“慢性疼痛是一種疾病”這一觀念在社會(huì)和醫(yī)學(xué)界基本達(dá)成共識(shí)[1],尤其是慢性頑固性疼痛,成為一個(gè)廣受關(guān)注的社會(huì)和醫(yī)療難題。慢性頑固性疼痛指疼痛非常劇烈、持續(xù)時(shí)間很長(zhǎng)、難以忍受、藥物不能湊效甚至成癮者[2]。1967年Shealy等首先報(bào)道在脊髓后柱植入電極,使用脊髓電刺激(spinal cord stimulation,SCS)治療慢性頑固性疼痛。作為一種神經(jīng)調(diào)制療法,SCS具有微創(chuàng)、可調(diào)節(jié)性、并發(fā)癥少等優(yōu)點(diǎn),SCS已成為一種有效的長(zhǎng)期控制慢性疼痛的方法。臨床研究表明[3,4]SCS使患者獲得滿意的疼痛緩解,改善其身體機(jī)能,提高其生活質(zhì)量,經(jīng)濟(jì)效益優(yōu)于其他療法。但SCS只能在一定程度上緩解疼痛,仍有部分患者經(jīng)治療后無效,進(jìn)一步提高其療效需要對(duì)其作用機(jī)制進(jìn)行深入研究。SCS作用機(jī)制涉及神經(jīng)電生理和神經(jīng)遞質(zhì)機(jī)制。SCS刺激脊髓后柱并激活中間神經(jīng)元,這些神經(jīng)元釋放抑制性神經(jīng)遞質(zhì)抑制興奮性氨基酸的釋放,抑制感受傷害性刺激的神經(jīng)元,激活高級(jí)中樞下行疼痛抑制通路。在SCS過程中及之后一段時(shí)間中樞神經(jīng)系統(tǒng)內(nèi)神經(jīng)遞質(zhì)含量發(fā)生變化,這些遞質(zhì)包括γ-氨基丁酸,乙酰膽堿(acetylcholine,Ach),5-羥色胺等,最終導(dǎo)致疼痛持久地緩解。
1965年Melzack和Wall[5]提出疼痛的閘門控制理論,認(rèn)為節(jié)段性調(diào)制的神經(jīng)網(wǎng)絡(luò)由初級(jí)傳入A類和C類纖維、脊髓后角投射神經(jīng)元(T細(xì)胞)和膠狀質(zhì)區(qū)抑制性中間神經(jīng)元(substantia gelatinosa,SG)組成,其中SG起關(guān)鍵的閘門作用。小直徑細(xì)纖維(C類和Aδ纖維)傳入沖動(dòng)抑制SG,使閘門打開,疼痛信號(hào)傳入中樞,產(chǎn)生痛覺;大直徑的粗纖維(Aβ纖維)傳入沖動(dòng)興奮SG,閘門關(guān)閉,阻止疼痛信號(hào)的神經(jīng)傳導(dǎo)。由于粗纖維受周圍神經(jīng)元調(diào)控的閾值較低,所以粗纖維易被激活,并抑制細(xì)纖維的沖動(dòng)傳入。這為SCS選擇性興奮粗纖維治療疼痛提供了可能。
Roberts等[6]發(fā)現(xiàn) SCS 作用于脊髓后柱(dorsal column,DC)可激活頂蓋前區(qū)前核(anterior pretectal nucleus,AptN),從而長(zhǎng)效抑制脊髓后角傷害感受性神經(jīng)元,即在電刺激終止后,抑制作用仍可持續(xù)一段時(shí)間。損傷大鼠DC,SCS作用被廢止;而在DC刺激水平以上橫斷脊髓背外側(cè)束,當(dāng)刺激終止后,抑制作用立即消失。近來研究證明[7]中樞內(nèi)存在一個(gè)重要的痛覺調(diào)制通路,即“DC-APtN-中腦深部網(wǎng)狀結(jié)構(gòu)-腦橋-延髓外側(cè)-脊髓的多突觸通路”,并由5-HT、ACh、阿片肽、NE等遞質(zhì)及其受體參與。
對(duì)于神經(jīng)病理性疼痛,在脊髓節(jié)段內(nèi)水平,SCS刺激后柱Aβ纖維激活SG,導(dǎo)致脊髓深層(板層Ⅳ和Ⅴ)感受傷害性刺激的神經(jīng)元受到抑制;在脊髓上水平,SCS刺激后柱順行激活大腦(包括皮質(zhì)、丘腦感覺核團(tuán)和腦干),由大腦發(fā)出疼痛抑制信號(hào)激活下行疼痛抑制通路。
對(duì)于缺血性疼痛,是由于缺血引起周圍組織受到傷害感受性刺激。研究發(fā)現(xiàn)[8]SCS引起類似血管舒張的效應(yīng),使局部組織血流增加從而改善其氧供需平衡。這一效應(yīng)作用途徑包括兩方面:①逆行激活脊髓后根或周圍神經(jīng)纖維,向外周釋放血管舒張因子,如前列腺素,降鈣素基因相關(guān)肽(calcitonin gene related peptide,CGRP)等;②激活神經(jīng)節(jié)煙堿受體或神經(jīng)連接處Ⅱ1腎上腺素受體,改變自主神經(jīng)系統(tǒng)功能,抑制交感縮血管神經(jīng)活性引起血管舒張。
除了SCS刺激期間,在電刺激終止后鎮(zhèn)痛作用仍可持續(xù)一段時(shí)間,提示SCS可能通過促進(jìn)化學(xué)物質(zhì)的釋放,引起神經(jīng)元興奮性長(zhǎng)時(shí)間的改變,持久地抑制疼痛信號(hào)傳入。
2.1 γ-氨基丁酸(GABA)能機(jī)制 GABA受體主要位于脊髓后角RexqⅠ~Ⅲ層,激活后產(chǎn)生突觸前和突觸后抑制效應(yīng),調(diào)節(jié)興奮性神經(jīng)遞質(zhì)的釋放,抑制傷害性信息的傳遞。SCS可促進(jìn)GABA釋放,增加脊髓后角GABA濃度[9]。GABA抑制劑荷苞牡丹堿可拮抗SCS作用效果。神經(jīng)病理性疼痛模型動(dòng)物脊髓后角GABA免疫活性及濃度均下降,鞘內(nèi)注射GABAb受體激動(dòng)劑巴氯芬可以有效地抑制觸誘發(fā)痛。對(duì)SCS無反應(yīng)的坐骨神經(jīng)損傷大鼠,同時(shí)給予低劑量的巴氯芬(單獨(dú)使用無效)可增強(qiáng) SCS 的作用,且具有劑量依賴性[10,11]。
GABA能機(jī)制涉及脊髓上和脊髓節(jié)段內(nèi)GABA的釋放。研究[12]發(fā)現(xiàn)SCS可誘導(dǎo)導(dǎo)水管周圍灰質(zhì)釋放GABA。一些脊髓上結(jié)構(gòu)如導(dǎo)水管周圍灰質(zhì)含有豐富的GABA且主要位于中間神經(jīng)元,這些中間神經(jīng)元可調(diào)節(jié)下行投射纖維的活性,從而抑制疼痛信號(hào)傳遞。另外,研究[13]發(fā)現(xiàn)脊髓后角GABA延遲釋放,即GABA濃度峰值在電刺激之后才出現(xiàn),這與P物質(zhì)和血清素不同,而此二者在刺激期間即迅速釋放。提示SCS通過一個(gè)中間過程間接誘導(dǎo)其釋放,P物質(zhì)和血清素可能促進(jìn)其釋放。
2.2 膽堿能機(jī)制 脊髓膽堿能中間神經(jīng)元主要位于脊髓后角RexⅢ~Ⅴ層,其次位于RexⅠ~Ⅱ?qū)?。傷害性刺激可激活延髓和脊髓下行去甲腎上腺素能抑制通路,引起脊髓乙酰膽堿釋放增加,Ach激活M受體及部分N受體,產(chǎn)生鎮(zhèn)痛作用[14]。鞘內(nèi)應(yīng)用α2腎上腺素能受體激動(dòng)劑可樂定通過作用于脊髓膽堿能中間神經(jīng)元,促進(jìn)Ach釋放,從而增加SCS的作用效果[11,15],而這一作用可被M受體拮抗劑逆轉(zhuǎn)。免疫組織化學(xué)和放射自顯影顯示大鼠和人的脊髓后角表層含有高濃度的M1、M2、M3、M4受體[14]。目前對(duì)于不同的 Ach受體所起的作用仍存有爭(zhēng)議。多數(shù)學(xué)者認(rèn)為M受體起關(guān)鍵作用,M受體激動(dòng)介導(dǎo)神經(jīng)細(xì)胞內(nèi)Ca2+升高,增加神經(jīng)元NO合成酶活性,使NO合成、釋放增多,參與疼痛調(diào)節(jié)[16];而神經(jīng)節(jié)N受體在周圍血管舒張中起重要作用[17]。
Schechtmann等[18]發(fā)現(xiàn)部分結(jié)扎大鼠一側(cè)坐骨神經(jīng)后,實(shí)驗(yàn)組大鼠脊髓后角Ach濃度顯著低于正常大鼠,對(duì)SCS有反應(yīng)的大鼠在電刺激之后Ach濃度明顯上升,而對(duì)SCS無反應(yīng)的大鼠則無明顯變化,提示SCS可促進(jìn)脊髓后角釋放Ach從而緩解疼痛。該實(shí)驗(yàn)還發(fā)現(xiàn)M4受體拮抗劑和阿托品能完全阻斷SCS作用,M1和M2受體拮抗劑只能部分減弱其作用,N受體拮抗劑對(duì)SCS無影響。
SCS促進(jìn)Ach釋放并作用于Ach受體,通過二種途徑抑制興奮性氨基酸的釋放:①間接途徑,激活突觸后M受體(主要是M2和M4受體),這些受體位于脊髓后角GABA能中間神經(jīng)元[19]。活化的中間神經(jīng)元釋放GABA,與突觸前膜受體結(jié)合,抑制突觸前傳入纖維末梢釋放谷氨酸[20]。表明脊髓膽堿能系統(tǒng)和GABA能系統(tǒng)之間存在功能聯(lián)系。②直接途徑,激活突觸前膜M受體直接抑制初級(jí)傳入纖維釋放谷氨酸,抑制初級(jí)傳入纖維興奮后角神經(jīng)元[18]。脊髓后角興奮性氨基酸(谷氨酸和天門冬氨酸)是傳遞傷害感受性信息的主要神經(jīng)遞質(zhì)。定量分析發(fā)現(xiàn)周圍神經(jīng)受損大鼠脊髓后角興奮性氨基酸水平顯著升高,在SCS期間興奮性氨基酸濃度迅速下降[21],而選擇性的GABAb受體阻滯劑可拮抗這一效應(yīng),提示間接途徑在SCS抑制興奮性氨基酸的釋放中發(fā)揮重要作用。
2.3 5-羥色胺機(jī)制 脊髓背側(cè)、腹側(cè)和中間部分存在5-羥色胺(5-hydroxytryptamine,5-HT)能下行傳導(dǎo)通路[22]。其中背側(cè)通路在調(diào)節(jié)傷害性感受中發(fā)揮重要作用。背側(cè)通路的神經(jīng)元主要起源于中縫大核尾側(cè)、巨細(xì)胞網(wǎng)狀核Ⅱ部和旁巨細(xì)胞外側(cè)核,這些神經(jīng)元發(fā)出投射纖維走行于脊髓背外側(cè)束并終止于后角[23]。電刺激腦干神經(jīng)核團(tuán)、脊髓背外側(cè)束或周圍神經(jīng)可激活5-羥色胺能下行通路,增加5-HT的釋放,抑制脊髓傷害感受性反射或減弱脊髓傷害性信息傳遞[24]。
Song等[25]證實(shí)5-HT在SCS鎮(zhèn)痛機(jī)制中起重要作用。作者將大鼠坐骨神經(jīng)部分結(jié)扎建立疼痛模型,發(fā)現(xiàn)對(duì)SCS有反應(yīng)的大鼠脊髓后角中5-HT濃度顯著增加,對(duì)SCS無反應(yīng)的大鼠5-HT濃度則沒有變化。模型組大鼠脊髓后角表層中5-HT免疫活性陽(yáng)性的軸突末梢顯著減少,而對(duì)SCS有反應(yīng)的大鼠在SCS刺激后5-HT陽(yáng)性末梢的數(shù)量增加并趨于正常。提示周圍神經(jīng)損傷引起的疼痛與5-HT陽(yáng)性纖維減少,即痛覺抑制功能缺陷有關(guān),SCS可促進(jìn)脊髓后角釋放5-HT,從而抑制疼痛信號(hào)傳入。
5-HT能和GABA能系統(tǒng)之間相互作用發(fā)揮抗傷害感受作用[26]。對(duì)SCS無反應(yīng)的大鼠,低劑量外源性5-HT可增強(qiáng)SCS的作用,GABA受體拮抗劑部分逆轉(zhuǎn)這一作用。研究發(fā)現(xiàn)存在多種并行的5-HT調(diào)節(jié)活化模式,如活化突觸前5-HT3受體,從而激活脊髓GABA能抑制系統(tǒng);或激活突觸后5-HT1和5-HT2受體,直接誘導(dǎo)神經(jīng)元去極化,降低其興奮性[27,28]。
2.4 其他神經(jīng)化學(xué)物質(zhì) SCS作用機(jī)制還涉及辣椒素(capsaicin)、c-fos、P 物質(zhì)等。研究[29]發(fā)現(xiàn)辣椒素敏感性感覺神經(jīng)元在SCS舒張血管效應(yīng)中發(fā)揮重要作用。SCS逆行激活辣椒素敏感性感覺神經(jīng)元,釋放神經(jīng)肽如CGRP,引起血管舒張,增加局部組織血流,緩解周圍血管性疾病引起的疼痛。L3~L5背根神經(jīng)切斷減弱SCS引起的大鼠后足血管舒張,而此血管舒張效應(yīng)也可被CGRP受體拮抗劑廢除。辣椒素類似物(resiniferotoxin,RTX),可使辣椒素敏感性感覺神經(jīng)元脫敏和退化。靜脈注射RTX減弱SCS誘導(dǎo)的舒血管效應(yīng)。Smits等[30]發(fā)現(xiàn)與對(duì)照組相比,SCS引起大鼠脊髓后角c-fos基因表達(dá)產(chǎn)物增加,c-fos蛋白通過一系列信號(hào)傳導(dǎo)長(zhǎng)久地調(diào)節(jié)脊髓處理疼痛信號(hào),提示SCS通過早期基因調(diào)控導(dǎo)致長(zhǎng)期的中樞神經(jīng)系統(tǒng)化學(xué)物質(zhì)改變,促進(jìn)GABA的釋放,抑制興奮性氨基酸的釋放,從而持久地產(chǎn)生疼痛緩解。Ding等[31]短暫性阻塞大鼠冠狀動(dòng)脈后發(fā)現(xiàn)脊髓內(nèi)編碼P物質(zhì)的mRNA含量明顯升高,SCS后P物質(zhì)表達(dá)水平明顯下降。
神經(jīng)調(diào)制技術(shù)具有安全、可逆性和可調(diào)節(jié)性等突出優(yōu)點(diǎn),已經(jīng)成為當(dāng)今臨床疼痛領(lǐng)域里一項(xiàng)重要鎮(zhèn)痛技術(shù)。但對(duì)其確切機(jī)制目前尚未完全闡明,有待進(jìn)一步從電生理和分子水平深入研究并給出明確解釋。疼痛是由體內(nèi)外傷害性刺激引起的一種復(fù)雜的心理生物學(xué)過程,伴隨對(duì)疼痛的解剖生理學(xué)和痛覺調(diào)制機(jī)制的不斷揭示,在此基礎(chǔ)上進(jìn)行準(zhǔn)確的脊髓電刺激,使SCS獲得更高的成功率,其研究和應(yīng)用前景將更加廣闊。
[1]江偉.慢性疼痛的治療進(jìn)展[J].上海醫(yī)學(xué),2007,30(6):396-398.
[2]高翔,江澄川.頑固性疼痛的外科治療[M]//周良輔.現(xiàn)代神經(jīng)外科學(xué).上海:復(fù)旦大學(xué)出版社,2001:1047.
[3]Kumar K,Taylor RS,Jacques L,et al.The effects of spinal cord stimulation in meuropathic pain are sustained:A 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation[J].Neurosurgery,2008,63(4):762-770.
[4]Taylor RS,Ryan J,O’Donnell R,et al.The cost-effectiveness of spinal cord stimulation in the treatment of failed back surgery syndrome[J].The Clinical journal of pain,2010,26(6):463-469.
[5]Melzack R,Wall PD.Pain mechanisms: A new theory [J].Science,1965,150(699):971-979.
[6]Roberts MHT,Rees H.Physiological basis of spinal cord stimu lation[J].Pain Rev,1994,1(3):184-198.
[7]Guan Y. Spinal cord stimulation:Neurophysiological and neurochemical mechanisms of action[J].Current Pain and Headache Reports,2012,16(2):170-179.
[8]Foletti A,Durrer A,Buchser E.Neurostimulation technology for the treatment of chronic pain:A focus on spinal cord stimulation [J].Expert Review of Medical Devices,2007,4(2): 201-214.
[9]Oosten E,Janssen S,Gerrard S,et al.The pain-relieving effect of SCS and the induction of the release of spinal dorsal horn intracellular GABA[J].Pain Practice,2012,12(S1):15.
[10]Lind G,Schechtmann G,Winter J,et al.Baclofen-enhanced spinalcord stimulation and intrathecalbacl ofen alonefor neuropathic pain:Long-term outcome of a pilot study [J].European Journal of Pain,2008,12(1):132-136.
[11]Schechtmann G,Lind G,Winter J,et al.Intrathecal clonidine and baclofen enhance the pain-relieving effect of spinal cord stimulation:A comparative placebo-controlled,randomized trial[J].Neurosurgery,2010,67(1):173-181.
[12]Stiller CO,Linderoth B,O'Connor WT,et al.Repeated spinal cord stimulation decreases the extracellular level of [gamma]-aminobutyric acid in the periaqueductal gray matter of freely moving rats[J].Brain research,1995,699(2):231-241.
[13]Janssen SP,Gerard S,Raijmakers ME,et al. Decreased intracellular GABA levels contribute to spinal cord stimulationinduced analgesia in rats suffering from painful peripheral neuropathy:The role of KCC2 and GABAA receptor-mediated inhibition[J].Neurochemistry International,2012,60(1):21-30.
[14]Zhang HM,Li DP,Chen SR,et al.M2,M3,and M4 receptor subtypes contribute to muscarinic potentiation of GABAergic inputs to spinal dorsal horn neurons[J].J Pharmacol Exp Ther,2005,313(2):697-704.
[15]Kang YJ,Eisenach JC.Intrathecal clonidine reduces hypersensitivity after nerve injury by a mechanism involving spinal m4 muscarinic receptors[J].Anesth Analg,2003,96(5):1403 -1408.
[16]Song ZY,Meyerson BA,Linderoth B.Muscarinic receptor activation potentiates the effect of spinal cord stimulation on pain-related behavior in rats with mononeuropathy[J].Neuroscience Letters,2008,436(1):7-12.
[17]Xu Z,Chen SR,Eisenach J,et al.Role of spinal muscarinic and nicotinic receptors in clonidine-induced nitric oxide release in a rat model of neuropathic pain[J].Brain Res,2000,861(2):390-398.
[18]Schechtmann G,Song ZY,Ultenius C,et al.Cholinergic mechanisms involved in the pain relieving effect of spinal cord stimulation in a model of neuropathy[J].Pain,2008,139(1):136-145.
[19]Zhang HM,Chen SR,Cai YQ,et al.Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord [J].Neuroscience,2009,158(4):1577-1588.
[20]Chen SR,Pan HL.Spinal GABAB receptors mediate antinociceptive actions of cholinergic agents in normal and diabetic rats[J].Brain Res,2003,965(1):67-74.
[21]Cui JG,O’Connor WT,Ungerstedt U,et al.Spinal cord stimulation attenuates augmented dorsal horn release of excitatory amino acids in mononeuropathy via a GABAergic mechanism[J].Pain,1997,73(1):87-95.
[22]Braz JM,Enquist LW,Basbaum AI.Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing[J].J Comp Neurol,2009,514(2):145-160.
[23]Lopez-Garcia JA.Serotonergic modulation of spinal sensory circuits[J].Curr Top Med Chem,2006,6(18):1987-1996.
[24]Song ZY,Meyerson BA,Linderoth B.Spinal 5-HT receptors that contribute to the pain-relieving effects of spinal cord stimulation in a rat model of neuropathy[J].Pain,2011,152(7):1666-1673.
[25]Song ZY,Ultenius C,Meyerson BA,et al.Pain relief by spinal cord stimulation involves serotonergic mechanisms:An experimental study in a rat model of mononeuropathy[J].Pain,2009,147(3):241-248.
[26]Furst S.Transmitters involved in antinociception in the spinal cord[J].Brain Res Bull,1999,48(2):129-141.
[27]Linderoth B,Song Z,Meyerson BA.Subtypes of spinal 5-HT receptors participating in the pain relieving effect of spinal cord stimulation Animal studies[J].Neuromodulation,2011,14(5):456.
[28]González-Hernández A,Manrique-Maldonado G,Lozano-Cuenca J,et al.The 5-HT1 receptors inhibiting the rat vasodepressor sensory CGRPergic outflow:Further involvement of 5-HT1F,but not 5-HT1A or 5-HT1D,subtypes[J].European Journal of Pharmacology,2011,659(2-3):233-243.
[29]Wu MY,Naoka Komori,Chao Q,et al. Sensory fibers containing vanilloid receptor-1(VR-1)mediate spinal cord stimulation-induced vasodilation[J].Brain Res,2006,1107(2):178-182.
[30]Smits H,Kleef MV,Honig W,et al.Spinal cord stimulation induces c-Fos expression in the dorsal horn in rats with neuropathic pain after partial sciatic nerve injury[J].Neuroscience Letters,2009,450(1):70-73.
[31]Ding XH,Mountain DJH,Subramanian V,et al.The effect of high cervical spinal cord stimulation on the expression of SP,NK-1 and TRPV1 mRNAsduring cardiac ischemia in rat [J].Neuroscience Letters,2007,424(2):139-144.