謝 海 綜述,趙建農(nóng),陳 勇 審校
(1.海南醫(yī)學(xué)院附屬醫(yī)院麻醉科,海南 ???570102;2.海南省人民醫(yī)院神經(jīng)外科,海南 ???570311;3.海南省人民醫(yī)院麻醉科,海南 ???570311)
肝內(nèi)血管分布廣泛復(fù)雜,肝葉切除術(shù)中大量出血一直是手術(shù)面臨的主要問題。大量出血可導(dǎo)致血流動(dòng)力學(xué)不穩(wěn)定,增加并發(fā)癥的發(fā)生率和手術(shù)麻醉風(fēng)險(xiǎn)。而大量輸血可增加傳染性疾病、凝血功能障礙等的發(fā)生率,抑制人體免疫功能導(dǎo)致術(shù)后腫瘤的早期復(fù)發(fā)[1-2]。因此如何減少失血量的方法一直是肝切除手術(shù)的一個(gè)重要研究方向。
近年來(lái)國(guó)內(nèi)外一些有關(guān)降低中心靜脈壓減少肝切除術(shù)中的出血量的研究逐漸增多[3-9],其理論基礎(chǔ)可能是:在行肝葉切除時(shí),阻斷肝門后,肝靜脈、肝竇成為切除肝實(shí)質(zhì)過程中主要的出血因素,肝靜脈和肝竇壓力大小直接決定了出血量的多少,肝靜脈壓力又受到下腔靜脈壓(IVCP)壓力的影響,降低IVCP可降低肝靜脈壓力減少出血,而IVCP與中心靜脈壓(CVP)的壓力幾乎是一致的[10]。因此,可通過降低CVP達(dá)到降低IVCP的目的,最終降低肝靜脈和肝竇的壓力,使肝血管壁內(nèi)外壓力差和血管半徑都降低,最終能明顯減少患者術(shù)中的出血量。低中心靜脈壓(LCVP)技術(shù)除了能減少出血量,使無(wú)意損傷肝靜脈的大量出血更容易控制[11],還能縮短手術(shù)時(shí)間,減少并發(fā)癥發(fā)生,縮短術(shù)后住院時(shí)間[4-12]。目前LCVP是通過麻醉深度調(diào)節(jié)、降壓藥物控制、限制液體輸注等方法將CVP控制在≤5 cmH2O(1 cmH2O=0.133 kPa)的水平,這是通過LCVP應(yīng)用于肝葉切除手術(shù)中失血量的分析得出的[8,11,13-14]。Rees等[4]報(bào)道CVP控制于0~5 cmH2O的水平,很少會(huì)導(dǎo)致全身低血壓發(fā)生的情況。LCVP技術(shù)能夠應(yīng)用于臨床,在降低CVP的同時(shí)不降低動(dòng)脈血壓,不發(fā)生全身低血壓狀況,達(dá)到減少出血的目的。然而CVP作為心臟對(duì)回心血量的泵出能力的反映和右心房的前負(fù)荷的指標(biāo)有一定的局限性。首先,它是靜態(tài)的、通過壓力代容積方法間接反映心臟前負(fù)荷的指標(biāo),靜態(tài)血流動(dòng)力學(xué)監(jiān)測(cè)有較大的局限性,會(huì)帶來(lái)錯(cuò)誤的臨床決策[15];其次,CVP高低取決于心室順應(yīng)性、血容量、靜脈血管張力、胸腔內(nèi)壓、靜脈回流血量和肺循環(huán)阻力等因素,尤以靜脈回流血量與右室排血量之間的平衡關(guān)系最為重要。再次,CVP數(shù)值會(huì)受到手術(shù)體位、手術(shù)操作和機(jī)械通氣等因素的影響[16-17]。術(shù)中肝臟拉鉤對(duì)膈肌的牽拉使呼吸受限,胸腔壓力升高,CVP升高;手術(shù)過程中阻斷肝臟周圍血管靜脈回流減少,中心靜脈受壓扭轉(zhuǎn),回心血量減少,CVP降低等。總之,應(yīng)用LCVP技術(shù)減少肝葉切除術(shù)出血量時(shí),如果單純以CVP作為評(píng)判指標(biāo)可能會(huì)給臨床準(zhǔn)確判斷帶來(lái)困難,甚至導(dǎo)致臨床決策錯(cuò)誤。因此有必要尋找一種能輔助、聯(lián)合CVP的準(zhǔn)確容量監(jiān)測(cè)手段。
SVV是近年來(lái)預(yù)測(cè)機(jī)體對(duì)于液體治療反應(yīng)性的動(dòng)態(tài)的容量監(jiān)測(cè)指數(shù),通過計(jì)算CO所得,它能很好地反映患者的血容量狀況[18-23]。SVV是在一定時(shí)間(至少一個(gè)呼吸周期)內(nèi),每次心臟搏動(dòng)時(shí)的每搏量(SV),計(jì)算出它們?cè)谠摱螘r(shí)間內(nèi)的變異程度(以百分?jǐn)?shù)表示),以此預(yù)測(cè)心血管系統(tǒng)對(duì)液體負(fù)荷的反應(yīng)。機(jī)械通氣過程中呼吸對(duì)循環(huán)的影響是SVV的基礎(chǔ),通氣過程中隨著胸腔內(nèi)壓力反復(fù)增減的周期性增減變化,回心血量也隨之變化,所以導(dǎo)致左室每搏量也發(fā)生周期性增減改變。機(jī)械通氣吸氣相引起胸腔內(nèi)壓力增高,一方面肺靜脈毛細(xì)血管床內(nèi)大量血液被擠入左心室,左心室的血量此刻立即增加,SV上升,即肺靜脈系統(tǒng)血量輸出上升;另一方面肺靜脈血管床被擠壓,使肺血管阻力增加,腔靜脈回流受阻,即肺靜脈血量供給下降;輸出的上升和供給的下降,肺靜脈系統(tǒng)血量空虛,左心室在2~3個(gè)心動(dòng)周期后表現(xiàn)出SV的下降[24]。所以接受正壓機(jī)械通氣的患者,其左心室的每搏量會(huì)在吸氣相時(shí)增加到最大,呼氣相減少到最小,這種周期性變化反映了左室舒張末容積的大小,反映了血容量的多少。SV的最大值與最小值相差越大,說(shuō)明有效循環(huán)血量越不足,在此情況下,如果增加容量負(fù)荷,CO增加的程度就會(huì)更明顯。SVV能很好地反映患者的血容量狀況,是心臟前負(fù)荷反應(yīng)性的敏感指標(biāo)[25-26]。其計(jì)算公式為SVV=(SVmax-SVmin)/SVmean。SVV的正常參考值<13%,其數(shù)值越大,給予容量負(fù)荷后的CO增加得越多,表明有效血容量不足越明顯。如果SVV<13%,那么給予容量負(fù)荷后就很難出現(xiàn)CO的增加,應(yīng)避免輸入過多液體。許多文獻(xiàn)報(bào)道和其他傳統(tǒng)監(jiān)測(cè)指標(biāo)(HR、MAP、CVP、PAD、PAOP)相比,SVV有更高的敏感性與特異性[27-29]。其優(yōu)于心臟前負(fù)荷的靜態(tài)參數(shù),特別是對(duì)于優(yōu)化心輸出量、保證重要臟器血供更有優(yōu)勢(shì)[30]??傊?,SVV作為動(dòng)態(tài)的容量監(jiān)測(cè)指數(shù),能夠準(zhǔn)確地預(yù)測(cè)手術(shù)中心臟對(duì)容量負(fù)荷的反應(yīng)性及前負(fù)荷狀態(tài)。
臨床上目前用于連續(xù)監(jiān)測(cè)SVV的方法主要是動(dòng)脈壓力波形分析技術(shù),包括Flotrac/Vigileo系統(tǒng)和PiCCOplus系統(tǒng),具有微創(chuàng)、設(shè)置簡(jiǎn)單快速等特點(diǎn)。PiCCOplus系統(tǒng)計(jì)算CO是通過測(cè)量動(dòng)脈壓力波形收縮期部分的面積,并用主動(dòng)脈阻抗除以收縮期面積,得到相應(yīng)結(jié)果。兩者監(jiān)測(cè)SVV都是獲取單位時(shí)間內(nèi)的SV,通過公式SVV=(SVmax-SVmin)/SVmean計(jì)算所得。其中FloTrac/Vigileo系統(tǒng)(愛德華生命科學(xué)世界貿(mào)易公司)由FloTrac傳感器和Vigileo監(jiān)測(cè)儀組成,可以在無(wú)需校正,操作簡(jiǎn)單,微創(chuàng)的情況下為臨床醫(yī)生提供相關(guān)血流動(dòng)力學(xué)監(jiān)測(cè)指標(biāo)。其2005年開始用于臨床血流動(dòng)力學(xué)監(jiān)測(cè),運(yùn)用連接于動(dòng)脈壓力導(dǎo)管的Flo-Trac壓力傳感器,通過橈動(dòng)脈或股動(dòng)脈導(dǎo)管采集患者外周動(dòng)脈壓力波形,結(jié)合患者年齡、性別、身高、體重、體表面積運(yùn)算分析出血流動(dòng)力學(xué)指標(biāo)包括CO/Cl、SV/SVI、SVV、SVR/SVRI(結(jié)合 CVP 計(jì)算)[31]。相比“金標(biāo)準(zhǔn)”溫度稀釋法操作復(fù)雜,有創(chuàng)傷性,費(fèi)用昂貴、易引起并發(fā)癥等[32]不足,該法具有微創(chuàng)、自動(dòng)、連續(xù)、重復(fù)性好、操作簡(jiǎn)單、使用方便等優(yōu)點(diǎn),適用于手術(shù)室、ICU和急診室等地方。國(guó)外學(xué)者[22,33-35]通過Flotrac/Vigileo進(jìn)行的APCO監(jiān)測(cè)與溫度稀釋法PAC測(cè)心排量(CCO)進(jìn)行比較,結(jié)果顯示,兩種方法CO的監(jiān)測(cè)結(jié)果具有很好的相關(guān)性。當(dāng)然Flotrac/Vigileo系統(tǒng)有其局限性,它不適合監(jiān)測(cè)嚴(yán)重心律失?;颊吆陀邪昴ぜ膊〉幕颊遊36]。而SVV可以應(yīng)用于血管活性藥物治療下的監(jiān)測(cè)[37],但必須是機(jī)械通氣的患者,且潮氣量和PEEP不能過大[38-39],強(qiáng)烈的疼痛刺激對(duì)其有影響[40]。因此,在LCVP下肝葉切除術(shù)中,可以通過FloTrac/Vigileo心輸出量監(jiān)測(cè)儀監(jiān)測(cè)SVV的變化,同時(shí)監(jiān)測(cè) CO/Cl、SV/SVI和 SVR/SVRI,不但有連續(xù)監(jiān)測(cè)和反應(yīng)敏感的優(yōu)勢(shì),而且還能全面了解血流動(dòng)力學(xué)變化,是一種可行的、更安全有效的方法。
綜上所述,SVV是動(dòng)態(tài)的功能性指標(biāo),這種依靠循環(huán)系統(tǒng)對(duì)液體治療反應(yīng)判斷其容量狀態(tài)的功能性監(jiān)測(cè)方式可使LCVP減少肝葉切除術(shù)出血的臨床治療更為準(zhǔn)確、有效,患者更安全。所以,引入新指標(biāo)SVV,作為一種能輔助、聯(lián)合CVP的準(zhǔn)確容量監(jiān)測(cè)手段成為必要,將為臨床上輔助、聯(lián)合LCVP應(yīng)用于肝葉切除術(shù)減少出血提供了新的、更全面的、更安全的臨床思路。
[1] Yamamoto J,Kosuge T,Takayama T,et al.Perioperative blood transfusion promotes recurrence of hepatocellular carcinoma after hepatectomy[J].Surgery,1994,115(3):303-309.
[2]Li CH,Chau GY,Lui WY,et al.Risk factors associated with intraoperative major blood loss in patients with hepatocellular carcinoma who underwent hepatic resection[J].J Chin Med Assoc,2003,66(11):669-675.
[3]常業(yè)恬,曹德權(quán),陳艷平,等.控制性低中心靜脈壓應(yīng)用于肝葉切除患者的觀察[J].中華麻醉學(xué)雜志,2002,22(12):761-762.
[4]Rees M,Plant G,Wells J,et al.One hundred and fifty hepatic resections:evolution of technique towards bloodless surgery[J].Br J Surg,1996,83(11):1526-1529.
[5]Bhattacharya S,Jackson DJ,Beard CI,et al.Central venous pressure and its effects on blood loss during liver resection[J].Br J Surg,1999,86(2):282-283.
[6]McCallduct J,Koea J,Gunn K,et al.Liver resections in Auckland 1998-2001:mortality,morbidity and blood prouse[J].NZ Med J,2001,114:516-519.
[7]Eid EA,Sheta SA,Mansour E.Low central venous pressure anesthesia in major hepatic resection[J].Middle East J Anesthesiol,2005,18:367-377.
[8]Johnson M,Mannar R,Wu AV.Correlation between blood loss and inferior vena caval pressure during liver resection[J].Br J Surg,1998,85(2):188-190.
[9]Smyrniotis V,Kostopanagiotou G,Theodoraki K,et al.The role of central venous pressure and type of vascular control in blood loss during major liver resections[J].Am J Surg,2004,187(3):398-402.
[10]Walsh JT,Hildick-Smith DJ,Newell SA,et al.Comparison of central venous and inferior vena caval pressures[J].Am J Cardiol,2000,85(4):518-520.
[11]Jones RM,Moulton CE,Hardy KJ.Central venous pressure and its effect on blood loss during liver resection[J].Br J Surg,1998,85(8):1058-1060.
[12]Melendez JA,Arslan V,Fischer ME,et al.Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia:blood loss,blood transfusion,and the risk of postoperative renal dysfunction[J].JAm Coll Surg,1998,187(6):620-625.
[13]Cunningham JD,Fong Y,Shriver C,et al.One hundred consecutive hepatic resection:blood loss,transfusion,and operative technique[J].Arch Surg,1994,129(10):1050-1056.
[14]Wang WD,Liang LJ,Huang XQ,et al.Low central venous pressure reduces blood loss in hepatectomy[J].World J Gastroenterol,2006,12:935-939.
[15]Lichtwarck-Aschoff M,Zeravik J,Pfeiffer UJ.Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation[J].Intensive Care Med,1992,18:142-147.
[16]Marik PE,Baram M,Vahid B.Does central venous pressure predict fluid responsiveness?A systematic review of the literature and the tale of seven mares[J].Chest,2008,134:172-178.
[17]Weyland A,Grüne F.Cardiac preload and central venous pressure[J].Anaesthesist,2009,58:506-512.
[18]De Backer D.Stroke volume variations[J].Minerva Anestesiol,2003,69:285-288.
[19]Pinsky MR,Payen D.Functional hemodynamic monitoring[J].Crit Care,2005,9:566-572.
[20]Cavallaro F,Sandroni C,Antonelli M.Functional hemodynamic monitoring and dynamic indices of fluid responsiveness[J].MinervaAnestesiol,2008,74:123-135.
[21]Manecke GR,Auger WR.Cardiac output determination from thearterial pressure wave:clinical testing of a novel algorithm that does not require calibration[J].J Cardiothorac Vasc Anesth,2007,21:3-7.
[22]McGee WT,Horswell JL,Calderon J.Validation of a continuous cardiac output measurement using arterial pressure waveforms[J].Critical Care,2005,9:24-25.
[23]Manecke GR.Edwards FloTrac sensor and Vigileo monitor:easy,accurate,reliable cardiac output assessment using the arterial pulsewave[J].Expert Rev Med Devices,2005,2:523-527.
[24]Frédéric M,Jean LT.Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation[J].Crit Care,2000,4:282-289.
[25]Kobayashi M,Koh M,Irinoda T,et al.Stroke volume variation as a predictor of intravascular volume depression and possible hypotension during the early postoperative period after esophagectomy[J].Ann Surg Oncol,2009,16(5):1371-1377.
[26]Wiesenack C,Fiegl C,Keyser A,et al.Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients[J].Eur JAnaesthesiol,2005,22:658-665.
[27]Benington S,Ferris P,Nirmalan M.Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy[J].Eur JAnaesthesiol,2009,26(11):893-905.
[28]Marik PE,Cavallazzi R,Vasu T,et al.Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients:a systematic review of the literature[J].Crit Care Med,2009,37(9):2642-2647.
[29]劉松橋,邱海波,楊 毅,等.每搏輸出量變異度和胸腔內(nèi)血容量指數(shù)對(duì)失血性休克犬容量狀態(tài)的評(píng)價(jià)[J].中華外科雜志,2006,44(17):1216-1219.
[30]Wiesenack C,Fiegl C,Keyser A,et al.Assessment of fluid responsiveness in mechanically ventilated cardiac surgical patients[J].Eur JAnaesthesiol,2005,22:658-665.
[31]Pratt B,Roteliuk L,Hatib F,et al.Calculating arterial pressure-based cardiac output(APCO)using a novel measurement and analysis method[J].Biomed Instrum Technol,2007,41:403-411.
[32]Romano SM,Pistolesi M.Assessment of cardiac output from systemic arterial pressure in humans[J].Crit Care Med,2002,30:1834-1841.
[33]Cecconi M,Dawson D,Casaretti R,et al.prospective study of the accuracy and precision of continuous cardiac output monitoring devices as compared to intermittent thermodilution[J].Minerva Anestesiol,2010,76(12):1010-1017.
[34]Terada T,Usami A,Iwasaki R,et al.A pilot assessment of the Flo-Trac cardiac output monitoring system comparing with pulmonary artery catheter method by three versions[J].Masui,2009,58(11):1418-1423.
[35]Cannesson M,Attof Y,Rosamel P,et al.Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements[J].Eur JAnaesthesiol,2007,2 4(10):832-839.
[36]McGee WT,Horswell JL,Calderon J,et al.Validation of a continuous,arterial pressure-based cardiac output measurement:a multicenter,prospective clinical trial[J].Crit Care,2007,11:R105-107.
[37]Hadian M,Severyn DA,Pinsky MR.The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients[J].J Crit Care,2010,26(3):328.e1-8.
[38]Reuter DA,Bayerlein J,Goepfert MS,et al.Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients[J].Intensive Care Med,2003,29:476-480.
[39]da Silva Ramos FJ,de Oliveira EM,Park M,et al.Heart-lung interactions with different ventilatory settings during acute lung injury and hypovolaemia:an experimental study[J].Br J Anaesth,2011,106(3):394-402.
[40]Lorsomradee S,Lorsomradee S,Cromheecke S,et al.Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique:effects of alterations in arterial waveform[J].J Cardiothorac VascAnesth,2007,21(5):636-643.