劉容容 王 曄 李士勇 徐麗君
缺氧環(huán)境下MSCs促進(jìn)血管內(nèi)皮細(xì)胞增殖和血管形成
劉容容 王 曄 李士勇 徐麗君*
(南昌大學(xué)第二附屬醫(yī)院神經(jīng)內(nèi)科,江西330006)
目的 探討成人骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells BMSCs)在體外缺氧環(huán)境下對(duì)人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells,HUVECs)增殖和血管形成能力的影響及其可能機(jī)制。方法 密度梯度離心法收集分離成人骨髓血MSCs并進(jìn)行體外培養(yǎng)擴(kuò)增,傳代至4代進(jìn)行實(shí)驗(yàn),流式細(xì)胞儀鑒定MSCs表面標(biāo)志。BMSCs缺氧培養(yǎng)0h(對(duì)照組)、12h、24h和48h后,RT-PCR檢測(cè)SDF-1和VEGF基因表達(dá),ELISA法檢測(cè)細(xì)胞上清液中SDF-1和VEGF蛋白含量。HUVECs傳代培養(yǎng)后分成三組進(jìn)行實(shí)驗(yàn):對(duì)照組、BMSCsCMN-HUVECs組,BMSCsCMH-HUVECs組,MTT檢測(cè)三組細(xì)胞增殖能力,體外血管形成實(shí)驗(yàn)分析三組細(xì)胞在Matrigel上管腔樣結(jié)構(gòu)形成情況。結(jié)果 (1)BMSCs呈旋渦狀長(zhǎng)梭形即纖維母細(xì)胞樣生長(zhǎng);(2)人BMSCs陽(yáng)性表達(dá)CD29、CD44和CD90,而CD34、CD45和CD106為陰性;(3)BMSCs缺氧培養(yǎng)后SDF-1和VEGF在mRNA和蛋白水平表達(dá)均較常氧培養(yǎng)顯著增高(P均<0.05);(4)BMSCsCMH明顯提高HUVECs增殖能力(P<0.05),顯著增加HUVECs在Matrigel上形成管腔樣結(jié)構(gòu)的能力(P<0.05)。結(jié)論 人BMSCs在缺氧環(huán)境下通過(guò)旁分泌SDF-1和VEGF提高血管內(nèi)皮細(xì)胞增殖和管腔樣結(jié)構(gòu)形成能力,促進(jìn)血管新生。
骨髓間充質(zhì)干細(xì)胞;缺氧;旁分泌;血管新生
骨髓間充質(zhì)干細(xì)胞具有高增殖活性和強(qiáng)大的自我更新能力以及多向分化潛能;還具有自分泌和旁分泌作用,能分泌許多可溶性生長(zhǎng)因子和細(xì)胞因子[1],已經(jīng)證明BMSCs修復(fù)和分化為多種組織的能力,尤其在血管修復(fù)和重建方面成為缺血性疾病細(xì)胞治療研究的熱點(diǎn)。大量研究顯示BMSCs移植能促進(jìn)缺血組織的血管新生[2-5],但BMSCs移植后促進(jìn)血管新生的具體機(jī)制目前還不完全清楚。人臍靜脈內(nèi)皮細(xì)胞與人動(dòng)脈內(nèi)皮細(xì)胞的生物學(xué)特性相似,在血管功能研究方面得到越來(lái)越廣泛的應(yīng)用[6]。因此本實(shí)驗(yàn)觀察體外BMSCs缺氧培養(yǎng)后對(duì)HUVECs增殖和血管形成能力的影響并探討其可能機(jī)制,為臨床缺血缺氧性疾病的治療尋找新方法。
1.材料
1.1 主要試劑及材料
淋巴細(xì)胞分離液,MTT粉,ELISA試劑盒(Invitrogen)小鼠抗人單克隆抗體 CD29-FITC、CD45-FITC、CD34-FITC 和 CD106-PE、CD44-PE、CD90-PE(購(gòu)自BD 公司);DMSO,胎牛血清(Hyclone);DMEM(Gibco);Matrigel(BD公司);DEPC水;Trizol和DNA Marker(購(gòu)于北京全式金生物技術(shù)有限公司);逆轉(zhuǎn)錄試劑盒(Takala);Mix(TianGen);PCR引物(上海捷瑞生物工程有限公司合成);瓊脂糖;5×TBE;EB。
1.2 主要儀器和設(shè)備
缺氧交換器(長(zhǎng)沙長(zhǎng)錦科技有限公司);酶標(biāo)儀;瓊脂糖凝膠電泳儀;PCR 儀(BIO RAD,My Cycler);低溫離心機(jī);微量移液器;倒置相差顯微鏡;凈化工作臺(tái),CO2培養(yǎng)箱,F(xiàn)ACS-Calibur流式細(xì)胞分析儀(Becton Dickinson,CA)。
2.實(shí)驗(yàn)方法
2.1 細(xì)胞培養(yǎng)
無(wú)菌條件下收集成人骨髓血,密度梯度離心法(1500r/min)分離收集BMSCs,10%胎牛血清(fetal bovine serum,F(xiàn)BS)-DMEM 于37℃、飽和濕度的5%CO2培養(yǎng)箱中培養(yǎng)。7天時(shí)篩選集落細(xì)胞,生長(zhǎng)匯合率達(dá)到90%時(shí)胰酶消化傳代培養(yǎng)擴(kuò)增細(xì)胞,第4代用于實(shí)驗(yàn)。HUVECs(本院分子中心保存)培養(yǎng)與BMSCs相同。缺氧培養(yǎng):缺氧前換成無(wú)血清DMEM,置于密閉容器中,持續(xù)充以含1%O2,5%CO2和94%N2混合氣體,氣體從容器另一孔排出,約5-10min關(guān)閉排氣孔,分別于0h(即對(duì)照組)、12h、24h和48h取出進(jìn)行后續(xù)實(shí)驗(yàn)。
2.2 流式細(xì)胞技術(shù)鑒定MSCs
胰酶消化收集MSCs,0.1%胎牛血清PBS重懸2次,取待測(cè)細(xì)胞6×106分為6管,分別加入CD29-FITC、CD45-FITC、CD34-FITC 和 CD106-PE、CD44-PE、CD90-PE抗體,4℃孵育30min,再用0.1%胎牛血清PBS重懸2次,每管加入500μl PBS混勻后上機(jī)檢測(cè),每個(gè)樣本獲取10000個(gè)細(xì)胞,Cellquest軟件分析檢測(cè)結(jié)果。
2.3 RT-PCR檢測(cè)SDF-1和 VEGF基因表達(dá)
Trizol法提取缺氧培養(yǎng)細(xì)胞RNA,紫外分光光度計(jì)測(cè)樣品 A260/280比值,在1.8-2.1之間,說(shuō)明RNA未降解。取各組RNA模板按逆轉(zhuǎn)錄試劑盒說(shuō)明書(shū)逆轉(zhuǎn)錄合成cDNA,反應(yīng)總體積為10μl,反應(yīng)條件依次為37℃15min,85℃5sec。再以cDNA為模板,采用Primer 5.0軟件設(shè)計(jì)的各自引物(見(jiàn)表1)VEGF(94℃預(yù)變性5min;94℃ 30s,55℃ 40s,72℃1min共35個(gè)循環(huán);72℃總延伸8min)、SDF-1(94℃預(yù)變性5min;94℃30s,57℃40s,72℃1min共35個(gè)循環(huán);72℃總延伸8min)和β-actin(94℃預(yù)變性5min;94℃30s,56℃40s,72℃1min共35個(gè)循環(huán);72℃總延伸8min)進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增反應(yīng)體系:Mix 25μl,cDNA 2μl,上游引物1μl,下游引物1μl,無(wú)核酶水加至50μl。1.5%瓊脂糖凝膠電泳,溴化乙錠顯色,自動(dòng)凝膠圖像分析系統(tǒng)分析檢測(cè)PCR產(chǎn)物。
2.4 收 集條 件 培 養(yǎng) 基 (conditioned medium,CM)
BMSCs常氧培養(yǎng)24h收集細(xì)胞上清液,500×g離心5min,0.2μm濾器過(guò)濾得到常氧環(huán)境下BMSCs條件培養(yǎng)基即BMSCsCMN;收集缺氧培養(yǎng)24h細(xì)胞上清液得到缺氧環(huán)境下BMSCs培養(yǎng)基即BMSCsCMH。
2.5 ELISA檢測(cè)CM中SDF-1和VEGF含量
將收集上清液后的細(xì)胞胰酶消化并進(jìn)行計(jì)數(shù)。收集的CM按ELISA試劑盒步驟操作,反應(yīng)終止后酶標(biāo)儀檢測(cè)450nm處吸光度值,檢測(cè)結(jié)果以單位體積細(xì)胞數(shù)量校正即獲得CM中SDF-1和VEGF濃度(ng/106cells),每組8個(gè)平行孔。
2.6 MTT檢測(cè)細(xì)胞增殖
將對(duì)數(shù)生長(zhǎng)期 HUVECs以含0.1%FBSDMEM接種于96孔培養(yǎng)板內(nèi),接種密度1×104個(gè)/孔,24h后將培養(yǎng)基分別更換為200μl的含0.1%FBS-DMEM(對(duì)照組)、BMSCsCMN和BMSCsCMH,每組8個(gè)平行孔。上述各組細(xì)胞進(jìn)行缺氧培養(yǎng),分別于12h、24h和48h加入濃度為5mg/m1的 MTT溶液(每孔20μl),37℃避光孵育4h,棄去孔內(nèi)培養(yǎng)液,每孔加入150?l DMSO,震蕩10min,使結(jié)晶充分溶解。酶標(biāo)儀測(cè)定波長(zhǎng)為490nm時(shí)每孔的吸光度(A)值。
2.7 血管新生實(shí)驗(yàn)
96孔培養(yǎng)板內(nèi)均勻鋪以 Mtrigel,每孔30μl;置于37℃,5%CO2環(huán)境下1h,使 Matrigel凝固。取對(duì)數(shù)生長(zhǎng)期HUVECs,以1×104個(gè)/孔接種于鋪有Matrigel的96孔板內(nèi)。分3組進(jìn)行分析:對(duì)照組(10%FBS-DMEM)、BMSCsCMN組 (BMSCsCMN和10%FBS-DMEM 混合液,比例1:1)和BMSCsCMH組(BMSCsCMH和10%FBS-DMEM 混合液,比例1:1),每組8個(gè)平行孔。將各組細(xì)胞置于37℃,缺氧培養(yǎng)24h,倒置相差顯微鏡下觀察管腔樣結(jié)構(gòu)形成情況。
3.統(tǒng)計(jì)分析
實(shí)驗(yàn)所得數(shù)據(jù)均以均數(shù)±標(biāo)準(zhǔn)差(ˉx±s)表示,實(shí)驗(yàn)組與對(duì)照組之間數(shù)值比較采用SPSS13.0軟件進(jìn)行學(xué)生t檢驗(yàn),差異性分析采用One-Way ANOVA test,P<0.05統(tǒng)計(jì)學(xué)有顯著差異。
表1 VEGF、SDF-1和β-actin mRNA的引物Table 1 The primers of mRNA of VEGF,SDF-1andβ-actin
1.BMSCs形態(tài)和鑒定
BMSCs培養(yǎng)至第4代后,倒置相差顯微鏡下呈旋渦狀長(zhǎng)梭形纖維母細(xì)胞樣形態(tài)生長(zhǎng)(見(jiàn)圖1)。流式細(xì)胞技術(shù)分析顯示人BMSCs表面標(biāo)記物CD29、CD44和CD90表達(dá)陽(yáng)性,而CD34、CD45和CD106為陰性。
圖1 倒置相差顯微鏡下MSCs呈漩渦狀長(zhǎng)梭形生長(zhǎng)。Fig.1 Under inverted phase-contrast microscopy,BMSCs exhibited fibroblast-like morphology
2.SDF-1和 VEGF mRNA和蛋白表達(dá)
與對(duì)照組相比,BMSCs缺氧培養(yǎng)12h,24h和48h后,SDF-1和VEGF mRNA表達(dá)水平均顯著增高(P<0.05,見(jiàn)圖2),而各缺氧時(shí)間點(diǎn)的SDF-1和VEGF表達(dá)無(wú)顯著差異(P>0.05);BMSCsCMH中SDF-1和VEGF蛋白含量明顯高于BMSCsCMN(見(jiàn)圖3)。compared with BMSCsCMN*P<0.05
圖2 缺氧對(duì)SDF-1和VEGF mRNA在BMSCs中表達(dá)的影響。Fig.2 The expression of SDF-1and VEGF mRNA in BMSCs at different hypoxia time points.BMSCs were exposed to hypoxia for 12h、24h和48h,both SDF-1and VEGF mRNA levels significantly increased,β-actin as a control for efficiency of the amplification reactions,*P<0.05,compared with contol group.
圖3 不同CM中SDF-1和VEGF含量。Fig.3 Secretion of SDF-1and VEGF by BMSCs under hypoxic conditions was quantitatively by ELISA.Data displayed SDF-1and VEGF in BMSCsCMHsignificant increased
3.HUVECs增殖能力檢測(cè)
為研究BMSCs的旁分泌方作用對(duì)缺血組織血液再灌注的影響,觀察不同CM對(duì)HUVECs增殖能力影響,因?yàn)閂ECs的增殖是血管新生基礎(chǔ)。利用MTT檢測(cè)各組HUVECs增殖能力并進(jìn)行比較。與對(duì)照組相比,各個(gè)缺氧時(shí)間點(diǎn)BMSCsCMH組均明顯提高 HUVECs增殖能力(P 均<0.05),同時(shí)BMSCsCMH組對(duì)HUVECs的促增殖作用也明顯強(qiáng)于BMSCsCMN組(P 均<0.05),而對(duì)照組和BMSC-sCMN組對(duì)HUVECs增殖能力影響無(wú)顯著差異(P>0.05)見(jiàn)圖4。
圖4 CM對(duì)HUVECs增殖能力影響。Fig.4 The effects of CM on proliferation of HUVECs。MTT assay demonstrated BMSCsCMH significantly increased proliferation of HUVECs。*P<0.05,compared with control and BMSCsCMN at the same time;#P<0.05,compared with BMSCsCMH at different time.
4.血管新生實(shí)驗(yàn)
檢測(cè)不同CM對(duì)HUVECs在Matrigel上形成官腔樣結(jié)構(gòu)能力的影響,以明確BMSCs旁分泌因子SDF-1和VEGF在血管新生中的作用。倒置相差顯微鏡下觀察,BMSCsCMH組官腔樣結(jié)構(gòu)顯著多于對(duì)照組和BMSCsCMN組(見(jiàn)圖5)。每孔隨機(jī)取6個(gè)視野于20倍鏡下計(jì)算每組管腔樣結(jié)構(gòu)數(shù)目并算均數(shù)和標(biāo)準(zhǔn)差進(jìn)行量化比較,發(fā)現(xiàn)與對(duì)照組和BMSC-sCMN組相比,BMSCsCMH組顯著提高HUVECs官腔樣結(jié)構(gòu)形成能力(P<0.05,見(jiàn)圖6),而B(niǎo)MSCsCMN組對(duì)HUVECs的官腔樣結(jié)構(gòu)形成能力與對(duì)照組比無(wú)明顯差異(P >0.05)。
血管新生對(duì)缺血組織再灌注、營(yíng)養(yǎng)傳遞以及氧濃度的維持起重要作用,因此治療性血管新生在缺血性疾病的治療和功能恢復(fù)方面起關(guān)鍵作用,而MSCs能修復(fù)并重建缺血組織血管,是治療性血管新生的最佳選擇。然而有關(guān)MSCs在缺氧環(huán)境下促進(jìn)血管新生的具體機(jī)制尚不十分清楚。盡管有證據(jù)說(shuō)明MSCs在缺血部位有分化能力,但其治療效果主要靠旁分泌信號(hào)而不是分化能力[7-10],本研究結(jié)果證實(shí):體外缺氧誘導(dǎo)的MSCs旁分泌因子SDF-1和VEGF對(duì)血管內(nèi)皮細(xì)胞增殖和血管形成能力有明顯促進(jìn)作用。
血管新生的發(fā)生發(fā)展是個(gè)復(fù)雜的過(guò)程,涉及了多種生長(zhǎng)因子、細(xì)胞因子和細(xì)胞行為。血管新生誘導(dǎo)因子中最為熟悉的是VEGF。VEGF增加血管內(nèi)皮細(xì)胞活性并提高其增殖能力,顯著促進(jìn)缺血組織的血管新生,從而改善局部血供,改善缺血損傷后組織功能恢復(fù)。本研究數(shù)據(jù)顯示BMSCs缺氧培養(yǎng)后VEGF在基因和蛋白水平均顯著增加,與先前的研究結(jié)果一致[10,11],且 MSCs過(guò)表達(dá)VEGF基因后血管新生顯著增加[12]。
雖然VEGF是血管發(fā)生發(fā)展的關(guān)鍵因子,但VEGF單獨(dú)不足以完成脈管系統(tǒng)功能和結(jié)構(gòu)的成熟發(fā)展。體內(nèi)VEGF誘導(dǎo)的血管滲透性常常較大且不能與現(xiàn)有的脈管系統(tǒng)進(jìn)行適當(dāng)?shù)倪B接;而SDF-1在缺血引起的血管新生中亦起重要作用[13,14]并承擔(dān)了血管的成熟和穩(wěn)定功能。本研究發(fā)現(xiàn)BMSCs缺氧培養(yǎng)后SDF-1的蛋白和mRNA亦顯著增加且與VEGF同步,說(shuō)明兩者在血管新生中起協(xié)同作用,與Kryczek I等[15]的實(shí)驗(yàn)結(jié)果一致,VEGF和SDF-1結(jié)合在血管異生過(guò)程中有協(xié)同作用,且血管新生過(guò)程中涉及的Akt和eNOS激活是由 VEGF和SDF-1共同介導(dǎo)的[16]。
BMSCs缺氧培養(yǎng)后VEGF和SDF-1mRNA和蛋白均表達(dá)增加,為進(jìn)一步明確旁分泌因子對(duì)血管內(nèi)皮細(xì)胞功能的影響,利用MTT和血管新生實(shí)驗(yàn)分析CM對(duì)HUVECs增殖能力和官腔樣結(jié)構(gòu)形成能力的影響。結(jié)果顯示:與對(duì)照組和BMSCsCMN組相比,BMSCsCMH組HUVECs增殖能力和Matrigel上管腔樣結(jié)構(gòu)形成能力顯著增加;而B(niǎo)MSCsCMN組和對(duì)照組無(wú)明顯差異,因此缺氧可誘導(dǎo)MSCs旁分泌因子SDF-1和VEGF促進(jìn)血管形成,提高缺血組織血液供應(yīng)。與先前報(bào)道一致:MSCs-CM能顯著增加VECs增殖活性,促進(jìn)血管新生[8];MSCs同時(shí)轉(zhuǎn)染SDF-1和 VEGF基因后能為體內(nèi)微環(huán)境提供高濃度VEGF和SDF-1蛋白,有更大的能力增加缺血組織的毛細(xì)血管密度[5]。
總之,體外缺氧顯著上調(diào)BMSCs的SDF-1和VEGF基因表達(dá),并促進(jìn)二者大量分泌至上清液中;MSCs缺氧培養(yǎng)后收集的上清液即BMSCsCMH顯著增加VECs增殖能力和官腔樣結(jié)構(gòu)形成能力,促進(jìn)血管新生。因此MSCs在缺氧環(huán)境下通過(guò)旁分泌SDF-1和VEGF因子促進(jìn)血管新生,二者在此過(guò)程中起協(xié)同作用,為臨床缺血缺氧性疾病的治療提供新方法。
[1]Gnecchi M,Zhang Z,Ni A,et al.Paracrine mechanisms in adult stem cell signaling and therapy.Circ Res,2008.103(11):1204-1219
[2]Bussolati B,Tetta C,Camussi G.Contribution of stem cells to kidney repair.Am J Nephrol,2008.28(5):813-822
[3]Oh JY,Kim MK,Shin MS,et al.The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury.Stem Cells,2008.26(4):1047-1055
[4]Zhuang Y,Chen X,Xu M,et al.Chemokine stromal cellderived factor 1/CXCL12increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction.Chin Med J(En-gl),2009.122(2):183-187
[5]Tang J,Wang J,Zheng F,et al.Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats.Mol Cell Biochem,2010.339(1-2):107-118
[6]Goon PK,Watson T,Shantsila E,et al.Standardization of circulating endothelial cell enumeration by the use of human umbilical vein endothelial cells.J Thromb Haemost,2007.5(4):870-872
[7]Sato T,Iso Y,Liyama T,et al.Coronary vein infusion of multipotent stromal cells from bone marrow preserves cardiac function in swine ischemic cardiomyopathy via enhanced neovascularization.Lab Invest,2011.91(4):553-564
[8]Lee EY,Xia Y,Kim WS,et al.Hypoxia-enhanced woundhealing function of adipose-derived stem cells:increase in stem cell proliferation and up-regulation of VEGF and bFGF.Wound Repair Regen,2009.17(4):540-547
[9]Hocking AM,Gibran NS.Mesenchymal stem cells:paracrine signaling and differentiation during cutaneous wound repair.Exp Cell Res,2010.316(14):2213-2219
[10]Li Z,Guo J,Chang Q,et al.Paracrine role for mesenchymal stem cells in acute myocardial infarction.Biol Pharm Bull,2009.32(8):1343-1346
[11]Kagiwada H,Yashiki T,Ohshima A,et al.Human mesenchymal stem cells as a stable source of VEGF-producing cells.J Tissue Eng Regen Med,2008.2(4):184-189
[12]Tang JM,Wang JN,Zhang L,et al.VEGF/SDF Promotes Cardiac Stem Cell Mobilization and Myocardial Repair in the Infarcted Heart.Cardiovasc Res,2011,91(3):402-411
[13]Tang J,Wang J,Guo L,et al.Mesenchymal stem cells modified with stromal cell-derived factor 1alpha improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction.Mol Cells,2010.29(1):9-19
[14]Loh SA,Chang EI,Galvez MG,et al.SDF-1alpha expression during wound healing in the aged is HIF dependent.Plast Reconstr Surg,2009.123(2Suppl):65S-75S
[15]Kryczek I,Lange A,Mottram P,et al.CXCL12and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers.Cancer Res,2005.65(2):465-472
[16]Tang J,Wang J,Yang J,et al.Adenovirus-mediated stromal cell-derived-factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis.Interact Cardiovasc Thorac Surg,2008.7(5):767-770
Mesenchymal stem cells promoted proliferation and angiogenesis of vascular endothelial cells in hypoxia
Liu Rongrong,Wang Ye,Li Shiyong,Xu Lijun*
(Department of Neurology Second Hospital Affiliated to Nanchang University,Jiangxi,330006,China)
ObjectiveTo investigate the effects of BMSCs on proliferation and angiogenesis of HUVECs and its possible mechanism in hypoxia.MethodsBMSCs separated by density gradient centrifugation were cultured,expanded and used at passage 4.Their phenotypic characterizations were indentified by flow cytometry.After BMSCs exposed to hypoxia for 0h (control),12h,24hand 48h,intracellular levels of SDF-1and VEGF mRNA were assayed by RT-PCR,and the secretion of SDF-1and VEGF was quantitatively analyzed by ELISA.HUVECs were cultured,passaged and divided into 3groups:control,BMSC-sCMN-HUVECs,BMSCsCMH-HUVECs.Proliferation of HUVECs were detected by MTT.Tube-like structure formation in Matrigel were analyzed as the assay of angiogenesis in vitro.Results(1)Under inverted phase-contrast microscopy,BMSCs exhibited fibroblast-like morphology;(2)BMSCs expressed CD29,CD44and CD90,but not CD34、CD45and CD106.(3)Both mRNA and protein levels of SDF-1and VEGF increased significantly compared with those of the control group(P<0.05);(4)BMSCsCMHsignificantly increased the proliferation of HUVECs and the number of tube-like structures in Matrigel(P<0.05).ConclusionHuman BMSCs improve proliferation and tube-like structures formation of Vascular endothelial cells and promote angiogenesis in hypoxia,through paracrined SDF-1and VEGF.
Bone Mesenchymal Stem Cells;Hypoxia;Paracrine;Angiogenesis
R329
A
10.3870/zgzzhx.2012.01.018
2011-11-01
2011-11-26
國(guó)家自然科學(xué)基因(81060100)
劉容容,女(1985年),漢族,碩士研究生。
*通訊作者(To whom correspondence should be addressed)