• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      生物乙醇重整制氫催化劑載體研究進(jìn)展

      2013-10-22 06:22:32李鍵銘楊文申陰秀麗吳創(chuàng)之
      關(guān)鍵詞:積炭重整制氫

      李鍵銘,郎 林,楊文申,陰秀麗,吳創(chuàng)之

      (1.中國(guó)科學(xué)院 廣州能源研究所 中國(guó)科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗(yàn)室,廣東 廣州510640;2.中國(guó)科學(xué)院 研究生院,北京100049)

      氫能及燃料電池技術(shù)作為先進(jìn)能源技術(shù)領(lǐng)域的重要方向,是當(dāng)今國(guó)際可再生能源產(chǎn)業(yè)與低碳經(jīng)濟(jì)的研究熱點(diǎn)[1-11]。利用醇類液體燃料原位重整制氫供燃料電池發(fā)電被認(rèn)為是近、中期較為現(xiàn)實(shí)的燃料電池氫源解決方案之一[2-3,5]。與甲醇等燃料相比,生物乙醇重整制氫以可再生物料為原料,不存在對(duì)化石能源的依賴,且具有單位能量高、氫含量高、無(wú)毒、易儲(chǔ)運(yùn)等優(yōu)點(diǎn),已成為當(dāng)前低碳能源應(yīng)用基礎(chǔ)研究領(lǐng)域中的熱點(diǎn)問(wèn)題[1-3,5,12]。

      生物乙醇重整制氫的效果很大程度上取決于重整制氫催化劑的反應(yīng)活性。對(duì)此已有一些相關(guān)的研究報(bào)道[13-20],主要集中在對(duì)活性組分的篩分與選取,以及對(duì)各種活性金屬的優(yōu)劣比較[12,15],一般認(rèn)為非貴金屬中Ni、Cu和Co的效果較好,而貴金屬中Rh的效果較好。目前,生物乙醇重整制氫中所使用的催化劑大多為負(fù)載型催化劑,載體對(duì)重整催化劑的反應(yīng)活性和壽命均有重要影響。近年來(lái),分子篩等新型載體的引入,加速了生物乙醇重整制氫的發(fā)展,顯著提高了重整催化劑在低溫下的轉(zhuǎn)化率、選擇性和穩(wěn)定性[21-22]。在相同的活性金屬和反應(yīng)條件下,不同載體對(duì)催化劑的活性和氫氣選擇性有較大影響,且存在一定規(guī)律性和內(nèi)在聯(lián)系。因此,如能對(duì)乙醇重整制氫的催化劑載體進(jìn)行有效的分類與總結(jié),則有望進(jìn)一步拓寬對(duì)生物乙醇重整制氫催化劑的研究范圍。但令人遺憾的是,目前尚未見(jiàn)到關(guān)于乙醇重整制氫催化劑載體的綜述性文獻(xiàn)報(bào)道。筆者從催化劑載體的角度出發(fā),系統(tǒng)地介紹和分析了目前生物乙醇重整制氫催化劑載體的種類、結(jié)構(gòu)特征、化學(xué)特性和催化性能優(yōu)劣,進(jìn)而指出了今后生物乙醇重整制氫催化劑載體的發(fā)展方向。

      1 γ-Al2O3載體

      γ-Al2O3的力學(xué)性能好,比表面積較大,且價(jià)格低廉,是一種常見(jiàn)的催化劑載體,在生物乙醇重整制氫中研究也較多[23-29]。但其積炭問(wèn)題較為嚴(yán)重,原因可能是γ-Al2O3表面上不完全配位的鋁原子產(chǎn)生的L酸位促進(jìn)了乙醇脫水生成乙烯,乙烯再通過(guò)聚合反應(yīng)形成積炭。積炭不僅會(huì)縮短催化劑的壽命,同時(shí)也降低了氫氣選擇性。Vizcaino等[24]研究了 Ni-Cu/γ-Al2O3和 Ni-Cu/SBA-15催化劑對(duì)生物乙醇水蒸氣重整制氫的催化性能,在反應(yīng)溫度600℃、水與醇摩爾比3.7的條件下,反應(yīng)進(jìn)行3h后,Ni-Cu/SBA-15催化劑的積炭率(質(zhì)量分?jǐn)?shù),下同)為19.2%,氫氣選擇性為79.0%,而 Ni-Cu/γ-Al2O3催化劑的積炭率達(dá)到59.5%,氫氣選擇性僅為50.1%。Cavallaro等[29]在研究 Rh/γ-Al2O3催化劑對(duì)生物乙醇重整制氫的催化性能時(shí)發(fā)現(xiàn),只有在反應(yīng)溫度較高且Rh負(fù)載量較大的條件下才能較好地抑制積炭??梢?jiàn),在相同條件下進(jìn)行生物乙醇重整制氫時(shí),與其他載體相比,以γ-Al2O3為載體的催化劑普遍存在較為嚴(yán)重的積炭現(xiàn)象。

      為較好地解決γ-Al2O3的積炭問(wèn)題,應(yīng)盡量克服其酸性位,主要有采用Ca(NO3)2[25]、KOH[26]、Mg(NO3)2[27]和 Zn(NO3)2[28]等對(duì)γ-Al2O3進(jìn)行改性。Marino等[26]采用KOH溶液對(duì)γ-Al2O3進(jìn)行改性,制備了Ni-Cu/K-γ-Al2O3催化劑,在反應(yīng)溫度300℃的條件下取得了較好的重整結(jié)果。Zhang等[28]制 備 了 Ni-Cu/γ-Al2O3(NiCu/A)、 Ni-Cu/γ-Al2O3-MgO(NiCu/A-Mg)和 Ni-Cu/γ-Al2O3-ZnO(NiCu/A-Zn)3種催化劑,考察了γ-Al2O3改性對(duì)乙醇重整制氫催化劑的影響,結(jié)果表明,在400℃、水與醇摩爾比為4的條件下,NiCu/A-Mg和NiCu/A-Zn的氫氣選擇性分別為68.0%和64.0%,而NiCu/A 僅為 54.0%,NiCu/A-Mg和 NiCu/A-Zn的積炭量分別為0.5g/gcat和0.2g/gcat,而 NiCu/A的積炭量達(dá)到2.2g/gcat。由 NH3-TPD 表征 (見(jiàn)圖1)可知,NiCu/A-Mg和NiCu/A-Zn的酸量均低于NiCu/A,酸強(qiáng)度也有所降低。雖然經(jīng)過(guò)堿性修飾后,γ-Al2O3的積炭問(wèn)題可得到有效解決,但也提高了其成本,其價(jià)格低廉的優(yōu)勢(shì)變得不明顯。

      圖1 30Ni5Cu/γ-Al2O3,30Ni5Cu/γ-Al2O3-MgO和30Ni5Cu/γ-Al2O3-ZnO催化劑的 NH3-TPD曲線[28]Fig.1 NH3-TPD profile of 30Ni5Cu/γ-Al2O3,30Ni5Cu/γ-Al2O3-MgO and 30Ni5Cu/γ-Al2O3-ZnO catalysts

      2 稀土氧化物載體

      稀土氧化物的堿性較強(qiáng),可有效地抑制積炭,更為重要的是稀土氧化物具有快速氧交換能力。反應(yīng)時(shí)稀土氧化物所釋放的晶格氧有助于促進(jìn)CO氧化、水煤氣變換和CH4水蒸氣重整等反應(yīng)的進(jìn)行,不僅減少了積炭,還有助于提高氫氣選擇性[30-37]。在生物乙醇重整制氫的過(guò)程中,以稀土氧化物為載體的催化劑表現(xiàn)出了高選擇性和高穩(wěn)定性。

      Zhang 等[36]研究了Ni/CeO2,Co/CeO2和Ir/CeO23種催化劑在300~700℃下對(duì)生物乙醇水蒸氣重整制氫的催化性能,結(jié)果表明,Ir/CeO2催化劑表現(xiàn)出了良好的穩(wěn)定性,當(dāng)反應(yīng)溫度為650℃時(shí),反應(yīng)300h后催化劑沒(méi)有失活。原因可能是Ir和CeO2之間的強(qiáng)相互作用減緩了Ir的燒結(jié),且CeO2的快速氧交換能力有效地抑制了積炭。Zhang等[37]隨后系統(tǒng)地研究了Ir/CeO2催化劑對(duì)生物乙醇水蒸氣重整制氫的催化性能;當(dāng)反應(yīng)溫度為450℃、水與醇摩爾比為3.2時(shí),產(chǎn)物中H2的摩爾分?jǐn)?shù)為67%,CO2的摩爾分?jǐn)?shù)為17%。Song等[30]研究了氧交換能力對(duì)Co/CeO2催化生物乙醇水蒸氣重整制氫的影響,Co/CeO2催化劑的氫產(chǎn)率隨溫度的上升而上升,這與催化劑氧交換能力隨溫度的變化趨勢(shì)相一致。因此氫產(chǎn)率提高的主要原因可能是氧交換能力的提高。Sun等[38]研究了Ni/Y2O3催化劑對(duì)乙醇部分氧化重整制氫的催化性能。實(shí)驗(yàn)中他們制備了不同粒度(9nm、19nm、25nm、38nm)的納米Y2O3載體,并研究了Y2O3的粒度對(duì)催化劑性能的影響,結(jié)果表明,Y2O3粒度的減小有助于Y2O3氧交換能力的提高,進(jìn)而提高了氫氣選擇性。

      雖然對(duì)Y2O3、La2O3和CeO2等稀土氧化物作為載體用于生物乙醇重整制氫均有所研究[31,38-48],但由于CeO2的價(jià)格相對(duì)便宜,工業(yè)化應(yīng)用前景較好,因而研究得較為深入。為進(jìn)一步提高CeO2的氧交換能力,可在CeO2中摻雜ZrO2。由于Zr4+的離子 半 徑 (0.084nm)小 于 Ce4+的離子半徑(0.097nm),因此在CeO2的晶格內(nèi)摻雜一定量的Zr4+可以減小氧化物的晶格常數(shù),形成更多的結(jié)構(gòu)缺陷,進(jìn)而提高其氧交換能力[46,49-51]。Diagne等[49]在研究Zr含量對(duì)Rh/CexZr1-xO2催化生物乙醇水蒸氣重整制氫的影響時(shí)發(fā)現(xiàn),當(dāng)Ce與Zr摩爾比為1時(shí),氫氣選擇性較高,且產(chǎn)物中CO的含量較低。

      Breen等[52]比較了 M/γ-Al2O3(M=Rh,Pt,Pd,Ni)和M/CeO2-ZrO2催化劑的生物乙醇重整制氫效果。在相同反應(yīng)條件下,M/CeO2-ZrO2催化劑的氫氣選擇性高于M/γ-Al2O3催化劑的,主要原因是M/CeO2-ZrO2催化劑幾乎沒(méi)有產(chǎn)生C2H4,而M/γ-Al2O3催化劑則產(chǎn)生了較多的C2H4。

      綜上所述,稀土氧化物由于具有較高的氧交換能力,以之為載體的催化劑在生物乙醇重整制氫中具有較高的氫氣選擇性和良好的穩(wěn)定性。但由于這種氧交換能力隨溫度的上升而提高,因而制約了其在低溫生物乙醇重整制氫中的應(yīng)用。

      3 分子篩載體

      分子篩由于具有特殊的納米孔道結(jié)構(gòu),其比表面積較大,且具有離子交換和擇形催化等特殊性質(zhì),以之為載體可以促進(jìn)活性組分的分散,提高活性金屬的穩(wěn)定性和催化活性,因此近年來(lái)關(guān)于分子篩載體用于乙醇重整制氫的研究報(bào)道逐漸增多[21-22,53-56]。其主要研究對(duì)象可分為以Y型分子篩和ZSM-5分子篩為主的微孔分子篩(孔徑<2nm)及以SBA-15分子篩和ITQ-2分子篩為主的介孔分子篩(孔徑為2~50nm)。

      Vizcaino 等[24]選取了γ-Al2O3、SiO2、 納 米ZSM-5、MCM-41和SBA-15等5種載體,研究了載體對(duì)生物乙醇水蒸氣重整制氫的影響。在反應(yīng)溫度為600℃、水與醇摩爾比為3.7的條件下,Ni-Cu/SBA-15催化劑的氫氣選擇性較高。原因可能是SBA-15分子篩的比表面積較大(926.4m2/g),使得Ni在SBA-15載體上的分散度較高,提高了催化劑的催化活性和熱穩(wěn)定性。此后,Carrero等[55]比較了分別用浸漬法(WI)和直接合成法(DS)制備的Ni-Cu/SBA-15催化劑的性能,實(shí)驗(yàn)結(jié)果表明,DS法制備的催化劑的催化性能低于WI法制備的催化劑。原因可能是Ni-Cu/SBA-15(DS)中金屬顆粒分布在載體的孔道內(nèi),堵住了分子篩的孔道(如圖2(a)所示),而在 Ni-Cu/SBA-15(WI)中,金屬顆粒主要分布在分子篩表面,未發(fā)生孔道堵塞現(xiàn)象(如圖2(b)所示)。Vizcaino、Calles 和 Lindo等[54,56-57]進(jìn)一步對(duì)Ni-Cu/SBA-15催化劑添加稀土金屬、添加堿土金屬以及改變分子篩的鋁含量等進(jìn)行了大量的實(shí)驗(yàn)研究,在提高氫氣選擇性和降低積炭等方面取得了一定效果。

      圖2 Ni-Cu/SBA-15(DS)和Ni-Cu/SBA-15(WI)催化劑的TEM照片[55]Fig.2 TEM micrographs of Ni-Cu/SBA-15(DS)and Ni-Cu/SBA-15(WI)catalysts[55]

      Cantao等[21]制備了 Rh-K/NaY催化劑,并在生物乙醇低溫重整制氫中取得了較好的結(jié)果。在反應(yīng)溫度為300℃、水與醇摩爾比為10和進(jìn)料速率為2.77g/min的條件下,乙醇轉(zhuǎn)化率接近100%,氫氣選擇性為68%。與以金屬氧化物為載體的銠基催化劑的反應(yīng)活性相比[14,52,58],在相似的反應(yīng)條件和反應(yīng)結(jié)果下,將反應(yīng)溫度從450~850℃降低到300℃,因此這是探索低溫乙醇水蒸氣重整制氫的有效嘗試。但需注意的是該報(bào)道中貴金屬的負(fù)載量(質(zhì)量分?jǐn)?shù))較大(5%),若將貴金屬負(fù)載量降低至較低水平(<1%),是否仍能保持較好的催化活性尚待進(jìn)一步研究。另外,雖然NaY分子篩的酸性較弱,但改性后Rh-K/NaY催化劑的乙醇轉(zhuǎn)化率從80%提高到97%,氫氣選擇性從63%提高到68%,表明應(yīng)充分提高分子篩載體的堿性。

      Kwak等[59]研究了 Ni-Ga-Mg/NaY催化劑對(duì)生物乙醇水蒸氣重整制氫的催化性能,結(jié)果表明,添加Ga可提高氫氣選擇性和穩(wěn)定性;在700℃、GHSV為6470h-1、水與醇摩爾比為3的條件下,乙醇轉(zhuǎn)化率為100%,氫氣選擇性為87%,并保持了59h。原因主要是Ga可有效促進(jìn)C—H鍵斷裂,進(jìn)而將烴類物質(zhì)中的H釋放出來(lái),并且有助于減緩Ni的燒結(jié)。

      Chica等[22]考察了 M/ITQ-2(M=Ni,Cu)和M/SiO2催化劑在300~600℃對(duì)乙醇水蒸氣重整制氫的催化性能。為了降低分子篩載體的酸性,該實(shí)驗(yàn)采用純硅ITQ-2分子篩。實(shí)驗(yàn)結(jié)果表明,M/ITQ-2催化劑的乙醇轉(zhuǎn)化率相對(duì)較高,在低溫下尤為明顯;M/ITQ-2催化劑的氫氣選擇性也相對(duì)較高,其中Co/ITQ-2的氫氣選擇性較高,且CO選擇性較低。在400℃下反應(yīng)72h后,4種催化劑中都檢測(cè)到積炭(質(zhì)量分?jǐn)?shù)3%~5%),但 M/ITQ-2催化劑沒(méi)有失活,而M/SiO2催化劑出現(xiàn)明顯失活,原因可能是活性金屬發(fā)生了燒結(jié)。M/ITQ-2催化劑具有高活性、高選擇性和高穩(wěn)定性的原因可能在于所使用的ITQ-2分子篩的酸性較弱且具有較大的比表面積(>800m2/g)。

      關(guān)于分子篩載體與γ-Al2O3、SiO2的比較,Vizcaino等[24]較早地從實(shí)驗(yàn)上給出了在生物乙醇水蒸氣重整制氫中分子篩載體優(yōu)于氧化物載體的數(shù)據(jù),引起了廣泛關(guān)注。而Cantao等[21]利用Rh-K/NaY催化劑在300℃下取得了較理想的結(jié)果,則在低溫生物乙醇重整制氫中取得了進(jìn)步。在對(duì)Y型催化劑的繼續(xù)研究中,主要集中在Ni基和Co基催化劑,關(guān)于Rh基催化劑后續(xù)的系統(tǒng)研究鮮有報(bào)道;在對(duì)其他類型分子篩載體的研究中,也較少看到以貴金屬為活性組分的報(bào)道。但是,Ni和Co在低溫下活性不如貴金屬催化劑,要真正發(fā)揮分子篩載體在低溫生物乙醇制氫中的潛力,應(yīng)加大對(duì)貴金屬活性組分的研究,特別是應(yīng)深入研究低貴金屬含量的分子篩類重整催化劑。

      4 載體物化特性的影響規(guī)律

      目前用于重整制氫的原料較多,除了乙醇外,還包括甲醇和甲烷等多種化合物[10,60]。雖然此類重整制氫過(guò)程均與催化劑密切相關(guān),但由于不同反應(yīng)物重整制氫體系的催化反應(yīng)機(jī)理差異較大,對(duì)催化劑活性組分和載體物化特性的要求也差異顯著。如甲醇重整制氫過(guò)程不發(fā)生C—C斷鍵,因而反應(yīng)溫度較低(200~300℃)[61],反應(yīng)活性較高,以廉價(jià)的Cu為活性組分、ZnO[62-64]或者γ-Al2O3-ZnO[63,65-66]為載體即可取得較好的制氫效果。該過(guò)程對(duì)載體的物化特性要求相對(duì)較低,目前已有商業(yè)化的甲醇重整制氫催化劑[66]。然而,對(duì)于乙醇重整制氫反應(yīng),由于涉及到C—C鍵斷裂,反應(yīng)活性較低,在較低溫度下可能發(fā)生的副反應(yīng)較多,因此不僅對(duì)催化劑的催化活性要求較高,而且對(duì)催化劑載體的物化特性也提出了更高的要求。為此,筆者對(duì)乙醇重整制氫催化劑載體的物理化學(xué)性質(zhì)進(jìn)行了詳細(xì)的歸納總結(jié),著重探討了載體的比表面積、酸堿性和自催化作用等主要影響因素。

      載體的比表面積和孔結(jié)構(gòu)影響著活性金屬的分散程度,進(jìn)而制約了活性金屬的粒徑。活性金屬粒徑的減小有助于提高催化劑的活性和穩(wěn)定性[23,28],因此選取高比表面積的載體有利于改善重整制氫的效果。這一點(diǎn)在分子篩類催化劑中表現(xiàn)得較為明顯[21-22,24],如表1列出了比表面積較大的ITQ分子篩比SiO2能更有效地減小活性金屬的粒徑[22];而對(duì)于比表面積相對(duì)較小的稀土氧化物,則有研究報(bào)道了提高稀土氧化物載體的比表面積對(duì)生物乙醇重整制 氫 的 影 響[67-69]。Laosiripojana等[69]以 十 六 烷基三甲基溴化銨為陽(yáng)離子表面活性劑制備了具有較大比表面積的CeO2(HSA)載體,并與用沉淀法制備的CeO2(LSA)載體進(jìn)行了生物乙醇重整制氫的實(shí)驗(yàn)對(duì)比。結(jié)果表明,在相同的反應(yīng)條件下,以CeO2(HSA)為載體的催化劑的氫氣選擇性比CeO2(LSA)提高了約20%,且積炭率僅為后者的一半。

      載體的酸堿性也會(huì)對(duì)生物乙醇重整制氫有影響。一般認(rèn)為,酸性載體會(huì)促進(jìn)積炭,但某些堿性載體自身也存在易燒結(jié)[70-72]和低溫下氫氣選擇性不高[29]的問(wèn)題,因此有學(xué)者對(duì)載體酸堿性對(duì)催化劑性能的影響進(jìn)行了深入的研究。Furtado等[73]制備了Ni-Cu/α-Al2O3(NCA)、Ni-Cu/Ce0.6Zr0.4O2(NCCZ)、Ni-Cu/Nb2O5(NCN)和Ni-Cu/ZnO(NCZ)4種催化劑,研究了載體的酸堿性對(duì)生物乙醇重整制氫效果的影響。為了能較方便地研究催化劑的失活特性,所選用的空速較高(70000mL/(h·gcat)),所得乙醇轉(zhuǎn)化率隨反應(yīng)時(shí)間的變化如圖3所示。NCZ的乙醇轉(zhuǎn)化率盡管在開(kāi)始時(shí)達(dá)到了近100%,但失活速率較快,6h后已降至15%;其余3種催化劑也有不同程度的失活,其中NCCZ的失活程度較低,并最終穩(wěn)定在43%。這4種催化劑的酸強(qiáng)度、總酸量、總堿量、強(qiáng)酸量和重整結(jié)果如表2所示。NCA和NCN由于含有一定量的強(qiáng)酸,重整產(chǎn)物含有乙烯;NCCZ雖然酸量較大,但均為弱酸,因而產(chǎn)物中沒(méi)有乙烯,其氫氣選擇性也較高;而NCZ的總酸量較小,總堿量較大,產(chǎn)物中也沒(méi)有乙烯,其失活速率卻明顯快于其余3種催化劑。酸堿性對(duì)催化劑失活的影響規(guī)律值得探究。Vizcaino等[24]發(fā)現(xiàn),雖然γ-Al2O3和HZSM-5均具有酸性,但由于HZSM-5分子篩具有特殊的孔道結(jié)構(gòu)可以抑制積炭,其積炭率低于γ-Al2O3,可見(jiàn)酸性載體對(duì)催化性能的影響可以通過(guò)載體自身的其他性質(zhì)來(lái)彌補(bǔ)。

      表1 Ni/ITQ-2、Co/ITQ-2催化劑的特性及催化性能[22]Table 1 The properties and performances of Ni/ITQ-2,Co/ITQ-2catalysts[22]

      表2 NCA、NCCZ、NCN和NCZ催化劑的NH3-TPD、異丙醇分解表征和催化生物乙醇重整制氫反應(yīng)結(jié)果[73]Table 2 NH3-TPD,isopropanol decomposition results and performances of NCA,NCCZ,NCN and NCZ catalysts for H2production from bio-ethanol reforming[73]

      許多金屬氧化物載體本身對(duì)生物乙醇重整制氫也有一定的活性,具有明顯的自催化特性。Llorca等[74]研究了乙醇在一系列金屬氧化物上的水蒸氣重整制氫效果。在450℃、水與醇摩爾比4、空速5000h-1的反應(yīng)條件下,V2O5和ZnO能有效催化乙醇水蒸氣重整制氫,其中ZnO的乙醇轉(zhuǎn)化率接近100%,氫氣選擇性達(dá)73%。Llorca等[75]隨后對(duì)Co/ZnO催化劑用于生物乙醇水蒸氣重整制氫進(jìn)行了系統(tǒng)研究,在保持水/醇摩爾比和空速不變的條件下,將反應(yīng)溫度降至350℃后,乙醇轉(zhuǎn)化率為100%,氫氣選擇性達(dá)73%,CH4選擇性低于3%,且產(chǎn)物中沒(méi)有CO,反應(yīng)75h后仍然保持良好的活性和選擇性。

      圖3 NCA、NCCZ、NCN和NCZ催化生物乙醇重整制氫的乙醇轉(zhuǎn)化率隨反應(yīng)時(shí)間的變化[73]Fig.3 Ethanol conversion vs reaction time of H2production by bio-ethanol reforming over NCA,NCCZ,NCN and NCZ[73]

      5 總結(jié)與展望

      目前生物乙醇重整制氫領(lǐng)域中選用的載體主要為γ-Al2O3、CeO2-ZrO2和硅鋁分子篩。γ-Al2O3經(jīng)堿性修飾后效果較好,但成本有所上升,且反應(yīng)溫度普遍較高;稀土氧化物具有較強(qiáng)的堿性和快速氧交換能力,但其氧交換能力受溫度的影響較大,制約了其在生物乙醇低溫重整制氫中的應(yīng)用;以分子篩為載體的催化劑在低溫下具有較高反應(yīng)活性和氫氣選擇性,但其制備工藝尚不成熟,使用成本也相對(duì)較高。為早日開(kāi)發(fā)出廉價(jià)、高效的生物乙醇重整制氫催化劑,有必要進(jìn)一步深入研究不同載體催化劑上生物乙醇重整制氫的催化反應(yīng)機(jī)理,尤其是針對(duì)載體協(xié)同催化作用機(jī)理的系統(tǒng)性研究。

      [1]DELUGA G A,SALGE J R,SCHMIDT L D,et al.Renewable hydrogen from ethanol by autothermal reforming[J].Science,2004,303(5660):993-997.

      [2]FARGIONE J,HILL J,TILMAN D,et al.Land clearing and the biofuel carbon debt[J].Science,2008,319(5867):1235-1238.

      [3]LAPOLA D M,SCHALDACH R,ALCAMO J,et al.Indirect land-use changes can overcome carbon savings from biofuels in Brazil[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(8):3388-3393.

      [4]RICHTER B.Using ethanol as an energy source[J].Science,2004,305(5682):340-340

      [5]閔恩澤.利用可再生農(nóng)林生物質(zhì)資源的煉油廠——推動(dòng)化學(xué)工業(yè)邁入“碳水化合物”新時(shí)代[J].化學(xué)進(jìn)展,2006, 18(2): 131-141.(MIN Enze. Developing biorefinery by utilizing agriculture and forestry biomass resources:Striding forward the“Carbonhydrate”Era[J].Progress in Chemistry,2006,18(2):131-141.)

      [6]張平,于波,陳靖,等.熱化學(xué)循環(huán)分解水制氫研究進(jìn)展 [J].化學(xué)進(jìn)展,2005,17(6):852-855.(ZHANG Ping,YU Bo,CHEN Jing,et al.Study on the hydrogen production by thermochemical water splitting[J].Progress in Chemistry,2005,17(6):852-855.)

      [7]郭坤,張京京,李浩然,等.微生物電解電池制氫[J].化學(xué)進(jìn)展,2010,22(4):748-753.(GUO Kun,ZHANG Jingjing,LI Haoran,et al.Hydrogen production by microbial electrolysis[J].Progress in Chemistry,2010,22(4):748-753.)

      [8]李慧青,鄒吉軍,劉昌俊,等.等離子體法制氫的研究進(jìn)展[J].化學(xué)進(jìn)展,2005,17(1):69-77.(LI Huiqing,ZOU Jijun,LIU Changjun,et al.Progress in hydrogen generation using plasmas[J].Progress in Chemistry,2005,17(1):69-77.)

      [9]溫福宇,楊金輝,宗旭,等.太陽(yáng)能光催化制氫研究進(jìn)展[J].化學(xué)進(jìn)展,2009,21(11):2285-2302.(WEN Fuyu,YANG Jinhui,ZONG Xu,et al.Photocatalytic hydrogen production utilizing solar energy[J].Progress in Chemistry,2009,21(11):2285-2302.)

      [10]吳川,張華民,衣寶廉,等.化學(xué)制氫技術(shù)研究進(jìn)展[J].化學(xué)進(jìn)展,2005,17(3):423-429.(WU Chuan,ZHANG Huamin,YI Baolian,et al.Recent advances in hydrogen generation with chemical methods [J].Progress in Chemistry,2005,17(3):423-429.)

      [11]晏波,韋朝海.超臨界水氣化有機(jī)物制氫研究[J].化學(xué)進(jìn)展,2008,20(10):1553-1561.(YAN Bo,WEI Chaohai.Hydrogen production from organic compounds by supercritical water gasification[J].Progress in Chemistry,2008,20(10):1553-1561.)

      [12]LEUNG D Y C,NI MLEUNG M K H.A review on reforming bio-ethanol for hydrogen production[J].International Journal of Hydrogen Energy,2007,32(15):3238-3247

      [13]FISHTIK I,ALEXANDER A,DATTA R,et al.A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions [J].International Journal of Hydrogen Energy,2000,25(1):31-45.

      [14]FRENI S.Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells[J].Journal of Power Sources,2001,94(1):14-19.

      [15]HARYANTO A,F(xiàn)ERNANDO S,MURALI N,et al.Current status of hydrogen production techniques by steam reforming of ethanol:A review[J].Energy &Fuels,2005,19(5):2098-2106.

      [16]MARINO F J,CERRELLA E G,DUHALDE S,et al.Hydrogen from steam reforming of ethanol.Characterization and performance of copper-nickel supported catalysts [J].International Journal of Hydrogen Energy,1998,23(12):1095-1101.

      [17]王衛(wèi)平,呂功煊.乙醇催化制氫研究進(jìn)展[J].化學(xué)進(jìn)展,2003,15(1):74-78.(WANG Weiping, Lü Gongxuan.Advances in catalytic generation of hydrogen from ethanol[J].Progress in Chemistry,2003,15(1):74-78.)

      [18]PRAKASH D V A E.Insight into steam reforming of ethanol to produce hydrogen for fuel cells[J].Chemical Engineering Journal,2006,117(1):39-49.

      [19]VASUEVA K M N,UMASANKER P,DHINGRA S C.Steam reforming of ethanol for hydrogen production:Thermodaynamic analysis[J].International Journal of Hydrogen Energy,1996,21(1):13-18.

      [20]ZHANG Z,VERYKIOS X E.Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3catalysts[J].Applied Catalysis A:General,1996:138(1):109-133.

      [21]CANTAO M P,CAMPOS-SKROBOT F C,RIZZODOMINGUES R C P,et al.Novel zeolite-supported rhodium catalysts for ethanol steam reforming[J].Journal of Power Sources,2008,183(2):713-716.

      [22]CHICA A,SAYAS S.Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2zeolite[J].Catalysis Today,2009,146(1-2):37-43.

      [23]SUN J,QIU X P,WU F,et al.H-2from steam reforming of ethanol at low temperature over Ni/Y2O3,Ni/La2O3and Ni/Al2O3catalysts for fuel-cell application[J].International Journal of Hydrogen Energy,2005,30(4):437-445

      [24]VIZCAINO A,CARRERO A,CALLES J.Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts [J].International Journal of Hydrogen Energy,2007,32(10-11):1450-1461.

      [25]CHEN L,CHOONG C K S,ZHONG Z,et al.Carbon monoxide-free hydrogen production via low-temperature steam reforming of ethanol over iron-promoted Rh catalyst[J].Journal of Catalysis,2010,276(2):197-200.

      [26]MARINO F,BOVERI M,BARONETTI G,et al.Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/gamma-Al2O3catalysts.Effect of Ni[J].International Journal of Hydrogen Energy,2001,26(7):665-668.

      [27]SANCHEZ-SANCHEZ M C,NAVARRO R M,F(xiàn)ierro J L G.Ethanol steam reforming over Ni/MxOy-Al2O3(M=Ce,La,Zr and Mg)catalysts:Influence of support on the hydrogen production[J].International Journal of Hydrogen Energy, 2007, 32(10-11):1462-1471.

      [28]ZHANG L,LIU J,LI W,et al.Ethanol steam reforming over Ni-Cu/Al2O3-MyOz(M = Si,La,Mg,and Zn)catalysts [J].Journal of Natural Gas Chemistry,2009,18(1):55-65.

      [29]CAVALLARO S,CHIODO V,F(xiàn)RENI S,et al.Performance of Rh-Al2O3catalyst in the steam reforming of ethanol:H2production for MCFC[J].Applied Catalysis A:General,249(1):119-228.

      [30]SONG H O,ZKAN U S.Ethanol steam reforming over Co-based catalysts:Role of oxygen mobility[J].Journal of Catalysis,2009,261(1):66-74.

      [31]BISWAS P,KUNZRU D.Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2catalyst:Effect of support and metal loading[J].International Journal of Hydrogen Energy,2007,32(8):969-980.

      [32]CAI W,ZHANG B,LI Y,et al.Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2catalyst[J].Catalysis Communications,2007,8(11):1588-1594.

      [33]GUO Z G,WANG S R,GUO L,et al.Catalytic steam reforming of ethanol for hydrogen production over Ni/CeO2-Zr O2catalysts[J].Bioresources,2011,6(4):4092-4102.

      [34]LIU Q H,LIU Z L,ZHOU X H,et al.Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2catalysts[J].Journal of Rare Earths,2011,29(9):872-877.

      [35]MAIA T A,ASSAF J M,ASSAF E M.Steam reforming of ethanol for hydrogen production on Co/CeO2-ZrO2catalysts prepared by polymerization method[J].Materials Chemistry and Physics,2012,132(2-3):1029-1034.

      [36]ZHANG B C,TANG X L,LI Y,et al.Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co,Ir and Ni catalysts[J].Catalysis Communications,2006,7(6):367-372.

      [37]ZHANG B C,CAI W J,LI Y,et al.Hydrogen production by steam reforming of ethanol over an Ir/CeO2catalyst:Reaction mechanism and stability of the catalyst[J].International Journal of Hydrogen Energy,2008,33(16):4377-4386.

      [38]SUN G B,HIDAJAT K,WU X S,et al.A crucial role of surface oxygen mobility on nanocrystalline Y2O3support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3catalysts[J].Applied Catalysis B:Environmental,2008,81(3-4):303-312.

      [39]FAJARDO H V,PROBST L F D,CARRENO N L V,et al.Hydrogen production from ethanol steam reforming over Ni/CeO2nanocomposite catalysts[J].Catalysis Letters,2007,119(3-4):228-236.

      [40]SCOTT M,CHIU W,BLACKFORD M G,et al.Hydrogen production from ethanol over Rh-Pd/CeO2catalysts[J].Topics in Catalysts,2008,51(1-4):13-21.

      [41]SUN J,LUO D F,XIAO P,et al.High yield hydrogen production from low CO selectivity ethanol steam reforming over modified Ni/Y2O3catalysts at low temperature for fuel cell application[J].Journal of Power Sources,2008,184(2):385-391.

      [42]CHEN H Q,YU H,PENG F,et al.Efficient and stable oxidative steam reforming of ethanol for hydrogen production:Effect of in situ dispersion of Ir over Ir/La2O3[J].Journal of Catalysis,2010,269(2):281-290.

      [43]CHEN H Q,YU H,YANG G X,et al.Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2catalyst for hydrogen production [J]. Chemical Engineering Journal,2011,167(1):322-327.

      [44]SUN J,WU F,QIU X P,et al.Hydrogen production from ethanol steam reforming over Ni/Al2O3and Ni/La2O3catalysts at low temperature[J].Chinese Journal of Catalysis,2004,25(7):551-555.

      [45]SHI Q J,LIU C WCHEN W Q.Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO2catalyst at low temperature[J].Journal of Rare Earths,2009,27(6):948-954.

      [46]ROH H S,PLATON A,WANG Y,et al.Catalyst deactivation and regeneration in low temperature ethanol steam reforming with Rh/CeO2-ZrO2catalysts[J].Catalysis Letters,2006,110(1-2):1-6.

      [47]FRUSTERI F,F(xiàn)RENI S,CHIODO V,et al.Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2Ni supported catalysts[J].International Journal of Hydrogen Energy,2006,31(15):2193-2199.

      [48]KUGAI J,SUBRAMANI V,SONG C,et al.Effects of nanocrystalline CeO2supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol[J].Journal of Catalysis,2006,238(2):430-440.

      [49]DIAGNE C,IDRISS H,PEARSON K,et al.Efficient hydrogen production by ethanol reforming over Rh catalysts.Effect of addition of Zr on CeO2for the oxidation of CO to CO2[J].Comptes Rendus Chimie,2004,7(6-7):617-622.

      [50]KUNZRU D,BISWAS P.Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2catalyst[J].Chemical Engineering Journal,2008,136(1):41-49.

      [51]王陽(yáng).Ni/Ce_(0.5)Zr_(0.5)O_2催化劑在乙醇水蒸氣重整制氫過(guò)程中的研究[D].天津大學(xué),2007.

      [52]BREEN J P,BURCH R,COLEMAN H M.Metalcatalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications[J].Applied Catalysis B:Environmental,2002,39(1):65-74.

      [53]INOKAWA H,NISHIMOTO S,KAMESHIMA Y,et al.Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming [J].International Journal of Hydrogen Energy,2010,35(21):11719-11724.

      [54]VIZCAíNO A J,CARRERO A,CALLES J A.Ethanol steam reforming on Mg-and Ca-modified Cu-Ni/SBA-15catalysts[J].Catalysis Today,2009,146(1-2):63-70.

      [55]CARRERO A, CALLES J A,VIZCAíNO A J.Hydrogen production by ethanol steam reforming over Cu-Ni/SBA-15supported catalysts prepared by direct synthesis and impregnation[J].Applied Catalysis A:General,2007,327(1):82-94.

      [56]CALLES J A,CARRERO A,VIZCAíNO A J.Ce and La modification of mesoporous Cu-Ni/SBA-15catalysts for hydrogen production through ethanol steam reforming[J].Microporous and Mesoporous Materials,2009,119(1-3):200-207.

      [57]LINDO M,VIZCAINO A J,CALLES J A,et al.Ethanol steam reforming on Ni/Al-SBA-15catalysts:Effect of the aluminium content[J].International Journal of Hydrogen Energy,2010,35(11):5895-5901.

      [58]LIGURAS D K,KONDARIDES D I,VERYKIOS X E.Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts[J].Applied Catalysis B:Environmental,2003,43(4):345-354.

      [59]KWAK B S,LEE J S,LEE J S,et al.Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/zeolite Y catalysts at mild temperature[J].Applied Energy,2011,88(12):4366-4375.

      [60]ZHANG B C,TANG X L,LI Y,et al.Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts[J].International Journal of Hydrogen Energy, 2007, 32(13):2367-2373.

      [61]SáS,SILVA H,BRAND?OL,et al.Catalysts for methanol steam reforming—A review [J]. Applied Catalysis B:Environmental,2010,99(1-2):43-57.

      [62]JEONG H,KIM K I,KIM T H,et al.Hydrogen production by steam reforming of methanol in a microchannel reactor coated with Cu/ZnO/ZrO2/Al2O3catalyst[J].Journal of Power Sources,2006,159(2):1296-1299.

      [63]SHISHIDO T,YAMAMOTO Y,MORIOKA H,et al.Active Cu/ZnO and Cu/ZnO/Al2O3catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J].Applied Catalysis A:General,2004,263(2):249-253.

      [64]YANG H MLIAO P H.Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol[J].Applied Catalysis A:General,2007,317(2):226-233.

      [65]HUANG G,LIAW B J,JHANG C J,et al.Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3catalysts[J].Applied Catalysis A:General,2009,358(1):7-12.

      [66]PURNAMA H,GIRGSDIES F,RESSLER T,et al.Activity and selectivity of a nanostructured CuO/ZrO2catalyst in the steam reforming of methanol[J].Catalysis Letters,2004,94(1-2):61-68.

      [67]LAOSIRIPOJANA N, ASSABUMRUNGRAT S.Methane steam reforming over Ni/Ce-ZrO2catalyst:Influences of Ce-ZrO2support on reactivity,resistance toward carbon formation,and intrinsic reaction kinetics[J].Applied Catalysis A:General,2005,290(1-2):200-211.

      [68]LAOSIRIPOJANA N, SUTTHISRIPOK W,ASSABUMRUNGRAT S.Synthesis gas production from dry reforming of methane over CeO2doped Ni/Al2O3:Influence of the doping ceria on the resistance toward carbon formation[J].Chemical Engineering Journal,2005,112(1-3):13-22.

      [69]LAOSIRIPOJANA N, ASSABUMRUNGRAT S.Catalytic steam reforming of ethanol over high surface area CeO2:The role of CeO2as an internal pre-reforming catalyst[J].Applied Catalysis B:Environmental,2006,66(1-2):29-39.

      [70]FRUSTERI F,F(xiàn)RENI S,SPADARO L,et al.H2production for MC fuel cell by steam reforming of ethanol over MgO supported Pd,Rh,Ni and Co catalysts[J].Catalysis Communications,2004,5(10):611-615.

      [71]FRUSTERI F, FRENI S, CHIODO V, et al.Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC[J].Journal of Power Sources,2004,132(1-2):139-144.

      [72]FRUSTERI F,F(xiàn)RENI S,CHIODO V,et al.Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts:Hydrogen production for MC fuel cell[J].Applied Catalysis A:General,2004,270(1-2):1-7.

      [73]FURTADO A C,ALONSO C G,CANT?OMP,et al.Bimetallic catalysts performance during ethanol steam reforming: Influence of support materials [J].International Journal of Hydrogen Energy,2009,34(17):7189-7196.

      [74]LLORCA J,DE LA PISCINA P R,SALES J,et al.Direct production of hydrogen from ethanolic aqueous solutions over oxide catalysts [J]. Chemical Communications,2001,7(7):641-642.

      [75]LLORCA J,DE LA PISCINA P R,DALMON J A,et al.CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts—Effect of the metallic precursor [J]. Applied Catalysis B:Environmental,2003,43(4):355-369.

      猜你喜歡
      積炭重整制氫
      信托公司在破產(chǎn)重整實(shí)務(wù)中的機(jī)會(huì)
      銀行家(2022年5期)2022-05-24 12:54:58
      淺談發(fā)動(dòng)機(jī)積炭
      制氫工藝技術(shù)比較
      高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
      重整催化劑Ni2P/Al2O3-SAPO-11積炭失活規(guī)律研究
      HZSM-5催化劑氣相沉積改性及催化甲苯歧化抗積炭性能
      醫(yī)患關(guān)系需重整“程序”
      旋轉(zhuǎn)真空浸漬法制備N(xiāo)iO/MgO=γ=Al2 O3催化劑用于CO2/CH4重整研究
      基于試驗(yàn)載荷的某重型燃?xì)廨啓C(jī)結(jié)焦積炭模擬
      電解制氫設(shè)備開(kāi)發(fā)入選“863”
      低溫與特氣(2014年4期)2014-03-20 13:36:50
      滁州市| 斗六市| 天津市| 吴忠市| 德化县| 涟源市| 民权县| 方城县| 淳安县| 陆良县| 拉孜县| 峨边| 赫章县| 湘乡市| 遂昌县| 临漳县| 福鼎市| 屏东县| 汉寿县| 桦甸市| 武清区| 米泉市| 公安县| 建始县| 翁牛特旗| 健康| 西峡县| 旺苍县| 永顺县| 句容市| 随州市| 车致| 嘉兴市| 淅川县| 新邵县| 榆树市| 北川| 宿松县| 嘉兴市| 天水市| 通江县|