吳 舟,張雙雙(綜述),陳 宏(審校)
(1.南方醫(yī)科大學(xué)第二臨床醫(yī)學(xué)院,廣州510282;2.南方醫(yī)科大學(xué)附屬珠江醫(yī)院內(nèi)分泌與代謝病科,廣州510282)
1型糖尿病(type 1 diabetes mellitus,T1DM)是一種由T細(xì)胞介導(dǎo)的自身免疫性疾病,以胰島β細(xì)胞被破壞為特征,從而引起血糖升高,既往曾稱為胰島素依賴型糖尿病[1]。治療T1DM的理想方法應(yīng)能保護(hù)殘存的胰島β細(xì)胞數(shù)量和功能,保護(hù)移植的胰島細(xì)胞不受自身免疫攻擊[2]。間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)是一類具有特殊免疫調(diào)節(jié)作用的干細(xì)胞,它可以產(chǎn)生一系列細(xì)胞因子,作用于抗原呈遞細(xì)胞、T細(xì)胞和自然殺傷細(xì)胞等免疫細(xì)胞而抑制機(jī)體免疫功能的發(fā)揮[3]。目前已證明,MSCs在同種異基因胰島移植中可抑制異體免疫反應(yīng),減輕移植相關(guān)的排斥反應(yīng),并明顯延長胰島的存活期[4]。MSCs成為廣為關(guān)注的有可能在抗移植排斥和自身免疫性疾病治療中最有應(yīng)用潛能的工具細(xì)胞[5-6]。有大量旨在闡明MSCs治療T1DM中作用機(jī)制的實(shí)驗(yàn)研究先后開展,相應(yīng)地提出了多個(gè)假說?,F(xiàn)就近來報(bào)道的關(guān)于MSCs治療T1DM免疫調(diào)節(jié)機(jī)制的相關(guān)文獻(xiàn)進(jìn)行簡要綜述。
T淋巴細(xì)胞對(duì)胰島的浸潤和破壞是T1DM發(fā)病的中心環(huán)節(jié),MSC可以通過抑制T細(xì)胞的活化和增殖來抑制T細(xì)胞參與的β細(xì)胞破壞的自身免疫過程。Madec等[7]研究發(fā)現(xiàn)可能是因?yàn)镸SCs能更早地遷移到胰淋巴結(jié)內(nèi),阻止致病性的T細(xì)胞進(jìn)入胰島,從而阻止糖尿病的發(fā)生。MSCs的遷移能夠阻止致病性的T細(xì)胞減少調(diào)節(jié)性T細(xì)胞(regulatory T cells,Tregs)的數(shù)量,抑制胰島素增殖和自體移植物引起的反應(yīng)。并且MSCs能誘導(dǎo)分泌白細(xì)胞介素 (interleukin,IL)-10的FOXP3+T細(xì)胞的產(chǎn)生。Urbán等[8]在糖尿病鼠的研究結(jié)果強(qiáng)烈提示,MSCs能抑制T細(xì)胞對(duì)新形成的β細(xì)胞介導(dǎo)的免疫反應(yīng),使其周圍免疫環(huán)境改變時(shí)β細(xì)胞得以存活,從而阻止T1DM的發(fā)展。MSC抑制T細(xì)胞的活化與增殖可能通過多種方式來實(shí)現(xiàn),如通過釋放細(xì)胞因子來間接或直接調(diào)控T細(xì)胞相關(guān)性受體或配體,以及經(jīng)與靶細(xì)胞相互間接觸來抑制T細(xì)胞活化與增殖。
目前體外實(shí)驗(yàn)已證實(shí)MSC通過分泌免疫抑制因子,如肝細(xì)胞因子、轉(zhuǎn)化生長因子β1、吲哚胺2,3-過氧化酶(indoleamine 2,3,dioxygenase,IDO)、一氧化氮[9]、地諾前列酮[10]、IL-10發(fā)揮抑制T淋巴細(xì)胞增殖的作用。MSC可通過活化的T細(xì)胞分泌的干擾素γ (interferon,IFN-γ)正性調(diào)節(jié)MSC分泌的IDO,從而達(dá)到抑制T細(xì)胞增殖的目的。MSC還能通過分泌基質(zhì)金屬蛋白酶來抑制T細(xì)胞增殖[11]?;|(zhì)金屬蛋白酶能裂解T細(xì)胞胞外白細(xì)胞介素2受體α(IL-2 receptor α,IL-2Rα),使IL-2的生成減少,從而抑制T細(xì)胞活化[12]。
目前認(rèn)為Th1/Th2細(xì)胞功能失衡是T1DM發(fā)病機(jī)制的重要因素,Th1細(xì)胞及其分泌的IFN-γ、IL-2、腫瘤壞死因子(tumor necrosis factor,TNF)β等細(xì)胞因子對(duì)胰島β細(xì)胞具有損傷作用,Th2細(xì)胞及其分泌的IL-4、IL-5、IL-6、IL-10等細(xì)胞因子具有保護(hù)作用。這兩種細(xì)胞通過所分泌的細(xì)胞因子相互制約,處于動(dòng)態(tài)平衡狀態(tài)。對(duì)于T1DM患者來說,若體內(nèi)Th1/ Th2細(xì)胞群功能失衡,前者強(qiáng)于后者,會(huì)導(dǎo)致胰島β細(xì)胞的損傷,胰島素的缺乏。
近來證實(shí)MSCs可以分泌細(xì)胞因子誘導(dǎo)Th1/ Th2細(xì)胞群的失平衡,使其向具有抗炎性反應(yīng)的Th2細(xì)胞群轉(zhuǎn)化[13]。它可以抑制Th1細(xì)胞產(chǎn)生的細(xì)胞因子的表達(dá)和上調(diào)Th2產(chǎn)生的細(xì)胞因子的表達(dá)。靜脈滴注MSCs引起Th1分泌細(xì)胞因子減少,特別是IFN-γ和TNF-α;MSCs通過促進(jìn)IL-10的分泌,抑制Th1和自然殺傷細(xì)胞釋放 IFN-γ,促進(jìn) Th2分泌 IL-4[10]。Fiorina等[14]將BALB/c-MSC小鼠和NOD小鼠作為對(duì)照,發(fā)現(xiàn)前者能表達(dá)更高水平的負(fù)性PD-L1分子,以此可以促進(jìn)向Th2細(xì)胞群的轉(zhuǎn)化,而且來自NOD小鼠的MSCs可以阻止處在糖尿病前期的小鼠發(fā)展為糖尿病。
Tregs是T細(xì)胞的一種特殊亞群,能表達(dá)轉(zhuǎn)錄因子FOXP3[15]和抑制自身反應(yīng)性T細(xì)胞[16],降低免疫反應(yīng),從而調(diào)控自身免疫性疾病,對(duì)維持內(nèi)環(huán)境穩(wěn)定和自我免疫耐受有著重要作用。在T1DM患者和NOD小鼠模型的研究都表明,數(shù)量降低和功能異常的Tregs都與T1DM的發(fā)病原因密切相關(guān)[17-18]。
Di等[18]發(fā)現(xiàn) MSC通過下調(diào)能抑制 FOXP3的CD127分子,以促進(jìn)FOXP3表達(dá),進(jìn)而募集Tregs、調(diào)節(jié)并維持Tregs的表型和功能,從而達(dá)到免疫抑制功能。自體來源的大鼠骨髓MSC移植不僅可以促進(jìn)胰島中胰島素的分泌,還能促進(jìn)外周T細(xì)胞分泌IL-10,增加外周血中的的數(shù)量,從而維持血糖穩(wěn)定較長時(shí)間[19]。Prevosto等[20]認(rèn)為Tregs可以放大MSC的免疫抑制作用。Patel等[21]證實(shí)在BMSCs與外周血單核細(xì)胞共培養(yǎng)體系中,BMSCs分泌的轉(zhuǎn)化生長因子β1能增加Tregs的數(shù)量。MSC能通過分泌IDO來促進(jìn)Tregs生成,因?yàn)镮DO能促進(jìn)Tregs的產(chǎn)生[22]。
B淋巴細(xì)胞、DC等免疫活性細(xì)胞在T1DM的發(fā)病機(jī)制中同樣發(fā)揮重要作用。B細(xì)胞侵入胰島并發(fā)揮抗原呈遞細(xì)胞的作用,聚集其他免疫活性細(xì)胞至胰島并分泌腫瘤壞死因子及其他炎性因子還有自身抗體,從而直接導(dǎo)致胰島細(xì)胞的破壞。DC抑制T1DM的發(fā)生需要表達(dá)糖尿病特異性抗原[23-24]。DC能分泌TNF-α等細(xì)胞因子促進(jìn)胰島炎性反應(yīng),同時(shí)也發(fā)揮抗原呈遞的作用。胰島細(xì)胞TNF-α表達(dá)的上調(diào)可以導(dǎo)致NOD小鼠T1DM的發(fā)生和發(fā)展[25]。
MSC分泌多種因子與B細(xì)胞、DC細(xì)胞等免疫活性細(xì)胞相互作用,形成一種相互交錯(cuò)的復(fù)雜關(guān)系,發(fā)揮其免疫調(diào)節(jié)作用。Abdi等[26]認(rèn)為MSCs不僅可以調(diào)控DC的功能從而間接控制糖尿病的發(fā)生,還可以調(diào)節(jié)T細(xì)胞功能,糾正B淋巴細(xì)胞和自然殺傷細(xì)胞的功能異常。
Steptoe等[27]將表達(dá)自身抗原的未成熟DC轉(zhuǎn)移給NOD鼠,其T1DM被阻止。MSC不僅可以抑制單核細(xì)胞分化為DC,還可以通過降低CD83表達(dá)和調(diào)節(jié)細(xì)胞因子來抑制DC的成熟,如TNF-α下調(diào)和IL-10上調(diào)等。Glennie等[28]發(fā)現(xiàn)MSCs能通過產(chǎn)生轉(zhuǎn)化生長因子β下調(diào)或阻斷IL-7來抑制B細(xì)胞的增殖分化。Corcione等[29]研究也發(fā)現(xiàn)MSCs有抑制B細(xì)胞的作用,主要通過使B淋巴細(xì)胞停留在G0/G1期來抑制其增殖。此外,當(dāng)MSCs與B淋巴細(xì)胞共培養(yǎng)時(shí),B淋巴細(xì)胞產(chǎn)生的IgM、IgG和IgA明顯下降。
各種淋巴細(xì)胞及DC細(xì)胞對(duì)T1DM胰島炎的發(fā)生和胰島β細(xì)胞損傷起著不同的作用,而MSC能抑制T細(xì)胞和B細(xì)胞增殖活化、平衡Th1/Th2細(xì)胞群、誘導(dǎo)Tregs產(chǎn)生、抑制樹突狀細(xì)胞成熟,在誘導(dǎo)免疫耐受等方面可能對(duì)T1DM可以起到有效積極的預(yù)防和治療作用。
然而,盡管 MSCs顯示出抗移植排斥和治療T1DM的巨大潛能,但目前MSCs在誘導(dǎo)機(jī)體免疫耐受的理論仍不成熟,很多結(jié)論尚停留在推論的范疇,對(duì)MSCs的研究仍處于實(shí)驗(yàn)研究階段,需要大規(guī)模的樣本驗(yàn)證,離臨床應(yīng)用還有很長一段距離。此外,因?yàn)閷?shí)驗(yàn)條件及MSCs的來源不同,MSCs對(duì)各種免疫細(xì)胞的抑制作用可能得出不同的結(jié)論,細(xì)胞治療國際協(xié)會(huì)對(duì)人類MSCs的來源提出了基本標(biāo)準(zhǔn),日后相關(guān)的研究應(yīng)當(dāng)遵循指導(dǎo)方針[30]。但是MSCs針對(duì)T1DM發(fā)病原因提供了治療方案,如果能明確MSCs的免疫抑制機(jī)制,并與臨床研究相結(jié)合運(yùn)用,相信MSCs可以為T1DM治療帶來新的希望。
[1] Haller MJ,Viener HL,Wasserfall C,et al.Autologous umbilical cord blood infusion for type 1 diabetes[J].Exp Hematol,2008,36 (6):710-715.
[2] Fiorina P,Voltarelli J,Zavazava N.Immunological applications of stem cells in type 1 diabetes[J].Endocr Rev,2011,32(6): 725-54.
[3] Uccelli A,Pistoia V,Moretta L.Mesenchymal stem cells:a new strategy for immunosuppression?[J].Trends Immunol,2007,28 (5):219-226.
[4] Figliuzzi M,Cornolti R,Perico N,et al.Bone marrow-derived mesen-chymal stem cells improve islet graft function in diabetic rats[J].Transplant Proc,2009,41(5):1797-1800.
[5] Le Blanc K,Ringden O.Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation[J].Biol Blood Marrow Transplant,2005,11(5):321-334.
[6] Uccelli A,Moretta L,Pistoia V.Immunoregulatory function of mesenchymal stem cells[J].Eur J Immunol,2006,36(10):2566-2573.
[7] Madec AM,Mallone R,Afonso G,et al.Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells[J].Diabetologia,2009,52(7):1931-1939.
[8] Urbán VS,Kiss J,Kovács J,et al.Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes[J].Stem Cells,2008,26(1):244-253.
[9] Sato K,Ozaki K,Oh I,et al.Nitric oxide plays a critical role in suppression of T cell proliferation by mesenchymal stem cells[J].Blood,2007,109(1):228-234.
[10] Aggarwal S,Pittenger MF.Human mesenchymal stem cells modulate allogeneic immune cell responses[J].Blood,2005,105(4): 1815-1822.
[11] Ding Y,Xu D,F(xiàn)eng G,et al.Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9[J].Diabetes,2009,58 (8):1797-1806.
[12] Park MJ,Shin JS,Kim YH,et al.Murine mesenchymal stem cells suppress T lymphocyte activation through IL-2 receptor α(CD25) cleavage by producing matrix metalloproteinases[J].Stem Cell Rev,2011,7(2):381-393.
[13] McClymont SA,Putnam AL,Lee MR,et al.Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes[J].J Immunol,2011,86(7):3918-3926.
[14] Fiorina P,Jurewicz M,Augello A,et al.Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes[J].J Immunol,2009,15,183(2): 993-1004.
[15] Zhao Y,Lin B,Darflinger R,et al.Human cord blood stem cellmodulated regulatory T lymphocytes reverse the autoimmunecaused type 1 diabetes in nonobese diabetic(NOD)mice[J].PLoS One,2009,4(1):e4226.
[16] Brusko T,Wasserfall C,McGrail K,et al.No alterations in the frequency of FOXP3+regulatory T-cells in type 1 diabetes[J].Diabetes,2007,56(3):604-612.
[17] Brusko TM,Wasserfall CH,Clare-Salzler MJ,et al.Functional defects and the influence of age on the frequency of CD4+CD25+T-cells in type 1 diabetes[J].Diabetes,2005,54(5):1407-1414.
[18] Di Ianni M,Del Papa B,De Ioanni M,et al.Mesenchymal cells recruit and regulate T regulatory cells[J].Exp Hematol,2008,36 (3):309-318.
[19] Boumaza I,Srinivasan S,Witt WT,et al.Autologous bone marrowderived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets,alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia[J].J Autoimmun,2009,32(1):33-42.
[20] Prevosto C,Zancolli M,Canevali P,et al.Generation of CD4+or CD8+regulatory T cells upon mesenchymal stem cell-lymphocyte interaction[J].Haematologica,2007,92(7):881-888.
[21] Patel SA,Meyer JR,Greco SJ,et al.Mesenchymal stem cells protect breast cancer cells through regulatory T cells:role of mesenchymal stem cell-derived TGF-beta[J].J Immunol,2010,184 (10):5885-5894.
[22] Ge W,Jiang J,Arp J,et al.Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J].Transplantation,2010,90(12):1312-1320.
[23] Han B,Serra P,Yamanouchi J,et al.Developm ental control of CD8T cell-avidity maturation in autoimmune diabetes[J].J Clin Invest,2005,115(7):1879-1887.
[24] Prasad SJ,Goodnow CC.Intrinsic in vitro abnormalities in dendritic cell generation caused by non-MHC non-obese diabetic genes[J].Immunol Cell Biol,2002,80(2):198-206.
[25] Novak J,Griseri T,Beaudoin L,et al.Regulation of type 1 diabetes by NKT cells[J].Int Rev Immunol,2007,26(1/2):49-72.
[26] Abdi R,F(xiàn)iorina P,Adra CN,et al.Immunomodu lation by mesenchymal stem cells:a potential therapeutic strategy for type 1 diabetes[J].Diabetes,2008,57(7):1759-1767.
[27] Steptoe RJ,Ritchie JM,Jones LK,et al.Autoimmune diabetes is suppressed by transfer of proinsulin-encoding Gr-1+myeloid progenitor cells that differentiate in vivo into resting dendritic cells[J].Diabetes,2005,54(2):434-442.
[28] Glennie S,Soeiro I,Dyson PJ,et al.Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells[J].Blood,2005,105(7):2821-2827.
[29] Corcione A,Benvenuto F,F(xiàn)erretti E,et al.Human mesenchymal stem cells modulate B-cell functions[J].Blood,2006,107(1): 367-372.
[30] Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells:the International Society for Cellular Therapy position statement[J].Cytotherapy,2006,8(4):315-317.