman force being within 0.1 eV·nm-1,the maximum ionic displacement being within 5.0×10-5nm and the maximum stress being within 0.02 GPa. Then the electronic structure and optical properties are calculated based on the optimized supercell model.

    The scissor approximation is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    2 Results and discussion

    2.1 Stability and lattice properties

    The binding intensity and structural stability of crystal are related to its binding energy.The bigger the binding energy,the more stable the crystal structure.In this paper,the binding energies for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3are calculated by the following formulas[27]:

    where Etotal(SrTiO3)and Etotal(SrM0.125Ti0.875O3)represent the total energies of the SrTiO3and SrM0.125Ti0.875O4supercells,respectively.Eisolate(X)denotes the total energy of an isolated X atom and n is the formula number of SrTiO3contained in each supercell.

    By analysis of the calculated binding energies of the three compounds listed in Table1,we conclude that the optimized SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3systems are stable, because their binding energies are negative.On the other hand, the doped SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have bigger binding energy values than the undoped SrTiO3itself,which indicates that the structure stability of SrTiO3is weakened after doping.These structure stability changes for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are originated from the electronic structure changes through doping,and we will discuss this in the Mulliken population analysis section.Note that the crystal structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still the cubic perovskite-type structure with the space group Pm3m(Oh).

    In addition,the calculated lattice constants are 0.3951 nm for SrIn0.125Ti0.875O3,larger than that of undoped SrTiO3(0.3924 nm), which is in good agreement with the experiment results[20]that thelattice constants of SrIn0.1Ti0.9O3films increase after doping. The same lattice expansion tendency is also observed in SrSc0.125Ti0.875O3.However,because of the absence of experimental result on the lattice parameters of SrSc0.125Ti0.875O3,further experimental work is needed for comparison with our numerical results.

    Table 1 Optimized structure parameters and binding energies(Eb)for SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Further insight into the effect of p-type doping on the electronic structure of SrTiO3can be obtained from the atomic relaxation around the impurity atom as listed in Table 2.The partial geometries around the impurity In atom,which are taken from the structural optimized SrIn0.125Ti0.875O3system,are shown in Fig.1.

    The introducing of In impurity leads to a local lattice expansion in the SrIn0.125Ti0.875O3.The closest atoms with respect to the In impurity are six O*atoms which rearrange their positions immediately after the doping has occurred.That is,the six nearest O*atoms around In atom shift away from In by 0.0025 nm and the InO6*octahedron exhibits a small structure relaxation.This is due to the fact that the effective radius of In3+(0.094 nm)is larger than the radius of Ti4+(0.0745 nm)[20],the partial substitution of In for Ti induces a structure relaxation.The same tendency is also observed for SrSc0.125Ti0.875O3after doping.However,the six nearest O*atoms around Sc atom move away from Sc by 0.0083 nm,much larger than that in SrIn0.125Ti0.875O3.Furthermore,in the case of the first nearest neighbor(NN)Ti*O6with respect to the InO6*octahedron in SrIn0.125Ti0.875O3,it possesses a slightly distorted Ti*O6octahedron.The bond length of Ti*—Oaalong the aaxis is smaller than those in the bc plane.So does the first NN Ti*O6with respect to the ScO6octahedron in SrSc0.125Ti0.875O3.At the same time,it is noted that the second NN Ti**O6undergoes little relaxations after doping and the third NN Ti#O6has almost no change in both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems compared with the corresponding one in the undoped SrTiO3system.Hence,replacing a Ti atom by one In atom(or Sc atom) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    Fig.1 Partial geometry of the structural optimized SrIn0.125Ti0.875O3system

    2.2 Electronic structures

    In this part,the electronic structures of SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3will be discussed and compared with each other.Three indicators will be used to reveal the effect of In and Sc doping on the electronic structure of SrTiO3,which are the total density of state(DOS),partial density of state(PDOS),and population analysis.Each of these tools can demonstrate some aspects of structure features.

    2.2.1 DOS

    The DOS and PDOS of the undoped SrTiO3are calculated first for comparison and the results are shown in Fig.2(a).For the sake of clarity,only the relevant Ti 3d,O 2p,and Sr 5p PDOS are shown and this will be adopted in the subsequent figures.It is obvious that the structure of SrTiO3has corner-shared TiO6octahedron where the Ti 3d and O 2p interaction is found,which dominate the main electronic properties of SrTiO3.The top of valance bands(VBs)predominately consists of O 2p states and the most prominent unoccupied energy bands in the bottom most of conduction bands(CBs)are mainly composed of the Ti 3d states.Overlooking from the DOS,it can be observed that there is strong orbital hybridization between the Ti 3d and O 2p states. That is to say,Ti—O bond is covalent.Correspondingly no over-lap of PDOS between Sr atoms and O atoms means the high ionicity of Sr—O bonds.

    Table 2 Key bond lengths in SrTiO3,SrIn0.125Ti0.875O3,and SrSc0.125Ti0.875O3

    Fig.2 DOS and PDOSs(a)and band structure(b)of undoped SrTiO3The Fermi level is set to zero on the energy scale,which will be adopted below unless otherwise stated.

    Moreover,as shown in Fig.2(b),the undoped SrTiO3is an indirect gap insulator with the top of valence band at R point and the bottom of conduction band at Γ point.The calculated value of the indirect band gap at R→Γ is 1.7 eV,which is smaller than the experimental value of about 3.2 eV[28].This is typically underestimated by the density functional theory[29-30].Thus,a scissor approximation value of 1.5 eV is adopted in the optical calculation to compensate the underestimation of the calculated band gap.

    Fig.3showsthetotalDOSsofSrIn0.125Ti0.875O3andSrSc0.125Ti0.875O3. Because the In doping introduces the p-type carriers into the SrIn0.125Ti0.875O3system,the Fermi level shifts into the valence bands(VBs),which is in agreement well with the experimental results[20]that In3+acts as acceptor ions in the Indoped SrTiO3films and the SrIn0.1Ti0.9O3is a p-type semiconductor.Particularly,the DOS of SrIn0.125Ti0.875O3shifts significantly towards high energies and the optical band gap is broadened by about 0.35 eV due to In doping compared with the DOS reported in Fig.2.This is well consistent with the experimental results[20]that the band gap of SrIn0.1Ti0.9O3is 0.4 eV larger than that of undoped SrTiO3.Moreover,one additional peak with a bandwidth of about 1.20 eV appears in the bottom of VBs for SrIn0.125Ti0.875O3.

    In the case of Sc-doped SrSc0.125Ti0.875O3,the Fermi level shifts downwards into the VBs and SrSc0.125Ti0.875O3exhibits p-type degenerate semiconductor feature,which agree well the experimental results[31]that Sc3+acts as acceptor ions in SrTi1-xScxO3and the Fermi level shifts to the VBs side with increasing Sc3+ions. Meanwhile,an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.This fact is consistent with the experimental results that the band gap of SrTi1-xScxO3increases with increasing Sc doping concentration[32]. The broadened optical band gap originates from two aspects.On the one hand,the Burstein-Moss shift due to the high concentration of carriers makes the optical absorption edge shifts towards high energies and the optical transparency window is broadened[33].On the other hand,interactions among hole charges result in a many-body effect,which causes the optical band gap to becomenarrow[34].However,theeffect of Burstein-Moss on the band gap is more pronounced than that of the many-body effect,so the band gap broadens after doping.

    2.2.2 PDOS

    In subsequent discussions on the effect of p-type doping on the SrTiO3system,we restrict ourselves to the PDOS of the doped systems.

    Firstly,the orbital decomposed PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3are presented in Fig.4(a).It is clear that the PDOSs of In and Sc do not contribute to the bottom most of CBs but contribute only to the top of VBs. The value of PDOS for In near the Fermi level(marked by the arrow in Fig.4(a))in the energy rang of-0.50 to 0.00 eV is significantly larger than that of Sc atom in SrSc0.125Ti0.875O3.This indicates that In is probably better than Sc for p-type doping in SrTiO3.

    Secondly,the orbital decomposed PDOSs of atoms near the In and Sc impurities are plotted in Fig.4(b)and(c),respectively.In the case of SrIn0.125Ti0.875O3,it is found that there is strong interaction between impurity In and its first NN Ti*O6.The PDOS of Ti*3d states at the bottom of CBs is highly dispersive and shows no localization characteristics.With increasing distance between In and its neighboring TiO6,the PDOS of Ti**3d states is less dispersive than that of Ti*.The PDOS of Ti#atom is almost the same as that in undoped SrTiO3.Besides,the In impurity charge potential has great effect on the six O*atoms in the InO6.The PDOS of O*2p states at the bottom of CBs is different from that of other O atoms,which are not in the InO6.The same results are observed in SrSc0.125Ti0.875O3.These conclusions for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are in good agreement with the structure relaxation analysis in section 2.1 that the partial substitution of In for Ti(or Sc for Ti)in the SrTiO3parent merely results in local structural changes around the dopant sites.Moreover,by analysis the PDOS in Fig.4(a,b),it is evident that an additional peak appears in the bottom of VBs for SrIn0.125Ti0.875O3,to which the In 5s and O 2p states make contribution.

    Fig.3 DOSs of SrIn0.125Ti0.875O3(a)and SrSc0.125Ti0.875O3(b)

    Fig.4 PDOSs of impurity In atom in SrIn0.125Ti0.875O3and Sc atom in SrSc0.125Ti0.875O3(a),surrounding atoms of In(b)and neighboring atoms of Sc(c)

    2.2.3 Mulliken population analysis

    More investigation of the effect of In and Sc doping on the electronic structure of SrTiO3can be obtained from Mulliken population analysis listed in Table 3.For undoped SrTiO3,the net charge of Sr(1.87e)is close to its+2e formal charges,whereas O atom is with-0.80e negative charges and Ti atom carries 0.53e positive charges,which are much smaller than their-2e and+4e formal charges,respectively.This indicates that there is a high degree of covalency in the Ti—O bond while ionicity in the Sr—O bond,which agrees well with the DOS analysis for SrTiO3in section 2.2.1.

    After doping,there are considerable electron charge density redistributionsneartheimpurityatom.InthecaseofSrIn0.125Ti0.875O3, the electron density of the O*atoms near the impurity In atom increases obviously and the electronegativity of O*atoms is strengthened.While the net charges of Ti*and Ti**decrease to the values of 0.50e and 0.52e,respectively.This is due to the fact that the net charge of In atom(1.26e)is much larger than that of the replaced Ti atom(0.53e),and In atom transfers more electrons to O*atoms.Correspondingly,Ti*and Ti**provide less electrons to O*atoms.Hence there is a high degree of ionicity in the In—O bond and the covalency of Ti—O bond is weakened after doping,which result in the structure stability change of SrIn0.125Ti0.875O3.For SrSc0.125Ti0.875O3,the impurity Sc atom loses only partial valence electrons with 0.46e positive charges,smaller than the replaced Ti atom(0.53e),implying that the covalent Sc—O bond is weaker than that of Ti—O bond.Correspondingly, Ti*and Ti**atoms transfer more electrons to O*atoms and the net charges of Ti*and Ti**increase to the values of 0.56e and 0.54e,respectively.

    2.3 Optical properties

    Next we discuss the effect of In and Sc doping on the optical properties of SrTiO3.The linear response of a system due to an external electromagnetic field with a small wave vector can be described with the complex dielectric function ε(ω)=ε1(ω)+ iε2(ω).The imaginary part of the dielectric function ε2(ω)is calculated from the momentum matrix elements between the occupied and unoccupied wave functions[35]as follows:

    where ?ω is the energy of the incident photon,V is the unit cell volume,p is the momentum operator,|kn>is a crystal wavefunction,and f(kn)is the Fermi distribution function.The real part of the dielectric function ε1(ω)is evaluated from the imaginary part ε2(ω)by the Kramers-Kronig relationship.

    where M is the principal value of the integral.The other optical constants like refractive index n(ω),extinction coefficient k(ω), reflectivity R(ω),and absorption coefficient I(ω)now immediately are calculated in terms of the components of the complex dielectric function as follows:

    Accordingly the transmittance T(ω)can be obtained by the following equation:

    Fig.5 shows the absorption spectra for SrTiO3,SrIn0.125Ti0.875O3, and SrSc0.125Ti0.875O3.After doping,a noticeable blue-shift of ab-sorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,which is in good agreement with the above calculated optical band gap widening for them.In addition,because of the Drude-type behavior of the free-carrier excitation[12],a new weak absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.

    Table 3 Mulliken population analysis for SrTiO3, SrIn0.125Ti0.875O3,and SrSc0.125Ti0.87O3

    Fig.5 Absorption spectra of SrTiO3(a),SrIn0.125Ti0.875O3(b), and SrSc0.125Ti0.875O3(c)

    At the same time,as shown in Fig.6,the optical transmittance of SrIn0.125Ti0.875O3has a significant improvement after In doping and the transmittance is higher than 85%in a wavelength range from 350 to 625 nm,which agree well with the experimental results[21]thatSrIn0.1Ti0.9O3thinfilmsarehighlytransparentwiththe transmittance higher than 80%in most of the visible spectrum. For SrSc0.125Ti0.875O3,its optical transmittance is similar to that of SrIn0.125Ti0.875O3.

    The increasing of the high transparency of the two p-type doping compounds originates from two factors.On one hand,to being optically transparent,it is desirable to have a wider band gap than the photon energy of the visible lights.Owing to the ptype doping,there is an optical band gap widening of 0.35 and 0.30 eV for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3,respectively. Therefore,the electron transition occurring above 3.55 eV in SrIn0.125Ti0.875O3(3.50 eV in SrSc0.125Ti0.875O3)should be more beneficial than the band gap of 3.20 eV[28]in SrTiO3.On the other hand, the PDOS of impurity atom is low in the Fermi level(see Fig.4 (a)),which leads to the small transition probability and weak absorption.

    Fig.6 Optical transmittances of SrTiO3(a),SrIn0.125Ti0.875O3(b),and SrSc0.125Ti0.875O3(c)

    3 Conclusions

    In conclusion,we have investigated the structure stability, electronic structure,and optical properties of In and Sc p-type doped SrTiO3by the first-principles calculation of plane wave ultra-soft pseudo-potential based on the DFT.Our calculation results are in good agreement with the experimental data.From these calculations,we have obtained the results as follows.

    (1)The structures of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3are still stable after doping,but their stabilities are lower than that of undoped SrTiO3.The partial substitution of In for Ti(or Sc for Ti) in the SrTiO3parent merely results in local structural changes around the dopant sites.

    (2)Owing to the p-type doping,the Fermi level shifts into VBs for both SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3systems and the two systems display p-type degenerate semiconductor features. At the same time,the optical band gap of SrIn0.125Ti0.875O3is broadened by about 0.35 eV due to In doping and an optical band gap widening of 0.30 eV associated with Sc doping has been observed for SrSc0.125Ti0.875O3.

    (3)A noticeable blue-shift of absorption spectra edge is observed for SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3and a new absorption appears in the energy region of 1.25 to 2.00 eV for the two p-type doping systems.Furthermore,the optical transmittances of SrIn0.125Ti0.875O3and SrSc0.125Ti0.875O3have a significant improvement after doping,and the transmittances are higher than 85%in the wavelength range from 350 to 625 nm. The wide band gap,small transition probability,and weak absorption due to the PDOS of impurity in the Fermi level result in the significant optical transparency.

    1 Eom,C.B.;Marshall,A.F.;Laderman,S.S.;Jacowitz,R.D.; Geballe,T.H.Science,1990,249:1549

    2 Shen,H.;Song,Y.;Gu,H.;Wang,P.;Xi,Y.Mater.Lett.,2002, 56:802

    3 Hara,T.;Ishiguro,T.Sens.Actuator B-Chem.,2009,136:489

    4 Hara,T.;Ishiguro,T.;Wakiyab,N.;Shinozakic,K.Mater.Sci. Eng.B,2009,161:142

    5 Lee,S.W.;Kwon,O.S.;Han,J.H.;Hwang,C.S.Appl.Phys.Lett., 2008,92:222903

    6 Fix,T.;Bali,R.;Stelmashenko,N.;Blamire,M.G.Solid State Commun.,2008,146:428

    7 Zhu,X.B.;Liu,S.M.;Hao,H.R.;Li,X.H.;Song,W.H.;Sun,Y. P.Physica C,2005,418:59

    8 Higuchi,T.;Tsukamoto,T.;Kobayashi,K.;Ishiwata,Y.;Fujisawa, M.;Yokoya,T.;Yamaguchi,S.;Shin,S.Phys.Rev.B,2000,61: 12860

    9 Marina,O.A.;Canfield,N.L.;Stevenson,J.W.Solid State Ionics, 2002,149:21

    10 Wang,H.H.,Chen,F.;Dai,S.Y.;Zhao,T.;Lu,H.B.;Cui,D.F.; Zhou,Y.L.;Chen,Z.H.;Yang,G.Z.Appl.Phys.Lett.,2001,78: 1676

    11 Wang,H.H.;Cui,D.F.;Dai,S.Y.;Lu,H.B.;Zhou,Y.L.;Chen, Z.H.;Yang,G.Z.J.Appl.Phys.,2001,90:4664

    12 Higuchi,T.;Tsukamoto,T.;Taguchi,Y.;Tokur,Y.;Shin,S. Physica B,2004,351:310

    13 Ma,J.Y.;Bi,C.Z.;Fang,X.;Zhao,H.Y.;Kamran,M.;Qiu,X.G. Physica C,2007,463-465:107

    14 Takizawa,M.;Maekawa,K.;Wadati,H.;Yoshida,T.;Fujimori,A.; Kumigashira,H.;Oshima,M.Phys.Rev.B,2009,79:113103

    15 Blennow,P.;Hagen,A.;Hansen,K.K.;Wallenberg,L.R.; Mogensen,M.Solid State Ionics,2008,179:2047

    16 Page,K.;Kolodiazhnyi,T.;Proffen,T.;Cheetham,A.K.;Seshadri, R.Phys.Rev.Lett.,2008,101:205502

    17 Guo,X.G.;Chen,X.S.;Sun,Y.L.;Sun,L.Z.;Zhou,X.H.;Lu, W.Phys.Lett.A,2003,317:501

    18 Evarestov,R.A.;Piskunov,S.;Kotomin,E.A.;Borstel,G.Phys. Rev.B,2003,67:064101

    19 Hihuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Tezuka,Y.; Shin,S.Phys.Rev.B,1998,57:6978

    20 Dai,S.;Lu,H.;Chen,F.;Chen,Z.;Ren,Z.Y.;Ng,D.H.L.Appl. Phys.Lett.,2002,80:3545

    21 Guo,H.;Liu,L.;Fei,Y.;Xiang,W.;Lu,H.;Dai,S.;Zhou,Y.; Chen,Z.J.Appl.Phys.,2003,94:4558

    22 Hohenberg,P.;Kohn,W.Phys.Rev.B,1964,136:864

    23 Vanderbilt,D.Phys.Rev.B,1990,41:7892

    24 Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B,1992,46: 6671

    25 Monkhorst,H.J.;Pack,J.D.Phys.Rev.B,1976,13:5188

    26 Pfrommer,B.G.;Cote,M.;Louie,S.G.;Cohen,M.L.J.Comput. Phys.,1997,131:233

    27 Xiao,B.;Feng,J.;Zhou,C.T.;Xing,J.D.;Xie,X.J.;Chen,Y.H. Chem.Phys.Lett.,2008,459:129

    28 Van Benthem,K.;Elsassser,C.;French,R.H.J.Appl.Phys.,2001, 90:6156

    29 Sham,L.J.;Schluter,M.Phys.Rev.Lett.,1983,51:1888

    30 Zhang,F.C.;Zhang,Z.Y.;Zhang,W.H.;Yan,J.F.;Yun,J.N. Acta Phys.-Chim.Sin.,2009,25:61 [張富春,張志勇,張威虎,閆軍鋒,贠江妮.物理化學(xué)學(xué)報,2009,25:61]

    31 Higuchi,T.;Tsukamoto,T.;Yamaguchi,S.;Kobayashi,K.;Sata, N.;Ishigame,M.;Shin,S.Nucl.Instrum.Methods Phys.Res.Sect. B-Beam Interact.Mater.Atoms,2003,199:255

    32 Higuchi,T.;Tsukamoto,T.;Sata,N.;Ishigame,M.;Kobayashi,K.; Yamaguchi,S.;Shin,S.Solid State Ionics,2002,154-155:735

    33 Burstein,E.Phys.Rev.,1954,93:632

    34 Mahan,G.D.J.Appl.Phys.,1980,51:2634

    35 Saha,S.;Sinha,T.P.;Mookerjee,A.Phys.Rev.B,2000,62:8828

    猜你喜歡
    張志勇信息科學(xué)西北大學(xué)
    Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures:An ensemble Monte Carlo simulation
    第四次出獄之后
    方圓(2022年12期)2022-09-15 00:58:22
    第四次出獄后,他相信自己不會再碰毒品了
    方圓(2022年13期)2022-09-14 15:08:02
    西北大學(xué)木香文學(xué)社
    山西大同大學(xué)量子信息科學(xué)研究所簡介
    三元重要不等式的推廣及應(yīng)用
    《西北大學(xué)學(xué)報》(自然科學(xué)版)征稿簡則
    Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect?
    《我們》、《疑惑》
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計探究
    国语对白做爰xxxⅹ性视频网站| 国产一区二区 视频在线| 久久性视频一级片| 国产高清不卡午夜福利| www.av在线官网国产| 国产欧美亚洲国产| 人人妻人人澡人人爽人人夜夜| 99国产综合亚洲精品| 国产免费福利视频在线观看| 在线看a的网站| 久久久久久久久久久久大奶| 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 国产欧美日韩综合在线一区二区| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美精品济南到| 搡老乐熟女国产| a级毛片黄视频| 日本欧美视频一区| 亚洲av电影在线进入| 中文字幕人妻丝袜制服| 哪个播放器可以免费观看大片| 中国三级夫妇交换| 高清av免费在线| 天堂8中文在线网| 一级黄片播放器| 亚洲精品久久成人aⅴ小说| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 一二三四中文在线观看免费高清| 国产精品久久久久久久久免| 欧美人与善性xxx| 18在线观看网站| 男女边吃奶边做爰视频| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 精品国产乱码久久久久久男人| 精品久久久久久电影网| 热re99久久国产66热| 纯流量卡能插随身wifi吗| 国产精品二区激情视频| 黄片无遮挡物在线观看| 精品少妇久久久久久888优播| 久久人人爽人人片av| 国产精品无大码| 亚洲国产av影院在线观看| 啦啦啦视频在线资源免费观看| 超碰97精品在线观看| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 丰满少妇做爰视频| 亚洲精品国产区一区二| 人妻 亚洲 视频| 欧美日韩综合久久久久久| 亚洲精品久久久久久婷婷小说| 桃花免费在线播放| 亚洲精品国产色婷婷电影| 亚洲成人手机| 天堂俺去俺来也www色官网| av在线app专区| 欧美黑人精品巨大| 国产探花极品一区二区| 黑丝袜美女国产一区| 亚洲激情五月婷婷啪啪| 99热网站在线观看| 精品一区二区三区av网在线观看 | 免费黄色在线免费观看| 韩国高清视频一区二区三区| 国产精品熟女久久久久浪| 亚洲综合色网址| av又黄又爽大尺度在线免费看| 多毛熟女@视频| √禁漫天堂资源中文www| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| 韩国av在线不卡| 国产色婷婷99| 美女高潮到喷水免费观看| 国产女主播在线喷水免费视频网站| 婷婷色综合大香蕉| 亚洲综合色网址| 热re99久久国产66热| 亚洲精品成人av观看孕妇| www.自偷自拍.com| 久久婷婷青草| 午夜福利免费观看在线| bbb黄色大片| 热re99久久国产66热| 国产亚洲精品第一综合不卡| 欧美激情高清一区二区三区 | 精品亚洲乱码少妇综合久久| 国产精品av久久久久免费| 最新在线观看一区二区三区 | 久久人人爽人人片av| a级片在线免费高清观看视频| 久久精品亚洲av国产电影网| 观看美女的网站| 午夜精品国产一区二区电影| 老司机影院毛片| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 免费少妇av软件| a级毛片在线看网站| 在线观看国产h片| 中文乱码字字幕精品一区二区三区| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 成年女人毛片免费观看观看9 | 另类精品久久| 大香蕉久久网| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 免费高清在线观看视频在线观看| 国产毛片在线视频| 国产极品天堂在线| 黑人欧美特级aaaaaa片| 国产爽快片一区二区三区| 欧美日韩综合久久久久久| 啦啦啦在线观看免费高清www| 国产精品99久久99久久久不卡 | 国产成人免费无遮挡视频| 亚洲精品一区蜜桃| 久久99一区二区三区| 国产精品欧美亚洲77777| 麻豆乱淫一区二区| av有码第一页| 成人国语在线视频| 老司机在亚洲福利影院| 亚洲第一青青草原| 成人国产麻豆网| 天天躁日日躁夜夜躁夜夜| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 国产av国产精品国产| 国产野战对白在线观看| 交换朋友夫妻互换小说| 91老司机精品| 精品人妻一区二区三区麻豆| av网站免费在线观看视频| av天堂久久9| 18禁观看日本| 久久精品国产亚洲av高清一级| 成人影院久久| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩在线播放| www.熟女人妻精品国产| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频| 韩国高清视频一区二区三区| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 国产成人啪精品午夜网站| 热re99久久精品国产66热6| av有码第一页| www.精华液| 欧美亚洲日本最大视频资源| 男女之事视频高清在线观看 | 少妇猛男粗大的猛烈进出视频| 国产日韩欧美亚洲二区| 亚洲人成电影观看| 好男人视频免费观看在线| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 日本色播在线视频| 老司机亚洲免费影院| 亚洲欧美成人精品一区二区| 一区二区av电影网| 亚洲欧美精品综合一区二区三区| 黄色视频不卡| 国产精品免费大片| 久久久久久久大尺度免费视频| 亚洲人成77777在线视频| 在线观看三级黄色| 另类精品久久| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 国产成人系列免费观看| 两性夫妻黄色片| 天天躁日日躁夜夜躁夜夜| 午夜免费男女啪啪视频观看| 久久久精品国产亚洲av高清涩受| av女优亚洲男人天堂| 不卡视频在线观看欧美| 少妇的丰满在线观看| 国产精品国产三级国产专区5o| 亚洲成色77777| 美女扒开内裤让男人捅视频| 天天躁夜夜躁狠狠躁躁| 亚洲精品自拍成人| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 最新在线观看一区二区三区 | 高清在线视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 午夜91福利影院| 另类亚洲欧美激情| 99久久精品国产亚洲精品| 免费黄色在线免费观看| 叶爱在线成人免费视频播放| 黄片播放在线免费| 亚洲第一av免费看| 观看av在线不卡| 久久精品亚洲熟妇少妇任你| 精品少妇黑人巨大在线播放| 成人三级做爰电影| 亚洲专区中文字幕在线 | 久久久久久免费高清国产稀缺| 一级毛片黄色毛片免费观看视频| 在线免费观看不下载黄p国产| 老司机深夜福利视频在线观看 | 最近手机中文字幕大全| 久久亚洲国产成人精品v| 日韩大片免费观看网站| 老司机靠b影院| 亚洲欧美精品自产自拍| 国产免费视频播放在线视频| 国产av一区二区精品久久| 日韩制服骚丝袜av| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 91老司机精品| 在线观看免费视频网站a站| 欧美日韩福利视频一区二区| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| 两个人看的免费小视频| 搡老岳熟女国产| 亚洲一卡2卡3卡4卡5卡精品中文| 一二三四在线观看免费中文在| 五月开心婷婷网| 国产视频首页在线观看| 新久久久久国产一级毛片| 国产极品天堂在线| 久久精品亚洲熟妇少妇任你| 人人妻人人澡人人爽人人夜夜| 中文字幕最新亚洲高清| 亚洲第一av免费看| 日本wwww免费看| 韩国av在线不卡| 免费女性裸体啪啪无遮挡网站| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 性少妇av在线| 美女视频免费永久观看网站| 亚洲国产欧美一区二区综合| 我要看黄色一级片免费的| 久久鲁丝午夜福利片| 欧美少妇被猛烈插入视频| 精品亚洲成a人片在线观看| 大香蕉久久成人网| av女优亚洲男人天堂| 免费高清在线观看日韩| 亚洲 欧美一区二区三区| 久热这里只有精品99| av片东京热男人的天堂| 三上悠亚av全集在线观看| 国产精品 国内视频| 一区二区三区乱码不卡18| 精品人妻熟女毛片av久久网站| 国产精品三级大全| 一级爰片在线观看| 日本vs欧美在线观看视频| 999精品在线视频| a级毛片在线看网站| 夜夜骑夜夜射夜夜干| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 中文字幕制服av| 日韩人妻精品一区2区三区| 一级毛片我不卡| 十八禁网站网址无遮挡| 亚洲av电影在线观看一区二区三区| 国产色婷婷99| 成人国语在线视频| 亚洲伊人色综图| 两性夫妻黄色片| 777久久人妻少妇嫩草av网站| 天天添夜夜摸| 丁香六月欧美| 久久久久精品人妻al黑| 欧美精品av麻豆av| 美女中出高潮动态图| 久久这里只有精品19| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 中文字幕精品免费在线观看视频| 免费看av在线观看网站| 久久免费观看电影| 美女国产高潮福利片在线看| 精品免费久久久久久久清纯 | 亚洲精品一区蜜桃| 又大又黄又爽视频免费| 亚洲精品中文字幕在线视频| 亚洲精品,欧美精品| 下体分泌物呈黄色| 免费观看av网站的网址| 好男人视频免费观看在线| 欧美日本中文国产一区发布| 久久久久久久久免费视频了| 亚洲精品一二三| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| 精品一区二区免费观看| 熟妇人妻不卡中文字幕| 国产极品粉嫩免费观看在线| 999精品在线视频| 汤姆久久久久久久影院中文字幕| 国产 精品1| 天天添夜夜摸| 最近中文字幕高清免费大全6| 亚洲精品一二三| 国产成人啪精品午夜网站| 在线观看一区二区三区激情| 可以免费在线观看a视频的电影网站 | 一区二区三区精品91| 日韩 亚洲 欧美在线| 最近最新中文字幕大全免费视频 | 午夜影院在线不卡| 日日撸夜夜添| 国产乱人偷精品视频| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 国产精品一国产av| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 精品少妇一区二区三区视频日本电影 | av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 精品久久久久久电影网| 伊人久久国产一区二区| 日日撸夜夜添| 一个人免费看片子| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 一区在线观看完整版| 妹子高潮喷水视频| 国产 一区精品| 一区二区三区激情视频| 一区二区三区精品91| 国产日韩欧美视频二区| 久久性视频一级片| 天堂俺去俺来也www色官网| 亚洲av国产av综合av卡| 在线免费观看不下载黄p国产| 色精品久久人妻99蜜桃| 秋霞在线观看毛片| 青草久久国产| 国产成人欧美| 国产一区二区三区av在线| 激情视频va一区二区三区| 免费高清在线观看视频在线观看| 性色av一级| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 国产熟女午夜一区二区三区| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 亚洲专区中文字幕在线 | 欧美97在线视频| 久久久久国产一级毛片高清牌| 国产成人系列免费观看| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 美女中出高潮动态图| 国产男女内射视频| 久久天堂一区二区三区四区| 国产精品女同一区二区软件| 久久av网站| 色视频在线一区二区三区| 午夜福利,免费看| 欧美久久黑人一区二区| 久久精品国产亚洲av涩爱| 久久青草综合色| 国产在线免费精品| 亚洲欧美一区二区三区久久| 制服丝袜香蕉在线| 老司机亚洲免费影院| 午夜福利网站1000一区二区三区| 97人妻天天添夜夜摸| 欧美精品一区二区大全| 亚洲精品第二区| 亚洲精品久久久久久婷婷小说| 日韩中文字幕欧美一区二区 | 免费观看性生交大片5| 19禁男女啪啪无遮挡网站| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 99久久99久久久精品蜜桃| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 丝袜美腿诱惑在线| 丝袜脚勾引网站| 日韩人妻精品一区2区三区| 麻豆乱淫一区二区| 美女主播在线视频| 亚洲av在线观看美女高潮| 精品一区二区免费观看| 欧美97在线视频| 激情五月婷婷亚洲| 亚洲精品美女久久久久99蜜臀 | 亚洲美女搞黄在线观看| 一本色道久久久久久精品综合| 欧美av亚洲av综合av国产av | 亚洲精品美女久久av网站| 中文字幕av电影在线播放| 看十八女毛片水多多多| 国产精品久久久久成人av| 国产福利在线免费观看视频| 一边摸一边做爽爽视频免费| 日本午夜av视频| 国产深夜福利视频在线观看| 在线观看三级黄色| 亚洲欧美成人精品一区二区| 久久 成人 亚洲| 大陆偷拍与自拍| 国产精品嫩草影院av在线观看| 亚洲国产欧美一区二区综合| 婷婷色av中文字幕| 少妇人妻久久综合中文| 日韩精品免费视频一区二区三区| 久久午夜综合久久蜜桃| 五月开心婷婷网| av电影中文网址| 亚洲精品aⅴ在线观看| 99热全是精品| 成人国产麻豆网| 免费黄频网站在线观看国产| 国产精品免费大片| 欧美人与善性xxx| 毛片一级片免费看久久久久| 久久人妻熟女aⅴ| 丝袜脚勾引网站| 91国产中文字幕| 国产爽快片一区二区三区| 最近最新中文字幕免费大全7| 巨乳人妻的诱惑在线观看| 亚洲精品国产色婷婷电影| 精品人妻熟女毛片av久久网站| 大片免费播放器 马上看| 亚洲欧美精品自产自拍| 国产乱来视频区| 久久鲁丝午夜福利片| av卡一久久| 黄频高清免费视频| 97人妻天天添夜夜摸| 中文欧美无线码| 18禁观看日本| 亚洲综合色网址| 久久亚洲国产成人精品v| 高清不卡的av网站| av.在线天堂| 一级a爱视频在线免费观看| 国产精品偷伦视频观看了| 熟妇人妻不卡中文字幕| 成人三级做爰电影| 中文字幕人妻丝袜一区二区 | 男女边摸边吃奶| 超碰97精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产xxxxx性猛交| 在线观看国产h片| 女性生殖器流出的白浆| 亚洲四区av| 欧美亚洲 丝袜 人妻 在线| 成年av动漫网址| 亚洲av福利一区| 久久亚洲国产成人精品v| 久久韩国三级中文字幕| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 青春草亚洲视频在线观看| 大香蕉久久网| 一边摸一边抽搐一进一出视频| 国产精品成人在线| 乱人伦中国视频| 国产亚洲午夜精品一区二区久久| 成年人免费黄色播放视频| 美国免费a级毛片| 亚洲激情五月婷婷啪啪| 熟妇人妻不卡中文字幕| 亚洲国产中文字幕在线视频| 啦啦啦 在线观看视频| 最近手机中文字幕大全| av在线观看视频网站免费| 日韩制服丝袜自拍偷拍| 男女边吃奶边做爰视频| 精品酒店卫生间| 亚洲精品日本国产第一区| 国产精品无大码| 新久久久久国产一级毛片| 久久久精品94久久精品| 国产一区二区激情短视频 | 9191精品国产免费久久| 电影成人av| 三上悠亚av全集在线观看| 中文精品一卡2卡3卡4更新| 男女床上黄色一级片免费看| 日韩欧美精品免费久久| 欧美亚洲 丝袜 人妻 在线| 乱人伦中国视频| 欧美国产精品一级二级三级| videosex国产| 欧美日韩av久久| 亚洲熟女精品中文字幕| 天天影视国产精品| 欧美日韩视频高清一区二区三区二| 天天添夜夜摸| 国产日韩欧美视频二区| 国产成人免费观看mmmm| 亚洲国产精品999| 国产av国产精品国产| 男女之事视频高清在线观看 | 韩国精品一区二区三区| 亚洲av男天堂| 巨乳人妻的诱惑在线观看| www.精华液| 天天影视国产精品| 黑丝袜美女国产一区| 日韩伦理黄色片| 欧美av亚洲av综合av国产av | 国产精品麻豆人妻色哟哟久久| 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 狂野欧美激情性xxxx| av视频免费观看在线观看| 久久久久久久久免费视频了| 国产在线免费精品| 日韩免费高清中文字幕av| 成人毛片60女人毛片免费| 久热爱精品视频在线9| 国产精品成人在线| 老汉色∧v一级毛片| 日本一区二区免费在线视频| av线在线观看网站| 性少妇av在线| 亚洲第一av免费看| 国产片内射在线| 亚洲久久久国产精品| 久久韩国三级中文字幕| 免费观看人在逋| a 毛片基地| 中文欧美无线码| 晚上一个人看的免费电影| av福利片在线| 伊人久久国产一区二区| 成人国语在线视频| 男人添女人高潮全过程视频| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 国产一区二区 视频在线| 精品人妻熟女毛片av久久网站| 毛片一级片免费看久久久久| 国产熟女欧美一区二区| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 狠狠精品人妻久久久久久综合| 精品国产一区二区久久| 国产成人系列免费观看| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 免费观看性生交大片5| 国产av精品麻豆| 下体分泌物呈黄色| 一区二区三区精品91| 免费黄网站久久成人精品| 十分钟在线观看高清视频www| 国产精品香港三级国产av潘金莲 | 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 亚洲国产欧美日韩在线播放| 国产亚洲欧美精品永久| 亚洲中文av在线| 少妇 在线观看| 七月丁香在线播放| 不卡视频在线观看欧美| 国产精品99久久99久久久不卡 | 国产精品国产av在线观看| 国产在视频线精品| 哪个播放器可以免费观看大片| 日韩欧美一区视频在线观看| 天天躁日日躁夜夜躁夜夜| 男人操女人黄网站| 人妻 亚洲 视频| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 久久天堂一区二区三区四区| av不卡在线播放| 亚洲av成人精品一二三区| 1024香蕉在线观看| 国产精品嫩草影院av在线观看| 人人妻人人澡人人看| 黄片小视频在线播放| 亚洲一区中文字幕在线| 99久久精品国产亚洲精品| 国产探花极品一区二区| 久热爱精品视频在线9| 少妇的丰满在线观看| 性高湖久久久久久久久免费观看| 青春草国产在线视频| 日韩av免费高清视频| 精品国产一区二区三区久久久樱花| 亚洲国产欧美日韩在线播放| 国产视频首页在线观看|