安蕾,肖麗鵬
(江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西 南昌 330022)
一類復(fù)系數(shù)微分方程解的增長性
安蕾,肖麗鵬
(江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西 南昌 330022)
研究了一類系數(shù)是亞純函數(shù)的高階微分方程解的性質(zhì),假設(shè)其中某一個系數(shù)具有有限虧值,然后對其它的系數(shù)添加相應(yīng)的限制條件,使得方程的每一個非零亞純解都具有無窮級.
虧值;復(fù)系數(shù)微分方程;亞純函數(shù);無窮級
[1]楊樂.值分布論及其新研究[M].北京:科學(xué)出版社,1982.
[2]Yang C C,Yi H X.Uniqueness Theory of meromorphic functions[M].New York:Kluwer Academic Publishers, 2003.
[3]Gundersen G.Finite order solution of second order linear di ff erential equations[J].Trans.Amer.Math. Soc.,1988,305:415-429.
[4]Hellernstein S,Miles J,Rossi J.On the growth of solutions of f′′+gf′+hf=0[J].Trans.Amer.Math. Soc.,1991,324:693-705.
[5]Gundersen G.On the question of whether f′′+e-zf′+B(z)f=0 can admit a solution of fi nite order[J]. Proc.Roy.Soc.,1988,37:88-104.
[6]Hellenstein S,Miles J,Rossi J.On the growth of solutions of certain linear di ff erential equations[J].Ann. Acad.Sci.Fenn.Ser.A.I.Math.,1992,17:343-365.
[7]Kwon K,Kim J.Maximum modulus,characteristic,de fi ciency and growth of solutions of second order linear di ff erential equation[J].Kodai Math.J.,2001,24:344-351.
[8]Ozawa M.On a solution of ω′′+e-zω′+(az+b)ω=0[J].Kodai Math.J.,1980,3:295-309.
[9]Chen Z,Yang C.On the zero and hyper-order of meromorphic solutions of linear di ff erential equations[J]. Ann.Acad.Sci.Fenn.Math.,1999,24:215-224.
[10]Chen Z,Yang C.Some further results on the zero and growths of entire solutions of second order linear di ff erential equations[J].Kodai Math.J.,1999,22:273-285.
[11]Kwon K.On the growth of entire functions satisfying second order linear di ff erential equations[J].Bull. Korean Math.Soc.,1996,33:487-496.
[12]Kwon K.Nonexistence of fi nite order solutions of certain second order linear di ff erential equations[J].Kodai Math.J.,1996,19:378-387.
[13]Yang L.De fi cient values and angular distribution of entire functions[J].Amer.Math.Soc.,1988,308(2):583-601.
[14]Wu P C,Zhu J.On the growth of solutions of the complex di ff erential equation f′′+A(z)f′+B(z)f=0[J]. Sci.China Math.,2011,54(5):939-947.
[15]Gundersen G G.Estimates for the logarithmic derivative of a meromorphic function,plus similar estimates[J]. J.London.Math.Soc.,1988,37:88-104.
[16]Barry P D.Some theorems related to the theorem[J].Proc.London.Math.Soc.,1970,21:334-360.
[17]陳宗煊.一類二階整函數(shù)系數(shù)微分方程解的增長性[J].數(shù)學(xué)年刊,1999,20(1):7-14.
On the growth of solutions to the complex di ff erential equation
An Lei,Xiao Lipeng
(Institute of Mathematics and Information Science,Jiangxi Normal University,Nanchang 330022,China)
In this paper,we consider the higher order linear di ff erential equation with meromorphic coefficients. Assume one of these coefficients has a fi nite de fi cient value,then we will give some conditions on others which can guarantee that every meromorphic solution of the equation has in fi nite order.
de fi cient value,complex di ff erential equations,meromorphic function,in fi nite order
O174.52
A
1008-5513(2012)05-0659-09
2012-06-15.
國家自然科學(xué)基金(11126144,11171119);江西省教育廳青年科學(xué)基金(GJJ12207).
安蕾(1987-),碩士生,研究方向:復(fù)分析.
2010 MSC:30D35,34A20